
CSE 486/586

CSE 486/586 Distributed Systems

Paxos

Slides by Steve Ko
Computer Sciences and Engineering

University at Buffalo

Paxos

• A consensus algorithm
– Known as one of the most efficient & elegant consensus

algorithms
– If you stay close to the field of distributed systems, you’ll hear

about this algorithm over and over.

• What? Consensus? What about FLP (the impossibility of
consensus)?
– Obviously, it doesn’t solve FLP.
– It relies on failure detectors to get around it.

• This lecture
– Brief history (with a lot of quotes)
– The protocol itself

Brief History

• Developed by Leslie Lamport (of the Lamport clock)
• “A fault-tolerant file system called Echo was built at SRC

in the late 80s. The builders claimed that it would
maintain consistency despite any number of non-
Byzantine faults, and would make progress if any
majority of the processors were working.”

• “I decided that what they were trying to do was
impossible, and set out to prove it. Instead, I discovered
the Paxos algorithm.”

• “I decided to cast the algorithm in terms of a parliament
on an ancient Greek island (Paxos).”

Brief History

• The paper abstract:
– “Recent archaeological discoveries on the island of Paxos reveal

that the parliament functioned despite the peripatetic propensity
of its part-time legislators. The legislators maintained consistent
copies of the parliamentary record, despite their frequent forays
from the chamber and the forgetfulness of their messengers. The
Paxon parliament’s protocol provides a new way of implementing
the state-machine approach to the design of distributed
systems.”

• “I gave a few lectures in the persona of an Indiana-
Jones-style archaeologist.”

• “My attempt at inserting some humor into the subject was
a dismal failure. People who attended my lecture
remembered Indiana Jones, but not the algorithm.”

Brief History

• People thought that Paxos was a joke.
• Lamport published it 8 years after it was written in 1990.

– Title: The Part-Time Parliament [1]

• People did not understand the paper.
• Lamport gave up and wrote another paper that explains

Paxos in simple English.
– Title: Paxos Made Simple [2]
– Abstract: “The Paxos algorithm, when presented in plain English,

is very simple.”

• It’s still not the easiest algorithm to understand.
• People have written papers and lecture notes to explain

Paxos Made Simple. (e.g., Paxos Made Moderately
Complex [4], Paxos Made Practical [5], etc.)

Review: Consensus

● How do processes agree on something?
– Q: should Ethan give an A to everyone taking CSE 486/586?
– Input: everyone says either yes or no.
– Output: an agreement of yes or no.
– FLP: this is impossible with even one faulty process and arbitrary

delays.

● Many distributed systems problems can be cast as a
consensus problem
– Mutual exclusion, leader election, total ordering, etc.

● Paxos
– How do multiple processes agree on a value?
– Under failures, network partitions, message delays, etc.

Review: Consensus

● People care about this!
● Real systems implement Paxos

– Google Chubby
– MS Bing cluster management

● Amazon CTO Werner Vogels (in his blog post “Job
Openings in My Group”, February 2, 2005)
– “What kind of things am I looking for in you?”
– “You know your distributed systems theory: You know about

logical time, snapshots, stability, message ordering, but also
ACID and multi-level transactions. You have heard about the
FLP impossibility argument. You know why failure detectors can
solve it (but you do not have to remember which one diamond-w
was). You have at least once tried to understand Paxos by
reading the original paper.”

Paxos Assumptions & Goals

Assumptions:

● The network is asynchronous, with message delays.

● Messages can be lost or duplicated, but not corrupted.

● Processes can crash.

● Processes are non-Byzantine (only crash-stop).

● Processes have permanent storage.

● Processes can propose values.

Goal:

● Every process agrees on a value from the set of
proposed values.

Desired Properties

• Safety
– Only a value that has been proposed can be chosen
– Only a single value is chosen
– A process never learns that a value has been chosen unless it

has actually been chosen

• Liveness
– Some proposed value is eventually chosen
– If a value is chosen, a process eventually learns it

Roles of a Process

Three roles:

● Proposers: processes that propose values

● Acceptors: processes that accept (or consider) values
– “Considering a value”: the value is a candidate for consensus.

– Majority acceptance → choosing the value

● Learners: processes that learn the outcome

Roles of a Process

• In reality, a process can inhabit any combination of roles.
• Important requirements

– The protocol should work under process failures and with
delayed and lost messages.

