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Recap: Consensus
● On a synchronous system

– There’s an algorithm that works.

● On an asynchronous system
– It’s been shown (FLP) that it’s impossible to guarantee.

● Getting around the result
– Masking faults
– Using failure detectors
– Still not perfect

● Impossibility Result
– Lemma 1: schedules are commutative
– Lemma 2: some initial configuration is bivalent
– Lemma 3: from a bivalent configuration, there is always another 

bivalent configuration that is reachable. 



Why Mutual Exclusion?

• Bank Servers in the Cloud: Think of two simultaneous 
deposits of $10,000 into your bank account, each from 
one ATM connected to a different server. 
– Both ATMs read initial amount of $1000 concurrently from the 

bank’s cloud server

– Both ATMs add $10,000 to this amount (locally at the ATM)

– Both write the final amount to the server

– What’s wrong?

• The ATMs need mutually exclusive access to your  
account entry at the server (or to execution of the code 
that modifies the account entry)



Mutual Exclusion
• Critical section problem

– Piece of code (at all clients) for which we need to ensure at most 
one client is executing it at any point of time.

•  Solutions:
–  Semaphores, mutexes, etc. in single-node OS

–  Message-passing-based protocols in distributed systems:
»  enter() the critical section

»  AccessResource() in the critical section

»  exit() the critical section  

•  Distributed mutual exclusion requirements:
– Safety – At most one process may execute in CS at any time

– Liveness – Every request for a CS is eventually granted

– Ordering (desirable) – Requests are granted in the order 
they were made



Mutexes

• Synchronize access to common data structures between 
multiple threads

Allows two operations:

  lock()

    forever: // each loop iteration is atomic

      if lock not in use:

        label lock in use

        break

  unlock()

    label lock not in use // atomic



Semaphores

• Synchronize access to common data structures between 
multiple threads

Initialize with S = 1, allows two operations:

  wait(S) (or P(S)):

    forever: // each loop iteration is atomic
      if S > 0:
        S--
        break
  signal(S) (or V(S)):
    S++      // atomic



How Are Mutexes Used?

mutex L = UNLOCKED

ATM1:

  lock(L) // enter

          // critical section

  obtain bank amount

  add in deposit

  update bank amount

  unlock(L) // exit

extern mutex L;

ATM2:

  lock(L); // enter

           // critical section

  obtain bank amount;

  add in deposit;

  update bank amount;

  unlock(L); // exit



Distributed Mutual Exclusion 
Performance Criteria

• Bandwidth: the total number of messages sent in each 
entry and exit operation.

• Client delay: the delay incurred by a process at each 
entry and exit (when no other process is in, or waiting)
– (We will prefer mostly the entry operation.)

• Synchronization delay: the time interval between one 
process exiting the critical section and the next process 
entering it (when there is only one process waiting)

• Throughput: the rate at which the processes can access 
the critical section, i.e., x processes per second

• (these definitions are more correct than those in the 
textbook)



Assumptions/System Model

• We make the following assumptions:
– Each pair of processes is connected by reliable channels.

– Messages are eventually delivered to recipient’s input buffer in 
FIFO order.

– Processes do not fail. (why?)

• Four algorithms
– Centralized control

– Token ring

– Ricart and Agrawala

– Maekawa



1. Centralized Control

• A central coordinator (master or leader)
–  Is elected (next lecture)

–  Grants permission to enter CS & keeps a queue of requests to 
enter the CS.

–  Ensures only one process at a time can access the CS

–  Has a special token per CS

•  Operations (token gives access to CS)
– Enter: Send a request to the coordinator & wait for token.

– Exit: Send a message to the coordinator to release the token.

– Upon receipt of a request, if no other process has the token, the 
coordinator grants the token; otherwise, it queues the request.

– Upon receipt of a release message, the coordinator removes the 
oldest entry in the queue (if any) and grants the token.



1. Centralized Control

• Safety, liveness, ordering?
• Bandwidth?

– Requires 3 messages per entry + exit operation.

• Client delay:
– one round trip time (request + grant)

• Synchronization delay
– one round trip time (release + grant) 

• The coordinator becomes performance bottleneck and 
single point of failure.



2. Token Ring Approach 

• Processes are organized in a logical ring: p
i
 has a 

communication channel to p
(i+1 mod N)

• Operations:
– Only the process holding the token can enter the CS. 

– To enter the critical section, wait passively for the token.

– When in CS, hold on to the token. 

– To exit the CS, forward the token on.

–  If a process does not want to enter the CS when it receives the 
token, it forwards the token its neighbor.



2. Token Ring Approach 

● Features:
– Safety & liveness, ordering?

– Bandwidth: 1 message per exit

– Client delay: 0 to N message transmissions.

