CSE 486/586 Distributed Systems

Mutual Exclusion

Steve Ko
Computer Sciences and Engineering
University at Buffalo

CSE 486/586

Recap: Consensus

 On asynchronous system
— There’s an algorithm that works.

On an asynchronous system
- It's been shown (FLP) that it's impossible to guarantee.

Getting around the result
- Masking faults

- Using failure detectors

- Still not perfect

Impossibility Result

- Lemma 1: schedules are commutative

- Lemma 2: some initial configuration is bivalent

- Lemma 3: from a bivalent configuration, there is always another

bivalent configuration that is reachable.
'[é University at Buffalo
The State University of New York

Why Mutual Exclusion?

* Bank Servers in the Cloud: Think of two simultaneous
deposits of $10,000 into your bank account, each from
one ATM connected to a different server.

— Both ATMs read initial amount of $1000 concurrently from the
bank’s cloud server

— Both ATMs add $10,000 to this amount (locally at the ATM)
— Both write the final amount to the server
— What's wrong?

* The ATMs need mutually exclusive access to your
account entry at the server (or to execution of the code
that modifies the account entry)

University at Buffalo
The State University of New York

Mutual Exclusion

* Critical section problem

— Piece of code (at all clients) for which we need to ensure at most
one client is executing it at any point of time.

* Solutions:
— Semaphores, mutexes, efc. in single-node OS

— Message-passing-based protocols in distributed systems:
» enter() the critical section
» AccessResource() in the critical section
» exit() the critical section

* Distributed mutual exclusion requirements:
— Safety — At most one process may execute in CS at any time
— Liveness — Every request for a CS is eventually granted
— Ordering (desirable) — Requests are granted in the order

they were made
'[é University at Buffalo
The State University of New York

Mutexes

* Synchronize access to common data structures between
multiple threads

Allows two operations:
lock()
forever: // each loop iteration 1is atomic
if lock not in use:
label lock in use
break
unlock()
label lock not in use // atomic

University at Buffalo
The State University of New York

Semaphores

* Synchronize access to common data structures between
multiple threads

Initialize with S = 1, allows two operations:
wait(S) (or P(S)):

forever: // each loop iteration 1is atomic
if S > 0:
S- -
break
signal(S) (or V(S)):
S++ // atomic

University at Buffalo
The State University of New York

How Are Mutexes Used?

mutex L = UNLOCKED extern mutex L;
ATM1: ATM2:
lock(L) // enter lock(L); // enter
// critical section // critical section
obtain bank amount obtain bank amount;
add 1in deposit add 1in deposit;
update bank amount update bank amount;
unlock(L) // exit unlock(L); // exit

University at Buffalo

The State University of New York

Gh

Distributed Mutual Exclusion
Performance Criteria

* Bandwidth: the total number of messages sent in each
entry and exit operation.

* Client delay: the delay incurred by a process at each
entry and exit (when no other process is in, or waiting)

— (We will prefer mostly the entry operation.)

* Synchronization delay: the time interval between one
process exiting the critical section and the next process
entering it (when there is only one process waiting)

* [hroughput: the rate at which the processes can access
the critical section, /.e., x processes per second

* (these definitions are more correct than those in the
textbook)

University at Buffalo
The State University of New York

Assumptions/System Model

* We make the following assumptions:
— Each pair of processes is connected by reliable channels.

— Messages are eventually delivered to recipient’s input buffer in
FIFO order.

— Processes do not fail. (why?)

* Four algorithms
— Centralized control
— Token ring
— Ricart and Agrawala
— Maekawa

University at Buffalo
The State University of New York

1. Centralized Control

* Acentral coordinator (master or leader)
— lIs elected (next lecture)

— Grants permission to enter CS & keeps a queue of requests to
enter the CS.

— Ensures only one process at a time can access the CS
— Has a special token per CS

* Operations (token gives access to CS)
— Enter: Send a request to the coordinator & wait for token.
— Exit: Send a message to the coordinator to release the token.

— Upon receipt of a request, if no other process has the token, the
coordinator grants the token; otherwise, it queues the request.

— Upon receipt of a release message, the coordinator removes the
oldest entry in the queue (if any) and grants the token.

University at Buffalo
The State University of New York

1. Centralized Control

* Safety, liveness, ordering?
* Bandwidth?
— Requires 3 messages per entry + exit operation.

* Client delay:

— one round trip time (request + grant)
* Synchronization delay

— one round trip time (release + grant)

* The coordinator becomes performance bottleneck and
single point of failure.

University at Buffalo
The State University of New York

2. Token Ring Approach

* Processes are organized in a logical ring: p. has a

communication channel to P st mod N)

* Operations:
— Only the process holding the token can enter the CS.
— To enter the critical section, wait passively for the token.
— When in CS, hold on to the token.
— To exit the CS, forward the token on.

— If a process does not want to enter the CS when it receives the
token, it forwards the token its neighbor.

University at Buffalo
The State University of New York

2. Token Ring Approach

e Features:

University at Buffalo
The State University of New York

Safety & liveness, ordering?
Bandwidth: 1 message per exit
Client delay: O to N message transmissions.

