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Recap

* Transactions need to provide ACID

* Serial equivalence defines correctness of executing
concurrent transactions

* Itis handled by ordering conflicting operations
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Handling Abort()

* What can go wrong?

TransactionV: TransactionW:
a.withdraw(100); B Wb B Total
b.deposit(100) aBranch.branchTotal()
a.withdraw(100); $100
total = a.getBalance() $100
b.deposit(100) $300
total = total+b.getBalance()  $400
total = total+c.getBalance()
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Strict Executions of Transactions

* Interleaving interacts with abort(), causing problems

— Intermediate state is visible to other transactions; other
transactions may have already used some (now non-final!) results.

* For abort(), transactions should delay both their read and
write operations on an object (until commit time)

— Until all transactions that have written that object have either
committed or aborted

— This is called strict execution, and avoids making intermediate
states visible before commit, just in case we need to abort.

* This further restricts which interleavings of transactions
are allowed.

— Serial equivalence
— Strict execution

University at Buffalo
The State University of New York



Story Thus Far

* How can we support transactions with shared data
First strategy: Complete serialization
— One transaction at a time with one big lock
— Correct, but at the cost of performance
* How can we improve performance?
— Interleave different transactions
* Problem: Not all interleavings are correct
— Serial equivalence and strict execution must be met.
* How do we meet these requirements?
— Overall strategy: using more and more fine-grained locking
— No silver bullet. Fine-grained locks have their own implications.
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Using Exclusive Locks
* Exclusive Locks (Avoiding One Big Lock)

Transaction T1 Transaction T2
begin()
balance = b.getBalance() L‘I’;k begin()
balance = b.getBalance() WAIT

b.setBalance = (balance*1.1) on B

a.withdraw(balance* 0.1) [| ;ck

commit()| UnLock A
B b.setBalance = (balance*1.1)| Lock
UnLock c.withdraw(balance*0.1) B Lock
A : C
commit() | UnLock
B
UnLock
C
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How to Acquire/Release Locks

* Can’t do it naively

Transaction T1 Transaction T2

x= a.read() Lock A

a.write(20) y = b.read() Lock B
UnLock A ,

b.write(30)

b.write(x) Lock B UnLock B

UnLock B z = a.read() Lock A
UnLock A

* Serially equivalent?
* Strict execution?
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Using Exclusive Locks

* Two phase locking
— To satisfy serial equivalence
— First (growing) phase: new locks are acquired
— Second (shrinking) phase: locks are only released

— A transaction is not allowed to acquire any new lock, once it has
released any lock

* Strict two phase locking
— To satisfy strict execution, i.e., to handle abort() and failures

— Locks are released only at the end of the transaction, either at
commit() or abort(); i.e., the second phase is only executed at
commit() or abort().

* The first example shown before does both.
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Can We Do Better?

* We have considered only exclusive locks.

* Non-exclusive locks break a lock into a read lock and a
write lock

* Allows more concurrency
— Read locks can be shared (read-read is not a conflict)
— Write locks must be exclusive
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Non-Exclusive Locks

non-exclusive lock compatibility

Lock already set Lock requested
read , write

none OK OK
read OK WAIT
write WAIT WAIT

* Aread lock is promoted to a write lock when the
transaction needs write access to a read locked object.
* Aread lock already shared with other transactions’ read

locks cannot be promoted. The transaction must wait for
other read locks to be released.

« Cannot demote a write lock to read lock during a
transaction — violates the 2-phase principle
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Example: Non-Exclusive Locks

Transaction T1 Transaction T2

begin()
R-Lock B |balance = b.getBalance()| begin()

balance = b.getBalance() | R-LockB

b.setBalance =balance*1.1
Cannot Promote lock on B, Wait

UnLock B commit() Promote lock on B
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2PL: a Problem

* \What happens in the example below?

Transaction T1 Transaction T2
begin()
balance = b.getBalance() | begin()
R-Lock B balance = b.getBalance() R-Lock B

b.setBalance =balance*1.1
Cannot Promote lock on B, Wait

b.setBalance=balance*1.1

Cannot Promote lock on B, Wait
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Deadlock Conditions

* Necessary conditions
— Non-sharable resources (locked objects)
— No lock preemption
— Hold & wait or circular wait

i\ Ai
Wait Held by

for

Hold & Wait Circular Wait
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Preventing Deadlocks

* Acquire all locks at once
* Acquire locks in a predefined order

* Not always practical:

— Transactions might not know which locks they will need in the
future

One strategy: timeout

— If we design each transaction to be short and fast, then we can
abort() after some period of time.
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Extracting Even More Concurrency

Allow writing tentative versions of objects

— Let other transactions read from the previously-committed version
At commit():

— Promote all write locks in the transaction to commit locks

— If any objects have outstanding read locks, the committing
transaction must wait until those transactions release their locks
(complete)

Allow different transactions to simultaneously take locks
— Unlike non-exclusive locks
— Write locks remain exclusive with other write locks

* Delay commits until all readers using the previously-
committed version have committed.
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Extracting Even More Concurrency

* This allows for more concurrency than read-write locks.
* Writing transactions risk waiting on commit

* Read operations wait only if another transaction is
currently committing the same object

* Read operations of one transaction can cause a delay in
the commit (or even abort, in the case of deadlock) of
other transactions

* This can be extended even farther, to allow conflicting
write locks at the risk of aborting conflicting writers [2]
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Summary

* Strict Execution

— Delay both read and write operations on an object until all
transactions that have previously written that object have either
committed or aborted

* Strict execution with exclusive locks
— Strict 2PL
* Increasing concurrency
— Non-exclusive locks
— Two-version locks
— Etc.
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