– Consensus is reached via a majority (> ½).

• Example: a replicated state machine
– All replicas agree on the order of execution for concurrent

transactions
– All replicas assume all roles, i.e., they can each propose, accept,

and learn.

First Attempt

• Let’s have just one acceptor, choose the first proposal
that arrives, and tell the proposers about the outcome.

• What’s wrong?
– Single point of failure!

P
0

P
1

P
2

A
0

V: 0

V: 10

V: 3

Second Attempt

• Let’s have multiple acceptors; each accepts the first one;
then all choose the majority and tell the proposers about
the outcome.

• What’s wrong? (next slide)

P
0

P
1

P
2

A
1

A
0

A
2

V: 0

V: 10

V: 3

Second Attempt

• One example, but many other possibilities

P0

P1

P2

A1

A0

A2

V: 0

V: 10

V: 3

Paxos

● Let’s have multiple acceptors each accept (i.e., consider)
multiple proposals.
– An acceptor accepting a proposal doesn’t mean it will be chosen.

A majority must accept it to be chosen.

– Make sure one of the multiple accepted proposals will have a
vote from a majority (will get back to this later)

● Paxos: how do we select one value when there are
multiple acceptors accepting multiple proposals?

Paxos Protocol Overview

● A proposal must have an ID (since there’s multiple).
– (proposal #, value) == (N, V)

– The proposal # strictly increasing and globally unique across all
proposers, i.e., there should be no tie.

– E.g., (per-process number).(process id) == 3.1, 3.2, 4.1, etc.

● Three phases
– Prepare phase: a proposer learns previously-accepted proposals

from the acceptors.

– Propose phase: a proposer sends out a proposal.

– Learn phase: learners learn the outcome.

Paxos Protocol Overview

● Rough description of proposers
– Before a proposer proposes a value, it will ask the acceptors if

there is already any proposed value.

– If there is, the proposer will propose the same value, rather than
proposing another value.

– Even with multiple concurrent proposals, each proposed value
will be the same.

– The behavior is altruistic: the goal is to reach consensus, rather
than making sure that “my value” is chosen.

Paxos Protocol Overview

● Rough description of acceptors
– The goal for acceptors is to accept the highest-numbered

proposal from any proposer.

– An acceptor tries to accept a value V with the highest proposal
number N.

● Rough description of learners
– All learners are passive and wait for the outcome.

Paxos Phase 1

● A proposer chooses a proposal number N and sends a
prepare request to acceptors.
– “Hey, have you accepted any proposal yet?”
– Note: Acceptors keep a history of proposals.

● If an acceptor has accepted anything, it replies with the accepted
proposal and its value for the highest proposal number less than N.

● In addition, the acceptor will no longer accept any proposal
numbered less than N (to make sure that it wouldn’t alter the result of
its reply).

P0

N: 4

A0

A1

N: 4

P0

(N, V): (2, 20)

A0

A1

(N, V): (3, 10)

Paxos Phase 2
● If a proposer receives a reply from a majority of

acceptors, it sends an accept request for proposal (N, V).
– V is the value from the highest proposal number received.

● If no accepted proposal was returned in phase 1, it sends
an accept request for the new proposal (N, V).

● Upon receiving (N, V), acceptors either:
– Accept it
– Reject it if there was another prepare request with N’ higher than

N, and it has replied to it (due to the promise in phase 1).

P0

(N, V): (4, 10)

A0

A1

(N, V): (4, 10)

P0

(N, V): (2, 20)

A0

A1

(N, V): (3, 10)

Paxos Phase 3

• Learners need to find out which value has been chosen.
• Many possibilities:

– Have each acceptor notify all learners when it accepts a
proposal:

● Learners will know if a majority has accepted a proposal
● May be effective, but will be expensive

– Elect a distinguished learner:
● Acceptors respond with their acceptances to this process
● This distinguished learner informs other learners
● Failure-prone

– Mixing the two: a set of distinguished learners

Problem: Progress (Liveness)

• A simple run

P0

N: 4

A0

A1

N: 4

P0

(N, V): (2, 20)

A0

A1

(N, V): (3, 10)

P0

(N, V): (4, 10)

A0

A1

(N, V): (4, 10)

Problem: Progress (Liveness)

• A problematic run

P0

N: 4

A0

A1

N: 4

P1

P0

(N, V): (2, 20)

A0

A1

(N, V): (3, 10)

P1

P0

N: 5

A0

A1

N: 5

P1

P0

(N, V): (2, 20)

A0

A1

(N, V): (3, 10)

P1

Problem: Progress (Liveness)

• A problematic run (cont.)

