
CSE 486/586: Distributed Systems
Consistency

Ethan Blanton

Department of Computer Science and Engineering
University at Buffalo



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Introduction to Consistency
A distributed system may store data in multiple places:

to improve performance
to increase availability
to provide fault tolerance

Multiple copies of the same object are called replicas.

For some applications, it may be important that these
copies are maintain some form of consistency.
For example:

they are the same
they share history up to some point
if they are different, one happens-before the other
etc.

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Advantages of Replication I

Replication can be used to improve performance.
For example:

Placing replicas “near” clients on the network can
improve network latency and bandwidth. (This is the
foundation of content distribution networks like
Akamai.)
Distributing load between replicas (load balancing)
can reduce individual server loads and improve
response times.

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Advantages of Replication II

It can also be used to increase availability.

Assume that the probability of a single server failing is P.
With one server, expected availability is 1− P.
With n servers, expected availability is 1− Pn.

Thus, with P = 5%:
Servers Availability (%)
1 95.0000
2 99.7500
3 99.9875
4 99.9994

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Consistency Guarantees

We will look at consistency guarantees in decreasing
strength:

Linearizability (or strong consistency)
Sequential consistency
Causal consistency
Eventual consistency

The consistency required varies with the application.

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Expectations within a Single Process

Consider a single process and a single datum:
write(x ← 2);
y = read(x);

What do we expect y to contain?

Our general expectation is that
a read operation returns the most recent write.

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Expectations within a Single Process

Consider a single process and a single datum:
write(x ← 2);
y = read(x);

What do we expect y to contain?

Our general expectation is that
a read operation returns the most recent write.

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Expectations with Multiple Processes
Consider a single datum across two processes:
Process P1:
write(x ← 2);

y = read(x)

Process P2:

write(x ← 5);

What do we expect y to contain?

A read operation returns the most recent write
regardless of who wrote.
That most recent write is in physical time order.
In other words, as if all reads and writes are
serialized.

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Expectations with Multiple Processes
Consider a single datum across two processes:
Process P1:
write(x ← 2);

y = read(x)

Process P2:

write(x ← 5);

What do we expect y to contain?

A read operation returns the most recent write
regardless of who wrote.
That most recent write is in physical time order.
In other words, as if all reads and writes are
serialized.

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Expectation with Multiple Replicas

Similarly, with multiple replicas, we expect:

Reads will return the most recent write regardless of
the number of replicas.
Read from any replica should return the same value.
Write to any replica should modify all replicas.

Read and write operations should behave as if there were
one replica.

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Linearizability
Linearizability meets the foregoing expectations with the
following guarantees:

A read operation returns the most recent write,
regardless of the number of clients, and
according to the physical time ordering of requests.

This is equivalent to saying that linearization behaves as if
a single client executed all operations in their physical
time order on a single copy of the data.

A storage system guarantees linearizability if it provides
the above single-client, single-copy semantics, such that
a read returns the most recent write in physical time order.

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Linearizing Real Operations I

Unfortunately, real operations do not occur
instantaneously.
For example, disk and network I/O have latency.

Read/write latency: The time from when a call for a read
or write is invoked until the time the operation returns
control to the client.

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Linearizing Real Operations II
Clear ordering:

Time

Unclear ordering:

Time

1.

2.

3.

(write, read)

With multiple processes and operations of measurable
length, overlaps can occur.

In this case, what is the correct order?
It’s not clear!

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Linearizing Real Operations III
Can overlaps happen with a single process and a single
replica?

No.
Why not?

Linearizability picks something and defines it as correct:
When overlaps occur, if it appears to all clients that
there is a single, interleaved ordering for all
operations, the ordering is valid.
Once this ordering is defined, the correct value of
each read is clear.

This means that there may be more than one valid
linearization with overlap, but not within any one system.

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Linearizability with Overlap
Consider three processes performing operations:

Time

write(a ← x)

read(a) → 0 read(a) → x 

read(a) → x 

What are the constraints here?

read(a) → 0 happens before either read(a) → x
write(a ← x) happens before either read(a) → x
The rest of the ordering can be
implementation-defined

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Linearizability with Overlap
Consider three processes performing operations:

Time

write(a ← x)

read(a) → 0 read(a) → x 

read(a) → x 

What are the constraints here?
read(a) → 0 happens before either read(a) → x
write(a ← x) happens before either read(a) → x
The rest of the ordering can be
implementation-defined

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Linearizability with Overlap Analysis
Consider three processes performing operations:

Time

write(a ← x)

read(a) → 0 read(a) → x 

read(a) → x 

How can this happen?

