CSE 486/586 Distributed Systems
Paxos

Slides by Steve Ko

Computer Sciences and Engineering
University at Buffalo

CSE 486/586



Paxos

* A consensus algorithm

— Known as one of the most efficient & elegant consensus
algorithms

— If you stay close to the field of distributed systems, you’ll hear
about this algorithm over and over.

* What? Consensus? What about FLP (the impossibility of
consensus)?

— Obviously, it doesn’t solve FLP.
— It relies on failure detectors to get around it.

* This lecture
— Brief history (with a lot of quotes)
— The protocol itself

University at Buffalo
The State University of New York



Brief History

* Developed by Leslie Lamport (of the Lamport clock)

* "A fault-tolerant file system called Echo was built at SRC
in the late 80s. The builders claimed that it would
maintain consistency despite any nhumber of non-
Byzantine faults, and would make progress if any
majority of the processors were working.”

* “I decided that what they were trying to do was
impossible, and set out to prove it. Instead, | discovered
the Paxos algorithm.”

* “I decided to cast the algorithm in terms of a parliament
on an ancient Greek island (Paxos).”

University at Buffalo

The State University of New York



Brief History

* The paper abstract:

— “Recent archaeological discoveries on the island of Paxos reveal
that the parliament functioned despite the peripatetic propensity
of its part-time legislators. The legislators maintained consistent
copies of the parliamentary record, despite their frequent forays
from the chamber and the forgetfulness of their messengers. The
Paxon parliament’s protocol provides a new way of implementing
the state-machine approach to the design of distributed
systems.”

* “I gave a few lectures in the persona of an Indiana-
Jones-style archaeologist.”

* “My attempt at inserting some humor into the subject was
a dismal failure. People who attended my lecture
remembered Indiana Jones, but not the algorithm.”

University at Buffalo
The State University of New York



Brief History

People thought that Paxos was a joke.

Lamport published it 8 years after it was written in 1990.
— Title: The Part-Time Parliament [1]

People did not understand the paper.

Lamport gave up and wrote another paper that explains
Paxos in simple English.
— Title: Paxos Made Simple [2]
— Abstract: “The Paxos algorithm, when presented in plain English,
IS very simple.”
It's still not the easiest algorithm to understand.
People have written papers and lecture notes to explain

Paxos Made Simple. (e.g., Paxos Made Moderately
Complex [4], Paxos Made Practical [5], etc.)

University at Buffalo

The State University of New York



Review: Consensus

* How do processes agree on something?
— Q: should Ethan give an A to everyone taking CSE 486/5867
- Input: everyone says either yes or no.
— Output: an agreement of yes or no.
- FLP: this is impossible with even one faulty process and arbitrary
delays.

* Many distributed systems problems can be cast as a
consensus problem

— Mutual exclusion, leader election, total ordering, efc.

* Paxos
- How do multiple processes agree on a value?
- Under failures, network partitions, message delays, etc.

University at Buffalo
The State University of New York



Review: Consensus

* People care about this!

 Real systems implement Paxos
- Google Chubby
- MS Bing cluster management

 Amazon CTO Werner Vogels (in his blog post “Job
Openings in My Group”, February 2, 2005)
- “What kind of things am | looking for in you?”

- “You know your distributed systems theory: You know about
logical time, snapshots, stability, message ordering, but also
ACID and multi-level transactions. You have heard about the
FLP impossibility argument. You know why failure detectors can
solve it (but you do not have to remember which one diamond-w
was). You have at least once iried to understand Paxos by
reading the original paper.”

University at Buffalo
The State University of New York



Paxos Assumptions & Goals

Assumptions:

The network is asynchronous, with message delays.
Messages can be lost or duplicated, but not corrupted.
Processes can crash.

Processes are non-Byzantine (only crash-stop).
Processes have permanent storage.

Processes can propose values,

Goal:

Every process agrees on a value from the set of
proposed values.

