CSE 486/586 Distributed Systems
Facebook Haystack and F4

Slides by Steve Ko

Computer Sciences and Engineering
University at Buffalo

CSE 486/586

“Very warm” and "warm” Photos

* Hot photos are served by a CDN.

* Warm photo characteristics
— Not quite so popular
— Not entirely “cold,” i.e., occasional views
— Alot of data and views in aggregate

— Not desirable to cache everything in CDN due to diminishing
returns

* Facebook stats (in their 2010 paper)
— 260 billion images (~20 PB)
— 1 billion new photos per week (~60 TB)
— One million image views per second at peak
— Approximately 10% not served by CDN, but that's still a lot

University at Buffalo
The State University of New York

Popularity With Respect to Age

100 -
80 |-

(%]

(0]

[2]

N

(O]

S 60 [

S

S

<))

=

g 40

=

E

jm]

O
20 -
0 | 1 | 1 | 1 1 1

0 200 400 600 800 1000 1200 1400 1600
Age (in days)

University at Buffalo
The State University of New York

Facebook Photo Storage

* Three generations of photo storage
— NFS-based
— Haystack: Very warm photos
— f4: Warm photos
* Characteristics
— After-CDN storage

— Each generation solves a particular problem observed from the
previous generation.

University at Buffalo
The State University of New York

1st Generation: NFS-Based

Web S > >
A
NFS E;//5
Photo Store Photo Store
1 2 Server Server

/!

\J

3
Browser |-« >
‘ \ 8

University at Buffalo
The State University of New York

1st Generation: NFS-Based

* Each photo is a single file

* Observed problem
— Thousands of files in each directory
— Extremely inefficient due to meta data management

— 10 disk operations for a single image: chained filesystem inode
reads for its directory and itself & the file read

* In fact, a well-known problem with many files in a
directory

— Be aware when you do this.
— The inode space (128 or 256 bytes) runs out.
— Alot of operations necessary for meta data retrieval.

University at Buffalo
The State University of New York

2nd Generation: Haystack

e Custom-designed photo storage

 What would you try? (Hint: too many files!)
- Starting point: One big file with many photos

» Reduces the number of disk operations required to one
- All meta data management done in memory

e Design focus

- Simplicity

- Something buildable within a few months
 Three components

- Directory
- Cache

UmverSIty at Buffalo
The State University of New York

Haystack Architecture

= = e e e e e e - —— - ——————

Haystack

| |
1 |
Directory Hgstack ! :
ore | E
|

—— e . e o mm mm e mm mm wm = = b

b i

Web

| |

Haystack | &° O5 |

Server Cache ' 5 L !
, ©Co0C~ |

5
Browser | - e
10

University at Buffalo
The State University of New York

Haystack Directory

* Helps the URL construction for an image
— http://{(CDN)/{Cache)/{Machine id)/{Logical volume, Photo)

P PRI U PR LG U

— Staged lookup Directory Haystack | %%%
Store |

— CDN strips out its portion. 2“3
— Cache strips out its portion. 7““
— Machine strips out its portion “gﬁi‘,?;’k 82220228

WO

Browser
* Logical & physical volumes -

— Alogical volume is replicated as multiple physical volumes

— Physical volumes are stored.
— Each volume contains multiple photos.

University at Buffalo
The State University of New York

Haystack Cache

* Facebook-operated CDN using DHT
— Photo IDs as the key
* Further removes traffic to Store
— Mainly caches newly-uploaded photos
* High cache hit rate (due to caching new photos)

100

60 -

Hit Rate (%)

40

20

1 1 1 1 1 1 1
4/26 4/27 4/28 4/29 4/30 5/1 5/2
Date

University at Buffalo
The State University of New York

Haystack Store

* Maintains physical volumes

* One volume is a single large file (100GB) with many
photos (needles)

Superblock Header Magic Number
Cookie
Needle 1 Key
Alternate Key
Flags
Needle 2 Size
Data
Needle 3
Footer Magic Number
Data Checksum
' Padding

University at Buffalo
The State University of New York

Haystack Store

* Metadata managed in memory

— (key, alternate key) to (flags, size, volume offset)

— Quick lookup for both read and write

— Disk operation only required for actual image read

* Write/delete

— Append-only

— Delete is marked, later garbage-collected.
* Indexing

— For fast memory metadata construction

Needle 1

Needle 2

Needle 3

Needle 4

'[é University at Buffalo N

The State University of New York

Key

Alternate Key

Flags

Offset

Size

Daily Stats Using Haystack

Photos uploaded: ~120 M
* Haystack photos written: ~1.44 B

* Photos viewed: 80 — 100 B
— Thumbnails: 10.2%
— Small: 84.4%
— Medium: 0.2%
— Large: 5.2%
* Haystack photos read: 10 B