The write(a ← x) propagates to the bottom process
first.
The write(a ← x) propagates to the middle process
only after its read(a) → 0 has determined a value for
a.

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Linearizability with Overlap Analysis
Consider three processes performing operations:

Time

write(a ← x)

read(a) → 0 read(a) → x 

read(a) → x 

Why might the middle process read different values for a
during the top process’s write?

At some point, the write becomes visible to other
processes. (e.g., the value is actually stored to disk).
The same is true for a read; at some point the read
value is determined from the underlying storage.

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Linearizability with Overlap Analysis
Consider three processes performing operations:

Time

write(a ← x)

read(a) → 0 read(a) → x 

read(a) → x 

Why might the middle process read different values for a
during the top process’s write?

At some point, the write becomes visible to other
processes. (e.g., the value is actually stored to disk).
The same is true for a read; at some point the read
value is determined from the underlying storage.

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Linearizability (Textbook Definition)

Let the sequence of read and update operations that
client i performs in some execution be oi1, oi2, …
A replicated shared object service is linearizable if,
for any execution (in physical time), there is some
interleaving of operations issued by all clients that:

meets the specification of a single correct copy of
objects
is consistent with the physical times at which each
operation occurred during execution

This is the strongest form of consistency.

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Practical Linearizability
Consider the following scenario:

You

Your
Friend

Data Centers

You (NY)
Friend (CA)

write(a ← x)

write(a ← y)

read(a) → y

What are the challenges to linearizability?
Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Practical Linearizability
What are the challenges to linearizability?

You (NY)
Friend (CA)

write(a ← x)

write(a ← y)

read(a) → y

What if:
All clients send all operations to the CA data center.
The CA data center propagates writes to the NY data
center.
No request returns until all propagation is finished.

Is this correct (does it display linearizability)?

Yes

Is this performant?
No

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Practical Linearizability
What are the challenges to linearizability?

You (NY)
Friend (CA)

write(a ← x)

write(a ← y)

read(a) → y

What if:
All clients send all operations to the CA data center.
The CA data center propagates writes to the NY data
center.
No request returns until all propagation is finished.

Is this correct (does it display linearizability)?
Yes

Is this performant?
No

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Practical Linearizability
What are the challenges to linearizability?

You (NY)
Friend (CA)

write(a ← x)

write(a ← y)

read(a) → y

What if:
All clients send all operations to the CA data center.
The CA data center propagates writes to the NY data
center.
No request returns until all propagation is finished.

Is this correct (does it display linearizability)?
Yes

Is this performant?

No

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Practical Linearizability
What are the challenges to linearizability?

You (NY)
Friend (CA)

write(a ← x)

write(a ← y)

read(a) → y

What if:
All clients send all operations to the CA data center.
The CA data center propagates writes to the NY data
center.
No request returns until all propagation is finished.

Is this correct (does it display linearizability)?
Yes

Is this performant?
No

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Implementing Linearizability
Latency is very important!

Amazon: 100 ms of added latency costs 1% in sales.
Google: 500 extra ms in search page generation time
dropped traffic by 20%.

Linearizability typically requires complete synchronization
of replicas before a write operation returns.

Read on any replica returns the most recent write
This means writes must be synchronous

This means this approach is too expensive in a global
setting.

Cross-country RTT is ~20 ms minimum.
Cross-oceanic is even longer!

It might still make sense for local replicas.
Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Passive (Primary-Backup) Replication
Client

Client
RM

RM

RM

RM

Request: Requests are issued to the primary replica
manager (RM), with unique ID.
Coordination: The primary RM takes requests
atomically, in order. Duplicate requests are detected
by ID.
Execution: The primary RM executes the request
and stores its response.
If the request is an update, it sends updates to all
backup RMs (with 1-phase commit).
Response: The primary RM sends its response to the
client.

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Chain Replication

Performance can be improved via chain replication [4].
All writes go to the had of a chain of replicas.
All reads go to the tail of the chain.

N0 N2N1

Head Tail

Writes Reads Replies

Is this linearizable?

It’s straightforward for non-overlapping operations
What about overlapping?

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Chain Replication

Performance can be improved via chain replication [4].
All writes go to the had of a chain of replicas.
All reads go to the tail of the chain.

N0 N2N1

Head Tail

Writes Reads Replies

Is this linearizable?
It’s straightforward for non-overlapping operations
What about overlapping?

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Chain replication with Overlap

N0 N2N1

Head Tail

Writes Reads Replies

How are operations linearized if they overlap?
The absolute order of overlapping operations can be
implementation dependent.
Consider a write that has propagated to N0 or N1
when a read arrives at N2.

