
CSE 486/586

CSE 486/586 Distributed Systems
Consensus

Slides by Steve Ko
Computer Sciences and Engineering

University at Buffalo

Recap: Finger Table

• Finding a <key, value> using fingers

N86

86 + 24

N102

N20

20 + 26

Let’s Consider This…

One Reason:
Impossibility of Consensus

● Q: Should Ethan give an A to everyone in CSE 486/586?
– Input: everyone says either yes/no.

– Output: an agreement of yes or no.

● Bad news
– Asynchronous systems cannot guarantee that they will reach

consensus with even one faulty process.

● Many consensus problems
– Reliable, totally-ordered multicast (what we saw already)

– Mutual exclusion, leader election, etc. (what we will see)

– Cannot reach consensus.

The Consensus Problem

● N processes

● Each process p has
– input variable x

p
 : initially either 0 or 1

– output variable y
p
 : initially b (b=undecided) – can be changed

only once

● Consensus problem: Design a protocol so that either
– all non-faulty processes set their output variables to 0

– Or all non-faulty processes set their output variables to 1

– There is at least one initial state that leads to each possible
outcome

Assumptions (System Model)

• The only process failures are crash-stop.
• Synchronous systems have bounds on

– Message delays
– Max time for each process step
– e.g., multiprocessor (with common clock across processors)

• Asynchronous systems have no such bounds
– E.g., the Internet

Example: State Machine Replication

• Run multiple copies of a state machine
• For what?

– Reliability

• All copies agree on the order of execution.
• Many mission-critical systems operate like this.

– Air traffic control systems, Warship control systems, etc.

First: Synchronous Systems

● Every process starts with an initial input value (0 or 1).

● Every process keeps the history of values received so far.

● The protocol proceeds in rounds.

● At each round, everyone multicasts their history.

● After all the rounds are done, pick the minimum.

First: Synchronous Systems

• Assume that at most f processes crash
– Proceed in f + 1 rounds (with timeout)
– Use basic multicast (B-multicast)

• Valuesr
i: the set of proposed values known to process p = Pi at the

beginning of round r.
• Initially, Values0

i = {} ; Values1
i = { vi = xp }

for round r = 1 to f + 1 do:

B-multicast(Valuesr
i)

Valuesr+1
i ← Values

r
i

for each vj received do:

Valuesr+1
i = Values

r+1
i ∪ vj

yp = di = minimum(Values
f+1

i)

Why Does It Work?

Assume that two non-faulty processes differ in their final set
of values. By contradiction:

● Suppose p
i
 and p

j
 are these processes.

● Assume that p
i
 possesses a value v that p

j
 does not.

● Intuition: p
j
 must have consistently missed v in all rounds.

– In the final round, some third process, p
k
, sent v to pi, and

crashed before sending v to p
j
.

– Any process sending v in the penultimate round must have
crashed; otherwise, both p

k
 and p

j
 should have received v.

– Iterating, we infer at least one crash in each preceding round.
– But we have assumed at most f crashes can occur and there are

f + 1 rounds → contradiction.

Second: Asynchronous Systems

● Messages have arbitrary delay, processes arbitrarily slow

● Impossible to achieve consensus
– Even a single failure is enough to prevent the system from

reaching consensus!

– A slow process is indistinguishable from a crashed process

● Impossibility applies to any protocol that claims to solve
consensus

● Proved in a now-famous result by Fischer, Lynch and
Patterson, 1983 (FLP) [1]
– Stopped many distributed system designers dead in their tracks

– A lot of claims of “reliability” vanished overnight!

Are We Doomed?

● Asynchronous systems (i.e., systems with arbitrary delay)
cannot guarantee that they will reach consensus with
even one faulty process.

● Key word: “guarantee”
– Does not mean that processes can never reach consensus if one

is faulty

– Allows room for reaching agreement with some probability
greater than zero

– In practice many systems reach consensus.

● How do we get around this?
– Two key things in the result: one faulty process & arbitrary delay

Techniques to Overcome Impossibility

● Technique 1: masking faults (crash-stop)
– For example, use persistent storage and keep local checkpoints
– Upon failure, restart the process and restore from the last

checkpoint.
– This masks fault, but may introduce arbitrary delays.

