
CSE 486/586

CSE 486/586 Distributed Systems
Facebook Haystack and F4

Slides by Steve Ko
Computer Sciences and Engineering

University at Buffalo

“Very warm” and “warm” Photos

• Hot photos are served by a CDN.
• Warm photo characteristics

– Not quite so popular

– Not entirely “cold,” i.e., occasional views

– A lot of data and views in aggregate

– Not desirable to cache everything in CDN due to diminishing
returns

• Facebook stats (in their 2010 paper)
– 260 billion images (~20 PB)

– 1 billion new photos per week (~60 TB)

– One million image views per second at peak

– Approximately 10% not served by CDN, but that’s still a lot

Popularity With Respect to Age

Facebook Photo Storage

• Three generations of photo storage
– NFS-based

– Haystack: Very warm photos

– f4: Warm photos

• Characteristics
– After-CDN storage

– Each generation solves a particular problem observed from the
previous generation.

1st Generation: NFS-Based

1st Generation: NFS-Based

• Each photo is a single file
• Observed problem

– Thousands of files in each directory

– Extremely inefficient due to meta data management

– 10 disk operations for a single image: chained filesystem inode
reads for its directory and itself & the file read

• In fact, a well-known problem with many files in a
directory
– Be aware when you do this.

– The inode space (128 or 256 bytes) runs out.

– A lot of operations necessary for meta data retrieval.

2nd Generation: Haystack

● Custom-designed photo storage
● What would you try? (Hint: too many files!)

– Starting point: One big file with many photos

● Reduces the number of disk operations required to one
– All meta data management done in memory

● Design focus
– Simplicity
– Something buildable within a few months

● Three components
– Directory
– Cache
– Store

Haystack Architecture

8

Haystack Directory
• Helps the URL construction for an image

– http:// CDN / Cache / Machine id / Logical volume, Photo⟨ ⟩ ⟨ ⟩ ⟨ ⟩ ⟨ ⟩
– Staged lookup

– CDN strips out its portion.

– Cache strips out its portion.

– Machine strips out its portion

• Logical & physical volumes
– A logical volume is replicated as multiple physical volumes

– Physical volumes are stored.

– Each volume contains multiple photos.

– Directory maintains this mapping

Haystack Cache

• Facebook-operated CDN using DHT
– Photo IDs as the key

• Further removes traffic to Store
– Mainly caches newly-uploaded photos

• High cache hit rate (due to caching new photos)

Haystack Store

• Maintains physical volumes
• One volume is a single large file (100GB) with many

photos (needles)

Haystack Store

• Metadata managed in memory
– (key, alternate key) to (flags, size, volume offset)

– Quick lookup for both read and write

– Disk operation only required for actual image read

• Write/delete
– Append-only

– Delete is marked, later garbage-collected.

• Indexing
– For fast memory metadata construction

Daily Stats Using Haystack

• Photos uploaded: ~120 M
• Haystack photos written: ~1.44 B
• Photos viewed: 80 – 100 B

– Thumbnails: 10.2%

– Small: 84.4%

– Medium: 0.2%

– Large: 5.2%

• Haystack photos read: 10 B

Haystack Summary

• Two different types of workload
– Posts: read/write

– Photos: write-once, read-many

• Photo workload
– Zipf distribution

– “Hot” photos can be handled by CDN

– “Warm” photos have diminishing returns on the CDN.

• Haystack: Facebook’s 2nd generation photo storage
– Goal: reducing disk I/O for warm photos

– One large file with many photos

– Metadata stored in memory

– Internal CDN

f4: Breaking Down Even Further

• Hot photos: CDN
• Very warm photos: Haystack
• Warm photos: f4
• Why? Storage efficiency

Items sorted by popularity

Popularity

CDN / Haystack / f4

• Storage efficiency became important.
– Static contents (photos & videos) grew quickly.

• Very warm photos: Haystack is concerned about
throughput, not efficiently using storage space.

• Warm photos: Don’t need a lot of throughput.

• Design question: Can we design a system that is more
optimized for storage efficiency for warm photos?

Why Not Just Use Haystack?

• Haystack
– Haystack store maintains large files (many photos in one file).

– Each file is replicated 3 times, two in a single data center, and
one additional in a different data center.

• Each file is placed on RAID disks.
– RAID: Redundant Array of Inexpensive Disks

– RAID provides better throughput with good reliability.

– Haystack uses RAID-6, which requires 1.2X space usage.

– With 3 replications, each file block spends 3.6X space usage to
tolerate 4 disk failures within a datacenter as well as 1 datacenter
failure. (Details later.)

• f4 reduces this to 2.1X space usage with the same fault-
tolerance guarantee.

The Rest

• What RAID is and what it means for Haystack
– We will talk about RAID-0, RAID-1, RAID-4, and RAID-5

– Haystack’s replication is based on RAID

• How f4 uses erasure coding
– f4 relies on erasure coding to improve on the storage efficiency.

– f4’s replication is based on erasure coding

• How Haystack and f4 stack up

RAID
● Using multiple disks that appear as a one big disk in a

single server for throughput and reliability
● Throughput

– Multiple disks working independently & in parallel

● Reliability
– Multiple disks redundantly storing file blocks

● Simplest? (RAID-0)

0

4

8

1

5

9

2

6

10

3

7

11

RAID-0
• More often called striping
• Provides improved throughput

– Multiple blocks in a single stripe can be accessed in parallel
across different disks.