The imposed ordering is read-write.
Consider a write that has propagated to N2 when a
read arrives at N2.

The imposed ordering is write-read.

Once a write becomes visible, all future reads will see it.

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Chain replication with Overlap

N0 N2N1

Head Tail

Writes Reads Replies

How are operations linearized if they overlap?
The absolute order of overlapping operations can be
implementation dependent.
Consider a write that has propagated to N0 or N1
when a read arrives at N2.

The imposed ordering is read-write.

Consider a write that has propagated to N2 when a
read arrives at N2.

The imposed ordering is write-read.

Once a write becomes visible, all future reads will see it.

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Chain replication with Overlap

N0 N2N1

Head Tail

Writes Reads Replies

How are operations linearized if they overlap?
The absolute order of overlapping operations can be
implementation dependent.
Consider a write that has propagated to N0 or N1
when a read arrives at N2.

The imposed ordering is read-write.
Consider a write that has propagated to N2 when a
read arrives at N2.

The imposed ordering is write-read.

Once a write becomes visible, all future reads will see it.

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Chain replication with Overlap

N0 N2N1

Head Tail

Writes Reads Replies

How are operations linearized if they overlap?
The absolute order of overlapping operations can be
implementation dependent.
Consider a write that has propagated to N0 or N1
when a read arrives at N2.

The imposed ordering is read-write.
Consider a write that has propagated to N2 when a
read arrives at N2.

The imposed ordering is write-read.

Once a write becomes visible, all future reads will see it.
Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Relaxing Consistency

Do I care if posts are a little bit late?
What if someone sees them in a slightly different order?

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Relaxing Linearizability’s Guarantees
Linearizability has advantages:

It behaves as programmers expect.
Application developers don’t need to include
additional logic.

But it also has disadvantages:
Low latency is difficult to achieve.
It may provide stronger guarantees than necessary.

Sequential consistency relaxes this model just a bit.

It’s still about client perception: when a read occurs, what
does it return?

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Sequential Consistency

Sequential consistency is a bit weaker than linearizability.
It is still quite strong.

Essentially linearizability, but writes from other
processes may show up later.

It still meets a reasonable expectation, but not the natural
expectation captured by linearizability.

Assumptions:
There are multiple processes.
Each write is of a unique value (for clarity).

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Sequential Consistency Examples
Example 1: Does this meet our expectations?

P1 write(a ← x) write(a ← y) read(a) → y

Example 2: What about this?
P1 write(a ← x) write(a ← y) read(a) → x

Why not?
Program order within P1 was not preserved.
We expect this!

Sequential consistency preserves program order within a
process.

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Sequential Consistency Examples
Example 1: Does this meet our expectations?

P1 write(a ← x) write(a ← y) read(a) → y

Example 2: What about this?
P1 write(a ← x) write(a ← y) read(a) → x

Why not?
Program order within P1 was not preserved.
We expect this!

Sequential consistency preserves program order within a
process.

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Sequential Consistency Examples
Example 1: Does this meet our expectations?

P1 write(a ← x) write(a ← y) read(a) → y

Example 2: What about this?
P1 write(a ← x) write(a ← y) read(a) → x

Why not?
Program order within P1 was not preserved.
We expect this!

Sequential consistency preserves program order within a
process.

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Sequential Consistency Examples II
Example 3: What about this (with multiple processes)?

P1 write(a ← x) write(a ← y) read(a) → z

We’ll just assume another process wrote.

Does it matter which of these were true?
P1 write(a ← x) write(a ← y) read(a) → z

P2 write(a ← z)

P1 write(a ← x) write(a ← y) read(a) → z

P2 write(a ← z)

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Sequential Consistency Examples II
Example 3: What about this (with multiple processes)?

P1 write(a ← x) write(a ← y) read(a) → z

We’ll just assume another process wrote.

Does it matter which of these were true?
P1 write(a ← x) write(a ← y) read(a) → z

P2 write(a ← z)

P1 write(a ← x) write(a ← y) read(a) → z

P2 write(a ← z)

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Sequential Consistency Examples II
Example 3: What about this (with multiple processes)?

P1 write(a ← x) write(a ← y) read(a) → z

We’ll just assume another process wrote.

Does it matter which of these were true?
P1 write(a ← x) write(a ← y) read(a) → z

P2 write(a ← z)

P1 write(a ← x) write(a ← y) read(a) → z

P2 write(a ← z)

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Sequential Consistency II

In both cases, the logical order is the same:

P* write(a ← x) write(a ← y) read(a) → z

write(a ← z)

Sequential Consistency appears to process all requests in
a single, interleaved ordering where:

Each process’s program order is preserved.
Ordering between processes is logically preserved,
but may not preserve physical time ordering.

