
CSE 486/586

CSE 486/586 Distributed Systems
Concurrency Control (part 2)

Slides by Steve Ko
Computer Sciences and Engineering

University at Buffalo

Recap

• Transactions need to provide ACID
• Serial equivalence defines correctness of executing

concurrent transactions
• It is handled by ordering conflicting operations

Handling Abort()
• What can go wrong?

Transaction V:
a.withdraw(100);
b.deposit(100)

Transaction W:

aBranch.branchTotal()

a.withdraw(100); $100

b.deposit(100) $300

total = a.getBalance() $100

total = total+b.getBalance() $400
total = total+c.getBalance()
...

Strict Executions of Transactions
• Interleaving interacts with abort(), causing problems

– Intermediate state is visible to other transactions; other
transactions may have already used some (now non-final!) results.

• For abort(), transactions should delay both their read and
write operations on an object (until commit time)
– Until all transactions that have written that object have either

committed or aborted
– This is called strict execution, and avoids making intermediate

states visible before commit, just in case we need to abort.
• This further restricts which interleavings of transactions

are allowed.
– Serial equivalence
– Strict execution

Story Thus Far

• How can we support transactions with shared data
• First strategy: Complete serialization

– One transaction at a time with one big lock
– Correct, but at the cost of performance

• How can we improve performance?
– Interleave different transactions

• Problem: Not all interleavings are correct
– Serial equivalence and strict execution must be met.

• How do we meet these requirements?
– Overall strategy: using more and more fine-grained locking
– No silver bullet. Fine-grained locks have their own implications.

Using Exclusive Locks
• Exclusive Locks (Avoiding One Big Lock)

 Transaction T1 Transaction T2
begin()

balance = b.getBalance() begin()

 balance = b.getBalance()

b.setBalance = (balance*1.1)

a.withdraw(balance* 0.1)

commit()

 b.setBalance = (balance*1.1)
 c.withdraw(balance*0.1)

commit()

Lock
B

Lock
AUnLock

B

UnLock
A

Lock
C

UnLock
B

UnLock
C

…

WAIT
on B

Lock
B

…

How to Acquire/Release Locks
• Can’t do it naively

• Serially equivalent?
• Strict execution?

Transaction T1 Transaction T2
x= a.read()
a.write(20) y = b.read()

b.write(30)

b.write(x)

z = a.read()

Lock A

UnLock A
Lock B

UnLock BLock B

UnLock B Lock A

UnLock A

Using Exclusive Locks

• Two phase locking
– To satisfy serial equivalence
– First (growing) phase: new locks are acquired
– Second (shrinking) phase: locks are only released
– A transaction is not allowed to acquire any new lock, once it has

released any lock
• Strict two phase locking

– To satisfy strict execution, i.e., to handle abort() and failures
– Locks are released only at the end of the transaction, either at

commit() or abort(); i.e., the second phase is only executed at
commit() or abort().

• The first example shown before does both.

Can We Do Better?

• We have considered only exclusive locks.
• Non-exclusive locks break a lock into a read lock and a

write lock
• Allows more concurrency

– Read locks can be shared (read-read is not a conflict)
– Write locks must be exclusive

Non-Exclusive Locks
 non-exclusive lock compatibility

 Lock already set Lock requested
 read write

 none OK OK
read OK WAIT
write WAIT WAIT

• A read lock is promoted to a write lock when the
transaction needs write access to a read locked object.

• A read lock already shared with other transactions’ read
locks cannot be promoted. The transaction must wait for
other read locks to be released.

• Cannot demote a write lock to read lock during a
transaction – violates the 2-phase principle

Example: Non-Exclusive Locks

 Transaction T1 Transaction T2

 begin()

 balance = b.getBalance() begin()

… balance = b.getBalance()

… b.setBalance =balance*1.1

 commit()

R-Lock B

…

R-Lock B

Cannot Promote lock on B, Wait

Promote lock on BUnLock B

2PL: a Problem
• What happens in the example below?

 Transaction T1 Transaction T2

 begin()

 balance = b.getBalance() begin()

 balance = b.getBalance()

 b.setBalance =balance*1.1

 b.setBalance=balance*1.1

R-Lock B

…

R-Lock B

Cannot Promote lock on B, Wait

Cannot Promote lock on B, Wait

…

Deadlock Conditions
• Necessary conditions

– Non-sharable resources (locked objects)
– No lock preemption
– Hold & wait or circular wait

T U

Wait
for

Held by

Held byWait
for

A

B T

U

Wait
for

Held by

Held byWait
for

A

B
V

W

...

...

Wait
for

Wait
for

Held by

Held by

Hold & Wait Circular Wait

Preventing Deadlocks

• Acquire all locks at once
• Acquire locks in a predefined order
• Not always practical:

– Transactions might not know which locks they will need in the
future

• One strategy: timeout
– If we design each transaction to be short and fast, then we can

abort() after some period of time.

Extracting Even More Concurrency

• Allow writing tentative versions of objects
– Let other transactions read from the previously-committed version

• At commit():
– Promote all write locks in the transaction to commit locks
– If any objects have outstanding read locks, the committing

transaction must wait until those transactions release their locks
(complete)

• Allow different transactions to simultaneously take locks
– Unlike non-exclusive locks
– Write locks remain exclusive with other write locks

• Delay commits until all readers using the previously-
committed version have committed.

Extracting Even More Concurrency

• This allows for more concurrency than read-write locks.
• Writing transactions risk waiting on commit
• Read operations wait only if another transaction is

currently committing the same object
• Read operations of one transaction can cause a delay in

the commit (or even abort, in the case of deadlock) of
other transactions

• This can be extended even farther, to allow conflicting
write locks at the risk of aborting conflicting writers [2]

Summary

• Strict Execution
– Delay both read and write operations on an object until all

transactions that have previously written that object have either
committed or aborted

• Strict execution with exclusive locks
– Strict 2PL

• Increasing concurrency
– Non-exclusive locks
– Two-version locks
– Etc.

References

[1] Textbook sections 16.1-16.5. Required Reading.

[2] H.T. Kung and J.T. Robinson. On Optimistic Methods for
Concurrency Control. ACM Transactions on Database
Systems, Vol. 6 No. 2. June 1981. pp.213-226
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1
.1.114.3052&rep=rep1&type=pdf

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.114.3052&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.114.3052&rep=rep1&type=pdf

Acknowledgements

• These slides by Steve Ko, lightly modified and used with
permission by Ethan Blanton

• These slides contain material developed and copyrighted
by Indranil Gupta (UIUC).

	Slide 1
	Recap
	Handling Abort()
	Strict Executions of Transactions
	Story Thus Far
	Using Exclusive Locks_clipboard0
	How to Acquire/Release Locks
	Using Exclusive Locks
	Can We Do Better?
	Non-Exclusive Locks
	Example: Non-Exclusive Locks
	2PL: a Problem
	Deadlock Conditions
	Preventing Deadlocks
	Extracting Even More Concurrency_clipboard0
	Extracting Even More Concurrency
	Summary
	Slide 18
	Acknowledgements

