
Consensus

CSE 486/586: Distributed Systems

Ethan Blanton
Department of Computer Science and Engineering

University at Buffalo



Introduction Synchronous Consensus FLP Summary References

Consensus

Consensus is an agreement between processes on some state.

Typically, the value of a variable.

Consensus requires that every non-faulty process has the same
view of the state.

Faulty processes may diverge.

©2021 Ethan Blanton / CSE 486/586: Distributed Systems 2



Introduction Synchronous Consensus FLP Summary References

Impossibility of Consensus

It is provably impossible [1] to achieve consensus in an
asynchronous system if either:

Any process can fail
Arbitrary messages can be lost

Nonetheless, we often use consensus in practice!

©2021 Ethan Blanton / CSE 486/586: Distributed Systems 3



Introduction Synchronous Consensus FLP Summary References

Using Consensus

We have already seen consensus in several protocols:
The message priority in ISIS atomic broadcast
The elected leader in election protocols
The happens before relationship between two events in a
vector clock system

We will see many more.

©2021 Ethan Blanton / CSE 486/586: Distributed Systems 4



Introduction Synchronous Consensus FLP Summary References

One-bit Consensus

Consensus is often modeled on a single bit:
Every non-faulty process agrees on a value v ∈ {0,1}.

This seems weak.

However, computers only know 0 and 1.

A sequence of such bits can agree on any computable value.

©2021 Ethan Blanton / CSE 486/586: Distributed Systems 5



Introduction Synchronous Consensus FLP Summary References

Consensus on Synchronous Systems
On synchronous systems, consensus is solvable.

Without failures, it is trivial.

With failures it is harder, but not much.

The model is:
N processes, all known to each other
At most f failures
Processes respond within a fixed period of time
Messages arrive within a fixed period of time
One response time + one message transmission time = one
“round”

©2021 Ethan Blanton / CSE 486/586: Distributed Systems 6



Introduction Synchronous Consensus FLP Summary References

Synchronous Consensus without Failures

If no processes fail in a synchronous system:

Consensus is guaranteed
It requires one round of communication

The process:
1. Each process sends its proposed value to all other

processes
2. Each process decides on the consensus:

1 if all proposed values are 1
0 if any proposed value is 0

©2021 Ethan Blanton / CSE 486/586: Distributed Systems 7



Introduction Synchronous Consensus FLP Summary References

Synchronous Consensus with f Failures
Assume that failures are fail-stop.

Each process has a starting value of either 0 or 1.

We want to maintain three properties:

Agreement: All non-faulty processes decide on the same
output value (safety)
Validity: If any process decides on a value, then some
process started with that value
Termination: All non-faulty processes decide on a value in
finite time (liveness)

The algorithm will tolerate at most f failures.
©2021 Ethan Blanton / CSE 486/586: Distributed Systems 8



Introduction Synchronous Consensus FLP Summary References

The Algorithm

Every process p maintains a vector V every process’s proposed
values.

Before round 1, V contains only p’s proposed value.

In each round:
1. Sends V to all other processes
2. Adds all new values received to V

After f+ 1 rounds, p decides on the minimum value in V.

©2021 Ethan Blanton / CSE 486/586: Distributed Systems 9



Introduction Synchronous Consensus FLP Summary References

Counting Rounds
Why does this take f+ 1 rounds?

This is similar to reliable broadcast.

Consider:
In Round 1, pi sends its proposal to pj, then crashes
Only pj knows pi’s proposal
In Round 2, pj sends its vector V containing pi’s proposal

Thus, in 2 rounds, pi’s proposal is known by all correct
processes (1 failure, 2 rounds).

What if pj crashes after sending 1 message in round 2?
©2021 Ethan Blanton / CSE 486/586: Distributed Systems 10



Introduction Synchronous Consensus FLP Summary References

Example Agreement

Consider n = 5, f = 2.

If p1 receives 5 values in round 1, can p1 decide?

No, what if p1 is the only process with info from p2?

Can p1 decide after round 2?
Yes, but can p2?
No, p2 doesn’t know if p1 crashed!

After round 3, can p2 decide?
Yes. If any process still doesn’t have all of the information, more
than two processes must have crashed!

©2021 Ethan Blanton / CSE 486/586: Distributed Systems 11



Introduction Synchronous Consensus FLP Summary References

Example Agreement

Consider n = 5, f = 2.

If p1 receives 5 values in round 1, can p1 decide?
No, what if p1 is the only process with info from p2?

Can p1 decide after round 2?
Yes, but can p2?
No, p2 doesn’t know if p1 crashed!

After round 3, can p2 decide?
Yes. If any process still doesn’t have all of the information, more
than two processes must have crashed!

©2021 Ethan Blanton / CSE 486/586: Distributed Systems 12



Introduction Synchronous Consensus FLP Summary References

Example Agreement

Consider n = 5, f = 2.

If p1 receives 5 values in round 1, can p1 decide?
No, what if p1 is the only process with info from p2?

Can p1 decide after round 2?

Yes, but can p2?
No, p2 doesn’t know if p1 crashed!

After round 3, can p2 decide?
Yes. If any process still doesn’t have all of the information, more
than two processes must have crashed!