It appears as if all clients are reading from a single copy.

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Sequential Consistency Examples III

Under sequential consistency, is this example possible?
Is there an interleaving that behaves like a single copy?

P1 write(a ← x)

P2 write(a ← y)

P3 read(a) → xread(a) → y

P4 read(a) → xread(a) → y

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Sequential Consistency Examples IV

What about this?

P1 write(a ← x)

P2 write(a ← y)

P3 read(a) → yread(a) → x

P4 read(a) → xread(a) → y

How could this happen?

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Sequential Consistency Examples IV

What about this?

P1 write(a ← x)

P2 write(a ← y)

P3 read(a) → yread(a) → x

P4 read(a) → xread(a) → y

How could this happen?

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Implementing Sequential Consistency

Typical implementation:
The most recent write in physical time may not be
visible (i.e., applied to all replicas) at all times.
However, all writes must appear in the same order
across all replicas.
The order in which writes appear should be
total-FIFO.

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Active Replication

All reads and writes are FIFO ordered at the client.
A read can complete on any single replica.
Writes are totally ordered and synchronous.

Recall from PA 2B that total ordering can delay
delivery of writes!

This provides sequential consistency, but not
linearizability.

Program order is preserved.
Writes are total ordered.
However, even non-overlapping writes may be
reordered compared to physical time.

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Relaxing Consistency Again

All of our models to date assume that we want a total
ordering of operations.

That is, we want all operations to be totally ordered, and
all operations to see all previous changes.

This is as if there were a single copy of the shared state.

What if we don’t care quite that much?

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Relaxing Consistency

We can define consistency models that have less strict
guarantees.

We will consider two such models:

Causal Consistency:
Write operations must be ordered causally with
respect to other operations.
Eventual Consistency: All processes eventually
converge to the same state, but may observe
transient states that differ.

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Causal Consistency

Causal consistency preserves causality for writes.
Reads may occur out-of-order
Entire transactions may use “stale” data
Reads may fetch a newer value before an older
value!

However:
reads that causally precede a write determine the
ordering of writes
Writes must occur in order

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Applying Causal Consistency

Where is causal consistency appropriate?

Replies on forums or social media
Maintenance of non-critical data for dissemination
(e.g., usage statistics for network monitoring)
etc.

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Applying Causal Consistency

Where is causal consistency appropriate?
Replies on forums or social media
Maintenance of non-critical data for dissemination
(e.g., usage statistics for network monitoring)
etc.

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Network Partitions

A partition is when one portion of the system cannot
communicate with another portion of the system.

Partitions prevent even causal consistency for some
writes.

We assume that a partitioning event is temporary.

Sequential consistency and linearizability prevent
progress (i.e., require blocking ) during a partitioning
event.

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Eventual Consistency

Eventual consistency allows multiple partitions to make
progress.

Writes proceed independently within each partition
Within the partition everything is consistent
Between partitions, conflicting writes may occur
When the partition heals:

Non-conflicting writes are kept
Conflicting writes are reconciled until all replicas
agree

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

The CAP Theorem

The CAP theorem [2] presents a trilemma; pick any
two [1] of:

Consistency
Availability
Partition Tolerance

In the presence of network partitions, do you choose
consistency or availability?

Brewer proposed CAP in 2000, Gilbert & Lynch proved
it [3] in 2012.

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

The Reasons for CAP
On very large networks (like the Internet), temporary
partitioning is almost unavoidable.

Partitioned systems must give up either availability or
consistency [1].

Like most things, this is a design decision:
Give up availability and retain total consistency

Perhaps with 2-phase commits
The system blocks until the partition heals

Give up total consistency and retain availability
Perhaps with eventual consistency
Allow consistency to diverge until the partition heals

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Dealing with Partitions
Pairs of conflicting writes may be allowed to proceed on
different partitions.

These conflicts must be fixed up after the partition heals.

Typically, one of the writes will be lost. (Depending on
protocols above the consistency layer, this may lead to
cascading aborts.)

Quorum protocols can be used to determine whether
writes may commit on a partition.

Static quorums allow progress on any partition
containing more than half of the replicas.
Optimistic quorums allow progress on any partition.

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Static Quorums

The decision on how many replica managers must be
involved in an operation on replicated data is called
quorum selection.

Any static quorum requires that:
At least r replicas are accessed for read.
At least w replicas are accessed for write.
r+ w > N, where N is the number of replicas.
w > N/2
Every object has a version number or consistent
timestamp.

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Static Quorum Mechanics
Why must r+ w > N?