University at Buffalo

The State University of New York



Desired Properties

* Safety
— Only a value that has been proposed can be chosen
— Only a single value is chosen

— A process never learns that a value has been chosen unless it
has actually been chosen

* Liveness

— Some proposed value is eventually chosen
— If a value is chosen, a process eventually learns it

University at Buffalo
The State University of New York



Roles of a Process

Three roles:
* Proposers: processes that propose values
* Acceptors: processes that accept (or consider) values

“Considering a value”: the value is a candidate for consensus.
- Majority acceptance — choosing the value

* Learners: processes that learn the outcome

University at Buffalo
The State University of New York



Roles of a Process

* In reality, a process can inhabit any combination of roles.

* Important requirements

— The protocol should work under process failures and with
delayed and lost messages.

— Consensus is reached via a majority (> 72).
* Example: a replicated state machine

— All replicas agree on the order of execution for concurrent
transactions

— All replicas assume all roles, i.e., they can each propose, accept,
and learn.

University at Buffalo
The State University of New York



First Attempt

* Let’s have just one acceptor, choose the first proposal
that arrives, and tell the proposers about the outcome.

* What's wrong?
— Single point of failure!

University at Buffalo
The State University of New York



Second Attempt

* Let’s have multiple acceptors; each accepts the first one;
then all choose the majority and tell the proposers about
the outcome.

* What's wrong? (next slide)
University at Buffalo

The State University of New York



Second Attempt

* One example, but many other possibilities

U<
(<
7

University at Buffalo
The State University of New York




Paxos

* Let's have multiple acceptors each accept (i.e., consider)
multiple proposals.

— An acceptor accepting a proposal doesn’'t mean it will be chosen.
A majority must accept it to be chosen.

- Make sure one of the multiple accepted proposals will have a
vote from a majority (will get back to this later)

e Paxos: how do we select one value when there are
multiple acceptors accepting multiple proposals?

University at Buffalo
The State University of New York



Paxos Protocol Overview

* A proposal must have an ID (since there’s multiple).
— (proposal #, value) == (N, V)

— The proposal # strictly increasing and globally unigue across all
proposers, i.e., there should be no tie.

- E.g., (per-process number).(process id) == 3.1, 3.2, 4.1, efc.

* Three phases

- Prepare phase: a proposer learns previously-accepted proposals
from the acceptors.

- Propose phase: a proposer sends out a proposal.
- Learn phase: learners learn the outcome.

University at Buffalo
The State University of New York



Paxos Protocol Overview

* Rough description of proposers

— Before a proposer proposes a value, it will ask the acceptors if
there is already any proposed value.

- If there is, the proposer will propose the same value, rather than
proposing another value.

- Even with multiple concurrent proposals, each proposed value
will be the same.

— The behavior is altruistic: the goal is to reach consensus, rather
than making sure that “my value” is chosen.

University at Buffalo
The State University of New York



Paxos Protocol Overview

* Rough description of acceptors

— The goal for acceptors is to accept the highest-numbered
proposal from any proposer.

— An acceptor tries to accept a value \VV with the highest proposal
number N.

* Rough description of learners

— All learners are passive and wait for the outcome.

University at Buffalo
The State University of New York



Paxos Phase 1

* A proposer chooses a proposal number N and sends a
prepare request to acceptors.

“Hey, have you accepted any proposal yet?”
— Note: Acceptors keep a history of proposals.

* |f an acceptor has accepted anything, it replies with the accepted
proposal and its value for the highest proposal number less than N.

* In addition, the acceptor will no longer accept any proposal
numbered less than N (to make sure that it wouldn'’t alter the result of
its reply).

N: 4 (N, V): (3, 10) @

University at Buffalo

The State University of New York



Paxos Phase 2

* |f a proposer receives a reply from a majority of
acceptors, it sends an accept request for proposal (N, V).

- Vs the value from the highest proposal number received.

* If no accepted proposal was returned in phase 1, it sends
an accept request for the new proposal (N, V).