University at Buffalo
The State University of New York

Haystack Summary

* Two different types of workload
— Posts: read/write
— Photos: write-once, read-many

* Photo workload
— Zipf distribution
— “Hot” photos can be handled by CDN
— “Warm” photos have diminishing returns on the CDN.,

* Haystack: Facebook’s 2" generation photo storage
— Goal: reducing disk |/O for warm photos
— One large file with many photos
— Metadata stored in memory
— Internal CDN

University at Buffalo
The State University of New York

f4. Breaking Down Even Further

Hot photos: CDN

* Very warm photos: Haystack
Warm photos: f4

Why? Storage efficienc

Popularity

University at Buffalo
The State University of New York

CDN / Haystack / f4

* Storage efficiency became important.

— Static contents (photos & videos) grew quickly.

* Very warm photos: Haystack is concerned about
throughput, not efficiently using storage space.

* Warm photos: Don’t need a lot of throughput.

* Design question: Can we design a system that is more
optimized for storage efficiency for warm photos?

University at Buffalo
The State University of New York

Why Not Just Use Haystack?

* Haystack
— Haystack store maintains large files (many photos in one file).

— Each file is replicated 3 times, two in a single data center, and
one additional in a different data center.

* Each file is placed on RAID disks.

— RAID: Redundant Array of Inexpensive Disks
— RAID provides better throughput with good reliability.
— Haystack uses RAID-6, which requires 1.2X space usage.

— With 3 replications, each file block spends 3.6X space usage to
tolerate 4 disk failures within a datacenter as well as 1 datacenter
fallure. (Details later.)

* f4 reduces this to 2.1X space usage with the same fault-

tolerance guarantee.
'[é University at Buffalo
The State University of New York

The Rest

* What RAID is and what it means for Haystack
— We will talk about RAID-0, RAID-1, RAID-4, and RAID-5

— Haystack’s replication is based on RAID

* How f4 uses erasure coding
— f4 relies on erasure coding to improve on the storage efficiency.

— f4’s replication is based on erasure coding

* How Haystack and f4 stack up

University at Buffalo
The State University of New York

RAID

« Using multiple disks that appear as a one big disk in a
single server for throughput and reliability
 Throughput
- Multiple disks working independently & in parallel
« Reliablility
- Multiple disks redundantly storing file blocks

« Simplest? (RAID-0)
N Y Yy Yy

Gh

University at Buffalo

The State University of New York

~ A M~ M~ T P
0 1 2 3
4 S 6 7
8 9 10 11

RAID-0

* More often called striping

* Provides improved throughput

— Multiple blocks in a single stripe can be accessed in parallel
across different disks.

— Better than a single large disk with the same size
* Reliability?

— Provides no improvement!

University av=%iialo
The State University of New York

RAID-1

More often called mirroring

Throughput

— Read from a single disk, write to N disks (originally 2)
Reliability

— N-1 disk failures
* Capacity

— 1/N, with N mirrors

University av=%iialo
The State University of New York

RAID-4

* Striping with parity
— Parity: conceptually, adding up all the bits
— XOR bits, e.g., (0,1,1,0) =P: 0
— Almost the best of both striping and mirroring
* Parity enables reconstruction after failures
-(0,1,1,8=P:0
* How many failures?
— With one parity bit, one failure

S I S R S — —

University at Butiai®
The State University of New York

RAID-5

* Any issues with RAID-47?

— All writes involve the parity disk

— Any ideas to solve this?
* RAID-5
— Rotating parity
— Writes for different stripes involve different parity disks

10 11 P2 8 9

University at Butiai®
The State University of New York

Back to Haystack & f4

* Haystack: RAID-6, which has 2 parity bits, on 12 disks.
— Stripe: 10 data disks, 2 parity disks = failures tolerated: 2
— (RAID-6 is much more complicated than RAID-5, though.)

— Each data block is replicated twice in a single datacenter, and
one additional is placed in a different datacenter.

* Storage usage
— Single block storage usage: 1.2X
— Times 3 replications: 3.6X

* How can we improve upon this storage usage?
— RAID parity disks are basically using error-correcting codes

— Other (potentially more efficient) error-correcting codes exist,
e.g., Hamming codes, Reed-Solomon codes, etc.

