Consensus

CSE 486/586: Distributed Systems

Ethan Blanton

Department of Computer Science and Engineering

University at Buffalo

Consensus

Consensus is an agreement between processes on some state.

Typically, the value of a variable.

Consensus requires that every non-faulty process has the same view of the state

Faulty processes may diverge.

Impossibility of Consensus

It is provably impossible [1] to achieve consensus in an asvnchronous system if either:

- Any process can fail
- Arbitrary messages can be lost

Nonetheless, we often use consensus in practice!

Using Consensus

We have already seen consensus in several protocols:

- The message priority in ISIS atomic broadcast
- The elected leader in election protocols
- The happens before relationship between two events in a vector clock system

We will see many more.

One-bit Consensus

Consensus is often modeled on a single bit: Every non-faulty process agrees on a value $v \in \{0, 1\}$.

This seems weak

However, computers only know 0 and 1.

A sequence of such bits can agree on any computable value.

Consensus on Synchronous Systems

On synchronous systems, consensus is solvable.

Without failures, it is trivial.

With failures it is harder, but not much.

The model is:

- N processes, all known to each other
- At most f failures
- Processes respond within a fixed period of time
- Messages arrive within a fixed period of time
- One response time + one message transmission time = one "round"

Synchronous Consensus without Failures

If no processes fail in a synchronous system:

- Consensus is guaranteed
- It requires one round of communication

The process:

- 1. Each process sends its proposed value to all other processes
- 2. Each process decides on the consensus:
 - 1 if all proposed values are 1
 - 0 if any proposed value is 0

Synchronous Consensus with f Failures

Assume that failures are fail-stop.

Each process has a starting value of either 0 or 1.

We want to maintain three properties:

- Agreement: All non-faulty processes decide on the same output value (safety)
- Validity: If any process decides on a value, then some process started with that value
- Termination: All non-faulty processes decide on a value in finite time (liveness)

The algorithm will tolerate at most f failures.

The Algorithm

Every process p maintains a vector V every process's proposed values

Before round 1, V contains only p's proposed value.

In each round:

- 1. Sends V to all other processes
- Adds all new values received to V

After f + 1 rounds. p decides on the minimum value in V.

Counting Rounds

Why does this take f + 1 rounds?

This is similar to reliable broadcast.

Consider:

- In Round 1, p_i sends its proposal to p_i , then crashes
- Only p_i knows p_i 's proposal
- In Round 2, p_i sends its vector V containing p_i 's proposal

Thus, in 2 rounds, p_i's proposal is known by all correct processes (1 failure, 2 rounds).

What if p_i crashes after sending 1 message in round 2?

Consider n = 5. f = 2.

If p_1 receives 5 values in round 1, can p_1 decide?

Consider n = 5. f = 2.

If p_1 receives 5 values in round 1, can p_1 decide? No, what if p_1 is the only process with info from p_2 ?

Consider n = 5, f = 2.

If p_1 receives 5 values in round 1, can p_1 decide? No, what if p_1 is the only process with info from p_2 ?

Can p_1 decide after round 2?

Consider n = 5. f = 2.

If p_1 receives 5 values in round 1, can p_1 decide? No, what if p_1 is the only process with info from p_2 ?

Can p₁ decide after round 2? Yes, but can p_2 ?

Consider n = 5. f = 2.

If p_1 receives 5 values in round 1, can p_1 decide? No, what if p_1 is the only process with info from p_2 ?

Can p₁ decide after round 2?

Yes, but can p_2 ?

No, p_2 doesn't know if p_1 crashed!

Consider n = 5. f = 2.

If p_1 receives 5 values in round 1, can p_1 decide? No, what if p_1 is the only process with info from p_2 ?

Can p₁ decide after round 2? Yes, but can p_2 ? No, p_2 doesn't know if p_1 crashed!

After round 3, can p_2 decide?

Consider n = 5. f = 2.

If p_1 receives 5 values in round 1, can p_1 decide? No, what if p_1 is the only process with info from p_2 ?

Can p₁ decide after round 2? Yes, but can p_2 ? No, p_2 doesn't know if p_1 crashed!

After round 3, can p_2 decide? Yes. If any process still doesn't have all of the information, more than two processes must have crashed!

Correctness

Why is this correct?

Processes are synchronous:

If a process has a message to send in a round, it will.

Messages are synchronous:

If a message is sent in a round, it is received in that round.

Why could f + 1 failures break this?

At least one round must include no failures!

Defining Impossibility

The Fischer-Lynch-Paterson (FLP) result [1] says that consensus is impossible in an asynchronous system.

Impossible in the theoretical sense, however!

Not cannot ever be achieved, but rather: There exists some circumstance where it is not achieved.

