
CSE 486/586

CSE 486/586 Distributed Systems
Distributed Hash Tables

Slides by Steve Ko
Computer Sciences and Engineering

University at Buffalo

Last Time

● Evolution of peer-to-peer
– Central directory (Napster)

– Query flooding (Gnutella)

– Hierarchical overlay (Kazaa, modern Gnutella)

● BitTorrent
– Focuses on parallel download

– Prevents free-riding

2

Today’s Question

● How do we organize the nodes in a distributed system?

● Up to the 90s
– Prevalent architecture: client-server (or master-slave)

– Unequal responsibilities

● Now
– Emerged architecture: peer-to-peer

– Equal responsibilities

● Today: studying peer-to-peer as a paradigm

What We Want
• Functionality: lookup-response

P

P

P

P

P
P

P

E.g., Gnutella

What We Don’t Want

● Cost (scalability) & no guarantee for lookup

● Napster: cost not balanced, too much for the server-side

● Gnutella: cost still not balanced, just too much, no
guarantee for lookup

Memory Lookup
Latency

#Messages
for a lookup

Napster O(1)
(O(N)@server)

O(1) O(1)

Gnutella O(N)
(worst case)

O(N)
(worst case)

O(N)
(worst case)

What We Want
• What data structure provides fast lookup-response?
• Hash table: associates keys with values

• Name-value pairs (or key-value pairs)
– E.g., “http://www.cnn.com/foo.html” and the page contents

– E.g., “BritneyHitMe.mp3” and “12.78.183.2”

Table Index Values

Hashing Basics

● Hash function
– Maps a large, possibly variable-sized datum to a small datum
– Small datum (key) is often a single integer
– In short: maps n-bit values into k buckets (k << 2n)
– Provides time- & space-saving data structure for lookup

● Main goals:
– Low cost
– Deterministic
– Uniform distribution (load balanced)

● E.g., mod
– k buckets (k << 2n), data d (n-bit)
– b = d mod k
– Distributes load uniformly only when data is distributed uniformly

DHT: Goal

● Let’s build a distributed system with a hash table
abstraction!

P

P

P

P

P P

P

lookup(key) valuekey value

Where to Keep the Hash Table

● Server-side (Napster)
● Client-local (Gnutella)
● What are the requirements (think Napster and Gnutella)?

– Deterministic lookup
– Low lookup time (better than linear in the system size)
– Should balance load even with node churn

● What we’ll do: partition the hash table and distribute it
among the nodes in the system

● We need to choose the right hash function
● We also need to somehow partition the table and

distribute the partitions with minimal relocation of
partitions in the presence of node churn

Where to Keep the Hash Table

● Consider the problem of data partitioning:
– Given document X, choose one of k servers to use

● Two-level mapping
– Hashing: Map one (or more) data item(s) to a hash value (the

distribution should be balanced)

– Partitioning: Map a hash value to a server (each server load
should be balanced even when nodes leave or join)

● Consider a simple approach and its pros and cons:
– Hashing with mod, and partitioning with buckets

Basic Hashing and Bucket Partitioning

• Hashing: Suppose we use modulo hashing
– Number servers 1..k

• Partitioning: Place X on server i = (X mod k)
– Problem? Data may not be uniformly distributed

Table Index Values

Server 0

Server 1

Server 15

Mod

Basic Hashing and Bucket Partitioning

● Place X on server i = hash(X) mod k

● Problem?
– What happens if a server fails or joins (k → k ± 1)?

– Answer: (Almost) all entries get remapped to new nodes!

Table Index Values

Server 0

Server 1

Server 15

Hash

Chord DHT

● A distributed hash table system using consistent hashing
● Organizes nodes in a ring
● Maintains neighbors for correctness and shortcuts for

performance
● DHT in general

– Structured peer-to-peer (as opposed to Napster, Gnutella, etc.)
– Used as a foundation for other systems

● “Trackerless” BitTorrent clients
● Amazon Dynamo
● Distributed filesystems
● etc.

● Demonstrates principled design.

● Represent the hash key space as a virtual ring
– A ring representation instead of a table representation.

● Use a hash function that evenly distributes items over the
hash space, e.g., SHA-1

● Map nodes (buckets) in the same ring

● Used in DHTs, memcached, etc.