– Synchronization delay between one process’s exit from the CS 
and the next process’s entry is between 1 and N-1 message 
transmissions. P0

P1

P2

P3

PN-1

Previous holder of token

next holder of 
token

current holder 
of token



3. Ricart & Agrawala’s Algorithm 

• Processes multicast a request to enter a CS
– Once all processes reply positively, the requester 

can enter
• Use a Lamport clock and process id for ordering

– Messages requesting entry are of the form <T,p
i
>

● T is the sender’s Lamport clock timestamp

● p
i
 is the sender’s identity (used to break ties in T)



3. Ricart & Agrawala’s Algorithm  

• To enter the CS
–  set state to wanted

–  multicast request to all processes (including timestamp)

–  wait until all processes reply

–  change state to held and enter the CS

•  On receipt of a request <T
i
, p

i
> at p

j
:

–  if (state = held) or (state = wanted & (T
j
, p

j
)<(T

i
,p

i
)), enqueue 

request

–  else “reply” to pi

•  On exiting the CS 
–  change state to release and reply to all queued requests.



3. Ricart & Agrawala’s Algorithm 
On initialization

state := RELEASED; 
To enter the section

state := WANTED;
Multicast request to all processes;
T := request’s timestamp;
Wait until (number of replies received = (N – 1));
state := HELD;

On receipt of a request <Ti, pi> at pj (i ≠ j)
if  (state = HELD or (state = WANTED and (T, pj) < (Ti, pi)))
then

queue request from pi without replying
else

reply immediately to pi;
end if

To exit the critical section
state := RELEASED;
reply to any queued requests;



3. Ricart & Agrawala’s Algorithm 
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Analysis: Ricart & Agrawala 

• Safety, liveness, and ordering?
• Bandwidth:

– 2(N-1) messages per entry operation
– N-1 unicasts for the multicast request + N-1 replies
– N-1 unicast messages per exit operation 

• Client delay
– One round-trip time

• Synchronization delay
– One message transmission time



4. Maekawa’s Algorithm

• Simple example

P0

P1 P2

P3



4. Maekawa’s Algorithm

P0 P1 P2

P3 P4 P5

P6 P7 P8



4. Maekawa’s Algorithm

● Observation: no need to have all peers reply
● A subset of peers is sufficient as long as all subsets overlap.
● Voting set: a subset of processes that grant permission to enter 

a CS

● Voting sets are chosen so that for any two processes, p
i
 and p

j
, 

their corresponding voting sets have at least one common 
process.
– Each process p

i
 is associated with a voting set v

i
 (of processes)

– Each process belongs to its own voting set

– The intersection of any two voting sets is non-empty

– Each voting set is of size K

– Each process belongs to M other voting sets



4. Maekawa’s Algorithm 

•  Multicasts messages to a (voting) subset of processes
– To access a critical section, pi requests permission from all other 

processes in its own voting set vi 

– Voting set member gives permission to only one requestor at a 
time, and queues all other requests

– Guarantees safety 

– Maekawa showed that K=M=N works best

– One way of doing this is to put N processes in a N by N  matrix 
and take union of row & column containing pi as its voting set.



Maekawa’s Algorithm – Part 1

On initialization
state := RELEASED;
voted := FALSE;

For pi to enter the critical section
state := WANTED;
Multicast request to all processes in Vi;
Wait until (number of replies received = K);
state := HELD;

On receipt of a request from pi at pj

if (state = HELD or voted = TRUE)
then 

queue request from pi without replying; 
else 

send reply to pi;
voted := TRUE;

end if



Maekawa’s Algorithm – Part 2

For pi to exit the critical section
state := RELEASED;
Multicast release to all processes in Vi;

On receipt of a release from pi at pj 
if (queue of requests is non-empty)
then 

remove head of queue �  from pk, say; 
send reply to pk;
voted := TRUE;

else 
voted := FALSE;

end if



Maekawa’s Algorithm – Analysis

• Bandwidth: 2N messages per entry, N messages per 
exit
– Better than Ricart and Agrawala’s (2(N-1) and N-1 messages)

• Client delay: One round trip time
– Same as Ricart and Agrawala

• Synchronization delay: One round-trip time
– Worse than Ricart and Agrawala

• May not guarantee liveness (may deadlock)
– How?

P0

P1 P2



Summary

• Mutual exclusion
– Coordinator-based token
– Token ring
– Ricart and Agrawala’s timestamp algorithm
– Maekawa’s algorithm



References

● Textbook section 15.2.  Required Reading.



Acknowledgements

• These slides by Steve Ko, lightly modified and used with 
permission by Ethan Blanton

• These slides contain material developed and copyrighted 
by Indranil Gupta (UIUC).


	Slide 1
	Recap: Consensus
	Why Mutual Exclusion?
	Mutual Exclusion
	Mutexes
	Semaphores
	How Are Mutexes Used?
	Distributed Mutual Exclusion Performance Criteria
	Assumptions/System Model
	1. Centralized Control
	1. Centralized Control
	2. Token Ring Approach
	Slide 13
	3. Ricart & Agrawala’s Algorithm
	3. Ricart & Agrawala’s Algorithm
	3. Ricart & Agrawala’s Algorithm
	3. Ricart & Agrawala’s Algorithm
	Analysis: Ricart & Agrawala
	4. Maekawa’s Algorithm
	4. Maekawa’s Algorithm
	4. Maekawa’s Algorithm
	4. Maekawa’s Algorithm
	Maekawa’s Algorithm – Part 1
	Maekawa’s Algorithm – Part 2
	Maekawa’s Algorithm – Analysis
	Summary
	References
	Acknowledgements