● Technique 2: failure detectors
– For example, if a process is slow, mark it as a failed process.
– Then actually kill it somehow, or discard all the messages from

that point on (fail-silent)
– This effectively turns an asynchronous system into a

“synchronous system”
– Failure detectors might not be 100% accurate and requires a

long timeout value to be reasonably accurate.

Recall

• Each process p has a state
– program counter, registers, stack, local variables

– input register x
p
 : initially either 0 or 1

– output register y
p
 : initially b (undecided)

• Consensus Problem: Design a protocol so that either
– all non-faulty processes set their output variables to 0
– all non-faulty processes set their output variables to 1
– (No trivial solutions allowed)

Proof of Impossibility: Reminder

● State machine
– Forget real time, everything is in steps & state transitions.

– Equally applicable to a single process or distributed processes

● A state S1 is reachable from another state S0 if there is a
sequence of events from S0 to S1.

● There is an initial state with an initial set of input values.

p p’

Global Message Buffer

send(p’,m)
receive(p’)

may return null

“Network”

Different Definition of “State”

• State of a process
• Configuration: Global state

– Collection of states, one per process
– State of the global buffer

• Each Event is an atomic collection of three sub-steps:
– receipt of a message by a process (say p), and
– processing of the message, and
– the sending of all necessary messages by p

• Note: this event is different from Lamport events
• Schedule: sequence of events

C

C’

C’’

Event e’=(p’,m’)

Event e’’=(p’’,m’’)

Configuration C

Schedule s=(e’,e’’)

C

C’’

Equivalent

State Valencies

● Let Configuration C have a set of reachable decision
values V
– If |V| = 2, C is bivalent

– If |V| = 1, C is said to be 0-valent or 1-valent, as appropriate

● Bivalent means that the outcome is unpredictable (but still
doesn’t mean that consensus is not guaranteed).
There are three possibilities:
– Unanimous 0

– Unanimous 1

– Mixture of 0 and 1 values

Guaranteeing Consensus

● If we want to say that a protocol guarantees consensus
(with one faulty process and arbitrary delays), we must be
able to say the following:

● Consider all possible input sets (i.e., all initial
configurations).

● For each input set, the protocol should produce either 0
or 1 even with one failure for all possible execution paths.
– i.e., no “mixture of 0 and 1 values”

● The impossibility result: We can’t do that.
– i.e., there always exists an execution path that will

produce a mixture of values.

Lemma 1

C

C’

C’’

Schedule s1

s2

Schedule s2

s1

s1 and s2

• can each be applied to C

• Involve disjoint sets of
 receiving processes

Schedules are commutative

The Theorem

● Lemma 2: There exists an initial configuration that is bivalent

● Lemma 3: Starting from a bivalent configuration, there is
always another reachable bivalent configuration

● Insight: It is not possible to distinguish a faulty node from a
slow node.

● Theorem (Impossibility of Consensus): There is always an
execution path in an asynchronous distributed system (for any
algorithm) such that the group of processes never reaches
consensus (i.e., always remains bivalent).

Summary

● Consensus: reaching an agreement

● Possible in synchronous systems.

● Asynchronous systems cannot guarantee that they will
reach consensus with even one faulty process.

References

[1] Fischer, Lynch, and Paterson. Impossibility of
Distributed Consensus with One Faulty Process.
Journal of the ACM. Vol. 32 No. 2. April 1985.
Required Reading.
http://groups.csail.mit.edu/tds/papers/Lynch/pods83-flp.p
df

http://groups.csail.mit.edu/tds/papers/Lynch/pods83-flp.pdf
http://groups.csail.mit.edu/tds/papers/Lynch/pods83-flp.pdf

Acknowledgements

● These slides are by Steve Ko, used and (lightly) modified
by Ethan Blanton with permission.

● These slides contain material developed and copyrighted
by Indranil Gupta (UIUC).

	Slide 1
	Recap: Finger Table
	Let’s Consider This…
	One Reason: Impossibility of Consensus
	The Consensus Problem
	Assumptions (System Model)
	Example: State Machine Replication
	First: Synchronous Systems
	First: Synchronous Systems
	Why Does It Work?
	Second: Asynchronous Systems
	Are We Doomed?
	Techniques to Overcome Impossibility
	Recall
	Proof of Impossibility: Reminder
	Slide 16
	Different Definition of “State”
	Slide 18
	State Valencies
	Guaranteeing Consensus
	Lemma 1
	The Theorem
	Summary
	Slide 24
	Acknowledgements