Synchronization delay between one process’s exit from the CS
and the next process’s entry is between 1 and N-1 message

transmissions. us holder of token
current holder
Qf token

3. Ricart & Agrawala’s Algorithm

* Processes multicast a request to enter a CS

— Once all processes reply positively, the requester
can enter

* Use a Lamport clock and process id for ordering
— Messages requesting entry are of the form <T,p>

* Tis the sender’s Lamport clock timestamp
 p.is the sender’s identity (used to break ties in T)

University at Buffalo
The State University of New York

3. Ricart & Agrawala’s Algorithm

* To enter the CS

— set state to wanted

— multicast request to all processes (including timestamp)
— wait until all processes reply

— change state to held and enter the CS

* On receipt of a request <T, p> at p;

— if (state = held) or (state = wanted & (Tj, pj)<(T,.,pi)), enqueue
request
— else “reply” to pi
* On exiting the CS

— change state to release and reply to all queued requests.

University at Buffalo
The State University of New York

3. Ricart & Agrawala’s Algorithm

On initialization
state := RELEASED;
To enter the section
state := WANTED;
Multicast request to all processes;
T := request’s timestamp;
Wait until (humber of replies received = (N - 1));
state := HELD:;
On receipt of a request <T, p> at p; (i # j)
if (state = HELD or (state = WANTED and (T, p) < (T, p,)))
then
queue request from p, without replying

else
reply immediately to p;
end if
To exit the critical section
state := RELEASED;
reply to any queued requests;

University at Buffalo
The State University of New York

3. Ricart & Agrawala’s Algorithm
/>41
/ b

P1 Reply
eply 3
41
p >34
2

University at Buffalo

The State University of New York

Analysis: Ricart & Agrawala

Safety, liveness, and ordering?
Bandwidth:

— 2(N-1) messages per entry operation
— N-1 unicasts for the multicast request + N-1 replies
— N-1 unicast messages per exit operation
Client delay
— One round-trip time
* Synchronization delay
— One message transmission time

University at Buffalo
The State University of New York

4. Maekawa’s Algorithm

* Simple example

'[é Umver51ty at Buffalo
The Sta sity of New York

4. Maekawa’s Algorithm

P8

'[é Umver51ty at Buffalo
The Sta sity of New York

4. Maekawa’s Algorithm

Gh

Observation: no need to have all peers reply

A subset of peers is sufficient as long as all subsets overlap.

Voting set: a subset of processes that grant permission to enter
aCS
Voting sets are chosen so that for any two processes, p. and P,

their corresponding voting sets have at least one common
process.

University at Buffalo

The State University of New York

Each process p, is associated with a voting set v, (of processes)

Each process belongs to its own voting set

The intersection of any two voting sets is non-empty
Each voting set is of size K

Each process belongs to VI other voting sets

4. Maekawa’s Algorithm

* Multicasts messages to a (voting) subset of processes
— To access a critical section, p, requests permission from all other
processes in its own voting set v,

— Voting set member gives permission to only one requestor at a
time, and queues all other requests

— Guarantees safety
— Maekawa showed that K=M=+N works best

— One way of doing this is to put N processes in a VYN by YN matrix
and take union of row & column containing p; as its voting set.

University at Buffalo
The State University of New York

Maekawa’s Algorithm — Part 1

On initialization
state := RELEASED;
voted = FALSE;

For p, to enter the critical section
state := WANTED;
Multicast request to all processes in V;

Wait until (number of replies received = K);
state := HELD;
On receipt of a request from p, at p,
if (state = HELD or voted = TRUE)
then
queue request from p, without replying;

else
send reply to p;
voted := TRUE;
\ end if

University at Buffalo
The State University of New York

Maekawa’s Algorithm — Part 2

For p, to exit the critical section

state == RELEASED;
Multicast release to all processes in V;;

[On receipt of a release from p, at p,

if (queue of requests is non-empty)
then
remove head of queue — fromp,, say;

send reply to p,;
voted := TRUE;
else
N voted := FALSE;
end if

University at Buffalo
The State University of New York

Maekawa’'s Algorithm — Analysis

Bandwidth: 2VN messages per entry, VN messages per
exit

— Better than Ricart and Agrawala’s (2(N-1) and N-1 messages)
Client delay: One round trip time

— Same as Ricart and Agrawala
* Synchronization delay: One round-trip time

— Worse than Ricart and Agrawala

— How?

University at Buffalo

The State University of New York

Gh

Summary

* Mutual exclusion
— Coordinator-based token
— Token ring
— Ricart and Agrawala’s timestamp algorithm
— Maekawa’s algorithm

University at Buffalo
The State University of New York

References

« Textbook section 15.2. Required Reading.

University at Buffalo
The State University of New York

Acknowledgements

* These slides by Steve Ko, lightly modified and used with
permission by Ethan Blanton

* These slides contain material developed and copyrighted
by Indranil Gupta (UIUC).

University at Buffalo
The State University of New York

	Slide 1
	Recap: Consensus
	Why Mutual Exclusion?
	Mutual Exclusion
	Mutexes
	Semaphores
	How Are Mutexes Used?
	Distributed Mutual Exclusion Performance Criteria
	Assumptions/System Model
	1. Centralized Control
	1. Centralized Control
	2. Token Ring Approach
	Slide 13
	3. Ricart & Agrawala’s Algorithm
	3. Ricart & Agrawala’s Algorithm
	3. Ricart & Agrawala’s Algorithm
	3. Ricart & Agrawala’s Algorithm
	Analysis: Ricart & Agrawala
	4. Maekawa’s Algorithm
	4. Maekawa’s Algorithm
	4. Maekawa’s Algorithm
	4. Maekawa’s Algorithm
	Maekawa’s Algorithm – Part 1
	Maekawa’s Algorithm – Part 2
	Maekawa’s Algorithm – Analysis
	Summary
	References
	Acknowledgements