— f4 does not use RAID, rather handles individual disks.

% The State University of New York

f4. Single Datacenter

* Within a single data center, (14, 10) Reed-Solomon code
— This tolerates up to 4 block failures
— 1.4X storage usage per block

* Distribute blocks across different racks
— This tolerates two host/rack failures

D, | D, e o0 D, | P, LI P, | Stripe(n,k)
Host // Hox Host/jHost\Hostﬁ'km
Host 4 Host A Hc% Host Host v Host
Host Host ﬂost Host Host Host
Host Host 4 Host Host Host Host
o o0
Host Host / Host Host Host Host
Host Host L Host Host Host Host
Host Host Host Host Host Host
Host Host Host Host Host Host
UniverSitY at » Rack 1 Rack 2 Rack 3 Rack 4 Rack 5 Rackr

The State University of New York

f4. Cross-Datacenter
* Additional parity block

— Can tolerate a single datacenter failure

JUTEEEIEEEEEEEEEEEEEEEEEEEEEEEEEEEEE FUTEEEIEEEIEEEEIEEEEEEEEEEEEEEEEEEEEE

. Datacenter 1 : . Datacenter 3 :
:0000000000000000; :0000000000000000;
:000oooo00ooooood:_[Block A | :pppgnoonoooooooo:

Datacenter2
:nunnnuunununnnnu_
:nooooooooooooood:_| Block B

* Average space usage per block: 2.1X
— E.g., average for block A& B: (1.4"2+1.4)/2=21
* With 2.1X space usage,

— 4 host/rack failures tolerated

— 1 datacenter failure tolerated

University at Buffalo
The State University of New York

Haystack vs. {4

* Haystack
— Per stripe: 10 data disks, 2 parity disks, 2 failures tolerated
— Replication degree within a datacenter: 2
— 4 total disk failures tolerated within a datacenter

— One additional copy in another datacenter (for tolerating one
datacenter failure)

— Storage usage: 3.6X (1.2X for each copy)
* f4
— Per stripe: 10 data disks, 4 parity disks, 4 failures tolerated
— Reed-Solomon code achieves replication within a datacenter

— One additional copy XOR’ed to another datacenter, tolerating
one datacenter failure

— Storage usage: 2.1X (previous slide)

University at Buffalo
The State University of New York

Summary

* Facebook photo storage
— CDN
— Haystack
— f4
* Haystack
— RAID-6 with 3.6X space usage
— High throughput
* 4
— Reed-Solomon code
— Block distribution across racks and datacenters
— 2.1X space usage
— Lower throughput

University at Buffalo
The State University of New York

References

1] Doug Beaver, Sanjeev Kumar, Harry C. Li, Jason Sobel, and Peter
Vajgel. Finding a needle in Haystack: Facebook’s photo storage.
Proceedings of the 9" USENIX Symposium on Operating Systems
Design and Implementation. October 2010. Required Reading.
https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Beaver.
pdf

21 Subramanian Muralidhar, Sabyasachi Roy, Cory Hill, Ernest Lin,
Weiwen Liu, Satadru Pan, Shiva Shankar, Viswanath Sivakumar,
Linpeng Tang, and Sanjeev Kumar. f4: Facebook’s Warm BLOB
Storage System. Proceedings of the 11" USENIX Symposium on
Operating Systems Design and Implementation. October 2014.
Required Reading.
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper
-muralidhar.pdf

University at Buffalo
The State University of New York

https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Beaver.pdf
https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Beaver.pdf
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-muralidhar.pdf
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-muralidhar.pdf

Acknowledgements

» These slides originally by Steve Ko, lightly modified and
used with permission by Ethan Blanton.

University at Buffalo
The State University of New York

	Slide 1
	“Very warm” and “warm” Photos
	Popularity Comes with Age
	Facebook Photo Storage
	1st Generation: NFS-Based
	1st Generation: NFS-Based
	2nd Generation: Haystack
	Haystack Architecture
	Haystack Directory
	Haystack Cache
	Haystack Store
	Haystack Store
	Daily Stats with Haystack
	Summary
	f4: Breaking Down Even Further
	CDN / Haystack / f4
	Why Not Just Use Haystack?
	The Rest
	RAID
	RAID-0
	RAID-1
	RAID-4
	RAID-5
	Back to Haystack & f4
	f4: Single Datacenter
	f4: Cross-Datacenter
	Haystack vs. f4
	Slide 28
	References
	Acknowledgements