* Upon receiving (N, V), acceptors either:

— Accept it

- Reject it if there was another prepare request with N higher than
N, and it has replled to it (due to the promise in phase 1)

Al

University at Buffalo

The State University of New York



Paxos Phase 3

* Learners need to find out which value has been chosen.
* Many possibilities:
— Have each acceptor notify all learners when it accepts a
proposal:
* Learners will know if a majority has accepted a proposal
* May be effective, but will be expensive
— Elect a distinguished learner:
* Acceptors respond with their acceptances to this process
* This distinguished learner informs other learners
* Failure-prone

— Mixing the two: a set of distinguished learners

University at Buffalo
The State University of New York



Problem: Progress (Liveness)

° AS|mpIe run

(N, V): (3, 10) @
‘< oo
(N, V): (4, 10)

University at Buffalo

The State University of New York



Problem: Progress (Liveness)

* A problematic run

University at Buffalo
The State University of New York



Problem: Progress (Liveness)

* A problematic run (cont.)
N, V): (4, 10

University at Buffalo
The State University of New York



Problem: Progress (Liveness)

 There’s a race condition for proposals.

« PO completes phase 1 with a proposal number N

e Before PO starts phase 2, P1 starts and completes phase
1 with a proposal number N > N .

* PO performs phase 2, acceptors reject.

» Before P1 starts phase 2, PO restarts and completes
phase 1 with a proposal number N > N_.

* P1 performs phase 2, acceptors reject.
e ...(this can go on forever)

University at Buffalo

The State University of New York



Providing Liveness

e Solution: elect a distinguished proposer

- l.e., have only one proposer at a time

 |f the distinguished proposer can successfully
communicate with a majority of acceptors, the protocol
guarantees liveness.

- le., if a process plays all three roles, Paxos can tolerate f failures
where f < N/2.

« Still needs to get around FLP for the leader election, e.q.,
having a failure detector

University at Buffalo
The State University of New York



Summary

* Paxos

— A consensus algorithm

— Handles crash-stop failures (f < N/2)
* Three phases

— Phase 1: prepare request/reply

— Phase 2: accept request/reply

— Phase 3: learning of the chosen value

University at Buffalo
The State University of New York



References

[1] Leslie Lamport. The Part-Time Parliament. ACM Transactions
on Computer Systems. Vol. 16 No. 2. May 1998. pp. 133-
169. Required Reading.
https://www.microsoft.com/en-us/research/uploads/prod/20
16/12/The-Part-Time-Parliament.pdf

2] Leslie Lamport. Paxos Made Simple. White Paper. November
2001. Required Reading.
https://www.microsoft.com/en-us/research/uploads/prod/2016/
12/paxos-simple-Copy.pdf

3] Textbook Section 21.5.2. Required Reading.

[4] Robbert van Renesse and Deniz Altinbuken. Paxos Made
Moderately Complex. ACM Computing Surveys Vol. 47 No. 3,

Article 42. February 2015.
http://www.cs.cornell.edu/courses/cs7412/2011sp/paxos.pdf

University at Buffalo
The State University of New York



https://www.microsoft.com/en-us/research/uploads/prod/2016/12/The-Part-Time-Parliament.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2016/12/The-Part-Time-Parliament.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2016/12/paxos-simple-Copy.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2016/12/paxos-simple-Copy.pdf
http://www.cs.cornell.edu/courses/cs7412/2011sp/paxos.pdf

References

5] David Mazieres. Paxos Made Practical. White Paper.
January 2007.
http://www.scs.stanford.edu/~dm/home/papers/paxos.pdf

University at Buffalo
The State University of New York



http://www.scs.stanford.edu/~dm/home/papers/paxos.pdf

Acknowledgements

* These slides by Steve Ko, lightly modified and used with
permission by Ethan Blanton

* These slides contain material developed and copyrighted
by Indranil Gupta (UIUC).

University at Buffalo

The State University of New York



	Slide 1
	Paxos
	Brief History_clipboard0
	Brief History
	Brief History_clipboard1
	Review: Consensus_clipboard0
	Review: Consensus
	Paxos Assumptions & Goals
	Desired Properties
	Roles of a Process_clipboard0
	Roles of a Process
	First Attempt
	Second Attempt
	Second Attempt_clipboard0
	Paxos_clipboard0
	Paxos Protocol Overview_clipboard0
	Paxos Protocol Overview
	Slide 18
	Paxos Phase 1
	Paxos Phase 2
	Paxos Phase 3
	Problem: Progress (Liveness)
	Problem: Progress (Liveness)
	Problem: Progress (Liveness)
	Problem: Progress (Liveness)
	Providing Liveness
	Summary
	References
	Slide 29
	Acknowledgements