– Better than a single large disk with the same size

• Reliability?
– Provides no improvement!

• Full capacity

0

4

8

1

5

9

2

6

10

3

7

11

RAID-1

• More often called mirroring
• Throughput

– Read from a single disk, write to N disks (originally 2)

• Reliability
– N-1 disk failures

• Capacity
– 1/N, with N mirrors

0

2

4

0

2

4

1

3

5

1

3

5

RAID-4
• Striping with parity

– Parity: conceptually, adding up all the bits

– XOR bits, e.g., (0, 1, 1, 0) = P: 0

– Almost the best of both striping and mirroring

• Parity enables reconstruction after failures
– (0, 1, 1, 0) = P: 0

• How many failures?
– With one parity bit, one failure

0

4

8

1

5

9

2

6

10

3

7

11

P0

P1

P2

RAID-5

• Any issues with RAID-4?
– All writes involve the parity disk

– Any ideas to solve this?

• RAID-5
– Rotating parity

– Writes for different stripes involve different parity disks

0

5

10

1

6

11

2

7

P2

3

P1

8

P0

4

9

Back to Haystack & f4
• Haystack: RAID-6, which has 2 parity bits, on 12 disks.

– Stripe: 10 data disks, 2 parity disks = failures tolerated: 2

– (RAID-6 is much more complicated than RAID-5, though.)

– Each data block is replicated twice in a single datacenter, and
one additional is placed in a different datacenter.

• Storage usage
– Single block storage usage: 1.2X

– Times 3 replications: 3.6X

• How can we improve upon this storage usage?
– RAID parity disks are basically using error-correcting codes

– Other (potentially more efficient) error-correcting codes exist,
e.g., Hamming codes, Reed-Solomon codes, etc.

– f4 does not use RAID, rather handles individual disks.

– f4 uses a more efficient Reed-Solomon code.

f4: Single Datacenter

• Within a single data center, (14, 10) Reed-Solomon code
– This tolerates up to 4 block failures

– 1.4X storage usage per block

• Distribute blocks across different racks
– This tolerates two host/rack failures

f4: Cross-Datacenter
• Additional parity block

– Can tolerate a single datacenter failure

• Average space usage per block: 2.1X
– E.g., average for block A & B: (1.4*2 + 1.4)/2 = 2.1

• With 2.1X space usage,
– 4 host/rack failures tolerated

– 1 datacenter failure tolerated

Haystack vs. f4

• Haystack
– Per stripe: 10 data disks, 2 parity disks, 2 failures tolerated

– Replication degree within a datacenter: 2

– 4 total disk failures tolerated within a datacenter

– One additional copy in another datacenter (for tolerating one
datacenter failure)

– Storage usage: 3.6X (1.2X for each copy)

• f4
– Per stripe: 10 data disks, 4 parity disks, 4 failures tolerated

– Reed-Solomon code achieves replication within a datacenter

– One additional copy XOR’ed to another datacenter, tolerating
one datacenter failure

– Storage usage: 2.1X (previous slide)

Summary

• Facebook photo storage
– CDN

– Haystack

– f4

• Haystack
– RAID-6 with 3.6X space usage

– High throughput

• f4
– Reed-Solomon code

– Block distribution across racks and datacenters

– 2.1X space usage

– Lower throughput

References

[1] Doug Beaver, Sanjeev Kumar, Harry C. Li, Jason Sobel, and Peter
Vajgel. Finding a needle in Haystack: Facebook’s photo storage.
Proceedings of the 9th USENIX Symposium on Operating Systems
Design and Implementation. October 2010. Required Reading.
https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Beaver.
pdf

[2] Subramanian Muralidhar, Sabyasachi Roy, Cory Hill, Ernest Lin,
Weiwen Liu, Satadru Pan, Shiva Shankar, Viswanath Sivakumar,
Linpeng Tang, and Sanjeev Kumar. f4: Facebook’s Warm BLOB
Storage System. Proceedings of the 11th USENIX Symposium on
Operating Systems Design and Implementation. October 2014.
Required Reading.
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper
-muralidhar.pdf

https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Beaver.pdf
https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Beaver.pdf
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-muralidhar.pdf
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-muralidhar.pdf

Acknowledgements

● These slides originally by Steve Ko, lightly modified and
used with permission by Ethan Blanton.

	Slide 1
	“Very warm” and “warm” Photos
	Popularity Comes with Age
	Facebook Photo Storage
	1st Generation: NFS-Based
	1st Generation: NFS-Based
	2nd Generation: Haystack
	Haystack Architecture
	Haystack Directory
	Haystack Cache
	Haystack Store
	Haystack Store
	Daily Stats with Haystack
	Summary
	f4: Breaking Down Even Further
	CDN / Haystack / f4
	Why Not Just Use Haystack?
	The Rest
	RAID
	RAID-0
	RAID-1
	RAID-4
	RAID-5
	Back to Haystack & f4
	f4: Single Datacenter
	f4: Cross-Datacenter
	Haystack vs. f4
	Slide 28
	References
	Acknowledgements

