CSE 486/586 Distributed Systems

Concurrency Control (part 2)

Slides by Steve Ko

Computer Sciences and Engineering
University at Buffalo

CSE 486/586

Recap

* Transactions need to provide ACID

* Serial equivalence defines correctness of executing
concurrent transactions

* Itis handled by ordering conflicting operations

University at Buffalo
The State University of New York

Handling Abort()

* What can go wrong?

TransactionV: TransactionW:
a.withdraw(100); B Wb B Total
b.deposit(100) aBranch.branchTotal()
a.withdraw(100); $100
total = a.getBalance() $100
b.deposit(100) $300
total = total+b.getBalance() $400
total = total+c.getBalance()

University at Buffalo
The State University of New York

Strict Executions of Transactions

* Interleaving interacts with abort(), causing problems

— Intermediate state is visible to other transactions; other
transactions may have already used some (now non-final!) results.

* For abort(), transactions should delay both their read and
write operations on an object (until commit time)

— Until all transactions that have written that object have either
committed or aborted

— This is called strict execution, and avoids making intermediate
states visible before commit, just in case we need to abort.

* This further restricts which interleavings of transactions
are allowed.

— Serial equivalence
— Strict execution

University at Buffalo
The State University of New York

Story Thus Far

* How can we support transactions with shared data
First strategy: Complete serialization
— One transaction at a time with one big lock
— Correct, but at the cost of performance
* How can we improve performance?
— Interleave different transactions
* Problem: Not all interleavings are correct
— Serial equivalence and strict execution must be met.
* How do we meet these requirements?
— Overall strategy: using more and more fine-grained locking
— No silver bullet. Fine-grained locks have their own implications.

University at Buffalo
The State University of New York

Using Exclusive Locks
* Exclusive Locks (Avoiding One Big Lock)

Transaction T1 Transaction T2
begin()
balance = b.getBalance() L‘I’;k begin()
balance = b.getBalance() WAIT

b.setBalance = (balance*1.1) on B

a.withdraw(balance* 0.1) [| ;ck

commit()| UnLock A
B b.setBalance = (balance*1.1)| Lock
UnLock c.withdraw(balance*0.1) B Lock
A : C
commit() | UnLock
B
UnLock
C

University at Buffalo
The State University of New York

How to Acquire/Release Locks

* Can’t do it naively

Transaction T1 Transaction T2

x= a.read() Lock A

a.write(20) y = b.read() Lock B
UnLock A ,

b.write(30)

b.write(x) Lock B UnLock B

UnLock B z = a.read() Lock A
UnLock A

* Serially equivalent?
* Strict execution?

University at Buffalo
The State University of New York

Using Exclusive Locks

* Two phase locking
— To satisfy serial equivalence
— First (growing) phase: new locks are acquired
— Second (shrinking) phase: locks are only released

— A transaction is not allowed to acquire any new lock, once it has
released any lock

* Strict two phase locking
— To satisfy strict execution, i.e., to handle abort() and failures

— Locks are released only at the end of the transaction, either at
commit() or abort(); i.e., the second phase is only executed at
commit() or abort().

* The first example shown before does both.

University at Buffalo
The State University of New York

Can We Do Better?

* We have considered only exclusive locks.

* Non-exclusive locks break a lock into a read lock and a
write lock

* Allows more concurrency
— Read locks can be shared (read-read is not a conflict)
— Write locks must be exclusive

University at Buffalo
The State University of New York

Non-Exclusive Locks

non-exclusive lock compatibility

Lock already set Lock requested
read , write

none OK OK
read OK WAIT
write WAIT WAIT

* Aread lock is promoted to a write lock when the
transaction needs write access to a read locked object.
* Aread lock already shared with other transactions’ read

locks cannot be promoted. The transaction must wait for
other read locks to be released.

« Cannot demote a write lock to read lock during a
transaction — violates the 2-phase principle

University at Buffalo

The State University of New York

Example: Non-Exclusive Locks

Transaction T1 Transaction T2

begin()
R-Lock B |balance = b.getBalance()| begin()

balance = b.getBalance() | R-LockB

b.setBalance =balance*1.1
Cannot Promote lock on B, Wait

UnLock B commit() Promote lock on B

University at Buffalo
The State University of New York

2PL: a Problem

* \What happens in the example below?

Transaction T1 Transaction T2
begin()
balance = b.getBalance() | begin()
R-Lock B balance = b.getBalance() R-Lock B

b.setBalance =balance*1.1
Cannot Promote lock on B, Wait

b.setBalance=balance*1.1

Cannot Promote lock on B, Wait

University at Buffalo
The State University of New York

Deadlock Conditions

* Necessary conditions
— Non-sharable resources (locked objects)
— No lock preemption
— Hold & wait or circular wait

i\ Ai
Wait Held by

for

Hold & Wait Circular Wait

University at Buffalo
The State University of New York

Preventing Deadlocks

* Acquire all locks at once
* Acquire locks in a predefined order

* Not always practical:

— Transactions might not know which locks they will need in the
future

One strategy: timeout

— If we design each transaction to be short and fast, then we can
abort() after some period of time.

University at Buffalo
The State University of New York

Extracting Even More Concurrency

Allow writing tentative versions of objects

— Let other transactions read from the previously-committed version
At commit():

— Promote all write locks in the transaction to commit locks

— If any objects have outstanding read locks, the committing
transaction must wait until those transactions release their locks
(complete)

Allow different transactions to simultaneously take locks
— Unlike non-exclusive locks
— Write locks remain exclusive with other write locks

* Delay commits until all readers using the previously-
committed version have committed.

University at Buffalo
The State University of New York

Extracting Even More Concurrency

* This allows for more concurrency than read-write locks.
* Writing transactions risk waiting on commit

* Read operations wait only if another transaction is
currently committing the same object

* Read operations of one transaction can cause a delay in
the commit (or even abort, in the case of deadlock) of
other transactions

* This can be extended even farther, to allow conflicting
write locks at the risk of aborting conflicting writers [2]

University at Buffalo

The State University of New York

Summary

* Strict Execution

— Delay both read and write operations on an object until all
transactions that have previously written that object have either
committed or aborted

* Strict execution with exclusive locks
— Strict 2PL
* Increasing concurrency
— Non-exclusive locks
— Two-version locks
— Etc.

University at Buffalo
The State University of New York

References

[1] Textbook sections 16.1-16.5. Required Reading.

2] H.T. Kung and J.T. Robinson. On Optimistic Methods for
Concurrency Control. ACM Transactions on Database
Systems, Vol. 6 No. 2. June 1981. pp.213-226
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1
.1.114.3052&rep=rep1&type=pdf

University at Buffalo

The State University of New York

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.114.3052&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.114.3052&rep=rep1&type=pdf

Acknowledgements

* These slides by Steve Ko, lightly modified and used with
permission by Ethan Blanton

* These slides contain material developed and copyrighted
by Indranil Gupta (UIUC).

University at Buffalo

The State University of New York

	Slide 1
	Recap
	Handling Abort()
	Strict Executions of Transactions
	Story Thus Far
	Using Exclusive Locks_clipboard0
	How to Acquire/Release Locks
	Using Exclusive Locks
	Can We Do Better?
	Non-Exclusive Locks
	Example: Non-Exclusive Locks
	2PL: a Problem
	Deadlock Conditions
	Preventing Deadlocks
	Extracting Even More Concurrency_clipboard0
	Extracting Even More Concurrency
	Summary
	Slide 18
	Acknowledgements