P0 A0

A1P1

(N, V): (4, 10)

(N, V): (4, 10)

P0

N: 6

A0

A1

N: 6

P1

P0

(N, V): (2, 20)

A0

A1

(N, V): (3, 10)

P1

P0 A0

A1P1

(N, V): (5, 10)

(N, V): (5, 10)

Problem: Progress (Liveness)

● There’s a race condition for proposals.

● P0 completes phase 1 with a proposal number N
0
.

● Before P0 starts phase 2, P1 starts and completes phase
1 with a proposal number N

1
 > N

0
.

● P0 performs phase 2, acceptors reject.

● Before P1 starts phase 2, P0 restarts and completes
phase 1 with a proposal number N

2
 > N

1
.

● P1 performs phase 2, acceptors reject.

● …(this can go on forever)

Providing Liveness

● Solution: elect a distinguished proposer
– I.e., have only one proposer at a time

● If the distinguished proposer can successfully
communicate with a majority of acceptors, the protocol
guarantees liveness.
– I.e., if a process plays all three roles, Paxos can tolerate f failures

where f < N/2.

● Still needs to get around FLP for the leader election, e.g.,
having a failure detector

Summary

• Paxos
– A consensus algorithm
– Handles crash-stop failures (f < N/2)

• Three phases
– Phase 1: prepare request/reply
– Phase 2: accept request/reply
– Phase 3: learning of the chosen value

References

[1] Leslie Lamport. The Part-Time Parliament. ACM Transactions
on Computer Systems. Vol. 16 No. 2. May 1998. pp. 133-
169. Required Reading.
https://www.microsoft.com/en-us/research/uploads/prod/20
16/12/The-Part-Time-Parliament.pdf

[2] Leslie Lamport. Paxos Made Simple. White Paper. November
2001. Required Reading.
https://www.microsoft.com/en-us/research/uploads/prod/2016/
12/paxos-simple-Copy.pdf

[3] Textbook Section 21.5.2. Required Reading.

[4] Robbert van Renesse and Deniz Altinbuken. Paxos Made
Moderately Complex. ACM Computing Surveys Vol. 47 No. 3,
Article 42. February 2015.
http://www.cs.cornell.edu/courses/cs7412/2011sp/paxos.pdf

https://www.microsoft.com/en-us/research/uploads/prod/2016/12/The-Part-Time-Parliament.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2016/12/The-Part-Time-Parliament.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2016/12/paxos-simple-Copy.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2016/12/paxos-simple-Copy.pdf
http://www.cs.cornell.edu/courses/cs7412/2011sp/paxos.pdf

References

[5] David Mazières. Paxos Made Practical. White Paper.
January 2007.
http://www.scs.stanford.edu/~dm/home/papers/paxos.pdf

http://www.scs.stanford.edu/~dm/home/papers/paxos.pdf

Acknowledgements

• These slides by Steve Ko, lightly modified and used with
permission by Ethan Blanton

• These slides contain material developed and copyrighted
by Indranil Gupta (UIUC).

	Slide 1
	Paxos
	Brief History_clipboard0
	Brief History
	Brief History_clipboard1
	Review: Consensus_clipboard0
	Review: Consensus
	Paxos Assumptions & Goals
	Desired Properties
	Roles of a Process_clipboard0
	Roles of a Process
	First Attempt
	Second Attempt
	Second Attempt_clipboard0
	Paxos_clipboard0
	Paxos Protocol Overview_clipboard0
	Paxos Protocol Overview
	Slide 18
	Paxos Phase 1
	Paxos Phase 2
	Paxos Phase 3
	Problem: Progress (Liveness)
	Problem: Progress (Liveness)
	Problem: Progress (Liveness)
	Problem: Progress (Liveness)
	Providing Liveness
	Summary
	References
	Slide 29
	Acknowledgements