Chord Ring: Global Hash Table

0 1

Hash(IP_address) → node_id

2128-1

Hash(name) → object_id

ID space forms a ring

Chord: Consistent Hashing

● Partitioning: Data item is mapped to its “successor” node

● Advantages
– Even distribution

– Few changes as
nodes come and go…

Hash (name) → object_id

Hash(IP_address) → node_id

Chord: When nodes come and go…

● Small changes when nodes come and go
– Only affects keys mapped to the node that comes or goes

Hash (name) → object_id

Hash(IP_address) → node_id

Chord: Node Organization

● Maintain a circularly linked list around the ring
– Every node has a predecessor and successor

● Separate join and leave protocols

node

predecessor

successor

Chord: Basic Lookup

lookup(id):

 if (id > pred.id &&

 id <= my.id):

 return my.id;

 else:

 return succ.lookup(id);

● Route hop by hop via successors
– O(n) hops to find destination id

node

Lookup

Object ID

Chord: Efficient Lookup — Fingers

● ith entry at peer with id n is first peer with:
– id >=

N80
80 + 20

80 + 21
80 + 22

80 + 23

80 + 24

80 + 25 80 + 26
i ft[i]

0 96

1 96

2 96

3 96

4 96

5 114

6 20

Finger Table at N80
N114

N96

N20


n  2i(mod2m)

Finger Table

• Finding a <key, value> using fingers

N86

86 + 24

N102

N20

20 + 26

Chord: Efficient Lookup — Fingers

lookup (id):

 if (id > pred.id && id <= my.id):

 return my.id;

 else:

 // fingers() by decreasing distance

 for finger in fingers():

 if id >= finger.id:

 return finger.lookup(id);

 return succ.lookup(id);

● Route greedily via distant “finger” nodes
– O(log n) hops to find destination id

Chord: Node Joins and Leaves

● When a node joins
– Node does a lookup on its own id
– And learns the node responsible for that id
– This node becomes the new node’s successor
– And the node can learn that node’s predecessor (which will

become the new node’s predecessor)

● Monitor
– If a neighbor/peer doesn’t respond for some time, find a new one

● When a node leaves
– Clean (planned) leave: notify the neighbors
– Unclean leave (failure): need an extra mechanism to handle lost

(key, value) pairs, e.g., as Dynamo does.

Summary

● DHT
– Provides a hash table abstraction

– Partitions the hash table and distributes partitions over the nodes

– Uses peer-to-peer structure

● Chord DHT
– Based on consistent hashing

– Balances hash table partitions over the nodes

– Basic lookup based on successors

– Efficient lookup through fingers

References

● Ion Stoica, Robert Morris, David Karger, M. Frans
Kaashoek, Hari Balakrishnan. Chord: A Scalable Peer-to-
peer Lookup Service for Internet Applications.
Proceedings of ACM SIGCOMM. August 2001.
Required Reading.
https://pdos.csail.mit.edu/papers/chord:sigcomm01/chor
d_sigcomm.pdf

https://pdos.csail.mit.edu/papers/chord:sigcomm01/chord_sigcomm.pdf
https://pdos.csail.mit.edu/papers/chord:sigcomm01/chord_sigcomm.pdf

Acknowledgements

• These slides are by Steve Ko, used with permission (and
lightly modified) by Ethan Blanton.

• These slides contain material developed and copyrighted
by Indranil Gupta (UIUC), Michael Freedman (Princeton),
and Jennifer Rexford (Princeton).

	Slide 1
	Last Time
	Today’s Question
	What We Want
	What We Don’t Want
	What We Want
	Hashing Basics
	DHT: Goal
	Where to Keep the Hash Table
	Where to Keep the Hash Table
	Using Basic Hashing and Bucket Partitioning?
	Using Basic Hashing and Bucket Partitioning?
	Chord DHT
	Chord Ring: Global Hash Table
	Chord: Consistent Hashing
	Chord: When nodes come and go…
	Chord: Node Organization
	Chord: Basic Lookup
	Chord: Efficient Lookup --- Fingers
	Finger Table
	Chord: Efficient Lookup --- Fingers
	Chord: Node Joins and Leaves
	Summary
	Slide 24
	Acknowledgements