In practice, consensus is often achievable.

A Weak Model

The FLP model of consensus is deliberately weak.

If such a weak consensus is impossible, then stronger consensus is surely also impossible!

It assumes:

- Messages are always delivered correctly and exactly once
- Exactly one process fails
- Agreement is on exactly one bit
- The consensus result was proposed by at least one process
- At least one process arrives at correct consensus
- Consensus can take arbitrarily long

However, all processes and messages are asynchronous.

The Intuition

The intuition for FLP is essentially:

Suppose that p_i hears no messages from p_j . Can p_i make a decision?

If it decides and p_i is failed: no problem!

If it decides and p_j has not failed: big problem!

What if every process that p_i heard from proposed 1, and p_j proposed 0?

Therefore p_i must wait for p_i ...which might be failed!

Messages

FLP assumes that all messages are eventually delivered.

They may be delivered out of order.

It requires a model like reliable multicast: If any non-faulty process receives a message, then all non-faulty processes receive the message.

It also requires that the following are atomic:

- Receipt of a message
- Processing in response to the message
- Transmission of responses to an arbitrary number of processes

Warning: Exploding Heads

The following discussion will probably make your head explode.

It might make my head explode.

You should:

- 1. Read FLP [1]. Try to understand Lemma 2, but let it go when you can't.
- 2. Read the recommended reading [2].
- 3 Re-read FLP

...then forgive me for what is about to happen.

Definitions

A configuration C is the state of all processes, plus all messages in the system.

A step moves from one configuration to another, and consists of one atomic operation (receive, process, send) in one process.

An event $e = \{m, p\}$ is the receipt of message m at process p, defining a step, and e(C) is the configuration C after applying the event e

A schedule is a finite sequence of events σ that can be applied to C, and $\sigma(C)$ is some configuration reachable from C.

Valence

A configuration C is univalent if every reachable configuration from C has the same decision

It is 0-valent if every decision is 0.

It is 1-valent if every decision is 1.

A configuration C is bivalent if the reachable configurations from C contain both possible decisions.

Lemma 1

Lemma 1 says that disjoint schedules are commutative.

Given σ_1 and σ_2 , such that:

- $\sigma_1(C) = C_1$
- $\sigma_2(C) = C_2$

If the sets of processes in events in σ_1 and σ_2 are disjoint, then:

$$\sigma_1(\mathbf{C}_2) = \sigma_2(\mathbf{C}_1) = \mathbf{C}_3$$

Lemma 2

Lemma 2 in the paper claims that schedules matter. [2]

It states that:

- Any starting state is bivalent
- The set of failures and messages in an execution from that state determines this

Thus, the initial configuration is not enough to determine valence

Lemma 3

Lemma 3 claims that, starting from a bivalent configuration C [2]:

- any event e can be applied last
- There exists some sequence σ for which $e(\sigma(C))$ is bivalent

The proof for this is very confusing.

Lemma 3 Intuition

Ultimately Lemma 3 uses contradiction to show:

- There is some event $e' \neq e$ that determines whether $e(\sigma(C))$ is 0-valent or 1-valent
- If e is applied to a different process than e', Lemma 1 says they can be applied in either order, so $e(\sigma(C))$ must be bivalent without e'
- If e is applied to the same process p as e', then p can do nothing indefinitely; if a decision is made in this state, then p can apply either e or both e and e', to achieve either 0-valence or 1-valence, so the decision might be invalid

Using Consensus

We already said that we use consensus!

How, if it's impossible?

We either:

- Narrow the window of undecidability
- Change the rules (e.g., with partial synchrony)
- Tolerate occasional failures of consensus

Summary

- Deciding on zero or one is powerful
- Synchronous systems can decide with an arbitrary, predefined number of failures
- Asynchronous systems cannot decide ...maybe
 - Failure is indistinguishable from delay

References I

Required Readings

[1] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. "Impossibility of Distributed Consensus with One Faulty Process". In: Journal of the ACM 32.2 (Apr. 1995). Ed. by S. L. Graham. pp. 374–382. DOI: 10.1145/3149.214121. URL: https://groups.csail.mit.edu/tds/papers/Lvnch/jacm85.pdf.

Recommended Readings

Henry Robinson. A Brief Tour of FLP Impossibility. Blog post on [2] the Paper Trail blog. Aug. 2008. URL: https://www.the-papertrail.org/post/2008-08-13-a-brief-tour-of-flp-impossibility/

Copyright 2021 Ethan Blanton, All Rights Reserved.

These slides include material copyright 2020 Cristina Nita-Rotaru, with permission.

Reproduction of this material without written consent of the author is prohibited.

To retrieve a copy of this material, or related materials, see https://www.cse.buffalo.edu/~eblanton/.