This guarantees overlap between read and write sets.
There is always some replica in the read set that has
the most recent write.

Why must w be greater than N/2?
If there is a network partition, only the partition with
more than half of the replicas can write.
The rest will serve reads with stale data.
Re-joining the partition will have no conflicting writes.

r and w are tunable:
E.g., N = 3, r = 1, w = 3: High read throughput, lower
write throughput, reads continue during any partition.

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Static Quorum Mechanics
Why must r+ w > N?

This guarantees overlap between read and write sets.
There is always some replica in the read set that has
the most recent write.

Why must w be greater than N/2?
If there is a network partition, only the partition with
more than half of the replicas can write.
The rest will serve reads with stale data.
Re-joining the partition will have no conflicting writes.

r and w are tunable:
E.g., N = 3, r = 1, w = 3: High read throughput, lower
write throughput, reads continue during any partition.

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Static Quorum Mechanics
Why must r+ w > N?

This guarantees overlap between read and write sets.
There is always some replica in the read set that has
the most recent write.

Why must w be greater than N/2?

If there is a network partition, only the partition with
more than half of the replicas can write.
The rest will serve reads with stale data.
Re-joining the partition will have no conflicting writes.

r and w are tunable:
E.g., N = 3, r = 1, w = 3: High read throughput, lower
write throughput, reads continue during any partition.

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Static Quorum Mechanics
Why must r+ w > N?

This guarantees overlap between read and write sets.
There is always some replica in the read set that has
the most recent write.

Why must w be greater than N/2?
If there is a network partition, only the partition with
more than half of the replicas can write.
The rest will serve reads with stale data.
Re-joining the partition will have no conflicting writes.

r and w are tunable:
E.g., N = 3, r = 1, w = 3: High read throughput, lower
write throughput, reads continue during any partition.

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Optimistic Quorum Approaches
An optimistic quorum allows writes to proceed in any
partition.

Writes are not committed during a partitioning event.

Write-write conflicts are resolved after the partition heals.

Optimistic Quorum is practical when:
Conflicting updates are rare
Conflicts are always detectable
Damage from conflicts can be easily confined
Repair of damaged data is possible or updates can
be discarded without consequences
Partitioning events are short-lived

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Summary I

Linearizability
Provides the strongest consistency guarantees.
Provides single-client, single-copy semantics.
A read operation returns the most recent write
according to physical time ordering, regardless of the
number of clients or replicas.
Can be implemented by: primary-backup replication,
chain replication.

Sequential Consistency
Provides single-copy semantics.
Program order is preserved for each client.
Can be implemented by active replication.

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Summary II

Causal Consistency and Eventual Consistency
Provide much weaker consistency guarantees.
May be appropriate for some applications.

Quorums
Static
Optimistic

Ethan Blanton / CSE 486/586: Distributed Systems



Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

References I
Required Readings
[5] Textbook. Sections 18.1, 18.5.

Optional Readings
[1] Eric A. Brewer. “CAP Twelve Years Later: How the “Rules” Have Changed”. In:

Computer 45 (2 2012), pp. 23–29. URL: https://www.infoq.com/articles/cap-
twelve-years-later-how-the-rules-have-changed.

[2] Eric A. Brewer. Towards Robust Distributed Systems. Keynote Speech at the
ACM Symposium on the Principles of Distributed Computing. July 2000. URL:
https://people.eecs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf.

[3] Seth Gilbert and Nancy Lynch. “Brewer’s Conjecture and the Feasibility of
Consistent, Available, Partition-Tolerant Web Services”. In: ACM SIGACT
News 33 (2 June 2002), pp. 51–59. URL: http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.20.1495&rep=rep1&type=pdf.

[4] Robbert van Renesse and Fred B. Schneider. “Chain Replication for Supporting
High Throughput and Availability”. In: Proceedings of the 6th Symposium on
Operating Systems Design and Implementation. USENIX, 2004.

Ethan Blanton / CSE 486/586: Distributed Systems

https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed
https://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed
https://people.eecs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.20.1495&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.20.1495&rep=rep1&type=pdf


Introduction Linearizability Sequential Consistency More Relaxed Consistency Partitions Summary References

Acknowledgements

These slides are based on slides from Steve Ko, used
with permission.

Those slides contain the following attribution:
These slides complain material developed and
copyrighted by Indranil Gupta (UIUC).

Ethan Blanton / CSE 486/586: Distributed Systems


	Introduction
	Linearizability
	Implementing Linearizability

	Sequential Consistency
	Implementing Sequential Consistency

	More Relaxed Consistency
	Causal Consistency

	Partitions
	Eventual Consistency
	Quorums

	Summary