©2021 Ethan Blanton / CSE 486/586: Distributed Systems 13



Introduction Synchronous Consensus FLP Summary References

Example Agreement

Consider n = 5, f = 2.

If p1 receives 5 values in round 1, can p1 decide?
No, what if p1 is the only process with info from p2?

Can p1 decide after round 2?
Yes, but can p2?

No, p2 doesn’t know if p1 crashed!

After round 3, can p2 decide?
Yes. If any process still doesn’t have all of the information, more
than two processes must have crashed!

©2021 Ethan Blanton / CSE 486/586: Distributed Systems 14



Introduction Synchronous Consensus FLP Summary References

Example Agreement

Consider n = 5, f = 2.

If p1 receives 5 values in round 1, can p1 decide?
No, what if p1 is the only process with info from p2?

Can p1 decide after round 2?
Yes, but can p2?
No, p2 doesn’t know if p1 crashed!

After round 3, can p2 decide?
Yes. If any process still doesn’t have all of the information, more
than two processes must have crashed!

©2021 Ethan Blanton / CSE 486/586: Distributed Systems 15



Introduction Synchronous Consensus FLP Summary References

Example Agreement

Consider n = 5, f = 2.

If p1 receives 5 values in round 1, can p1 decide?
No, what if p1 is the only process with info from p2?

Can p1 decide after round 2?
Yes, but can p2?
No, p2 doesn’t know if p1 crashed!

After round 3, can p2 decide?

Yes. If any process still doesn’t have all of the information, more
than two processes must have crashed!

©2021 Ethan Blanton / CSE 486/586: Distributed Systems 16



Introduction Synchronous Consensus FLP Summary References

Example Agreement

Consider n = 5, f = 2.

If p1 receives 5 values in round 1, can p1 decide?
No, what if p1 is the only process with info from p2?

Can p1 decide after round 2?
Yes, but can p2?
No, p2 doesn’t know if p1 crashed!

After round 3, can p2 decide?
Yes. If any process still doesn’t have all of the information, more
than two processes must have crashed!

©2021 Ethan Blanton / CSE 486/586: Distributed Systems 17



Introduction Synchronous Consensus FLP Summary References

Correctness

Why is this correct?

Processes are synchronous:
If a process has a message to send in a round, it will.

Messages are synchronous:
If a message is sent in a round, it is received in that round.

Why could f+ 1 failures break this?

At least one round must include no failures!

©2021 Ethan Blanton / CSE 486/586: Distributed Systems 18



Introduction Synchronous Consensus FLP Summary References

Defining Impossibility

The Fischer-Lynch-Paterson (FLP) result [1] says that
consensus is impossible in an asynchronous system.

Impossible in the theoretical sense, however!

Not cannot ever be achieved, but rather:
There exists some circumstance where it is not achieved.

In practice, consensus is often achievable.

©2021 Ethan Blanton / CSE 486/586: Distributed Systems 19



Introduction Synchronous Consensus FLP Summary References

A Weak Model
The FLP model of consensus is deliberately weak.

If such a weak consensus is impossible, then stronger
consensus is surely also impossible!

It assumes:
Messages are always delivered correctly and exactly once
Exactly one process fails
Agreement is on exactly one bit
The consensus result was proposed by at least one process
At least one process arrives at correct consensus
Consensus can take arbitrarily long

However, all processes and messages are asynchronous.
©2021 Ethan Blanton / CSE 486/586: Distributed Systems 20



Introduction Synchronous Consensus FLP Summary References

The Intuition

The intuition for FLP is essentially:

Suppose that pi hears no messages from pj.
Can pi make a decision?

If it decides and pj is failed: no problem!

If it decides and pj has not failed: big problem!

What if every process that pi heard from proposed 1, and pj
proposed 0?

Therefore pi must wait for pj …which might be failed!

©2021 Ethan Blanton / CSE 486/586: Distributed Systems 21



Introduction Synchronous Consensus FLP Summary References

Messages
FLP assumes that all messages are eventually delivered.

They may be delivered out of order.

It requires a model like reliable multicast: If any non-faulty
process receives a message, then
all non-faulty processes receive the message.

It also requires that the following are atomic:
Receipt of a message
Processing in response to the message
Transmission of responses to an arbitrary number of
processes

©2021 Ethan Blanton / CSE 486/586: Distributed Systems 22



Introduction Synchronous Consensus FLP Summary References

Warning: Exploding Heads

The following discussion will probably make your head explode.

It might make my head explode.

You should:

1. Read FLP [1]. Try to understand Lemma 2, but let it go
when you can’t.

2. Read the recommended reading [2].
3. Re-read FLP.

…then forgive me for what is about to happen.

©2021 Ethan Blanton / CSE 486/586: Distributed Systems 23



Introduction Synchronous Consensus FLP Summary References

Definitions

A configuration C is the state of all processes, plus all messages
in the system.

A step moves from one configuration to another, and consists of
one atomic operation (receive, process, send) in one process.

An event e = {m,p} is the receipt of message m at process p,
defining a step, and e(C) is the configuration C after applying
the event e.

A schedule is a finite sequence of events σ that can be applied
to C, and σ(C) is some configuration reachable from C.

©2021 Ethan Blanton / CSE 486/586: Distributed Systems 24



Introduction Synchronous Consensus FLP Summary References

Valence

A configuration C is univalent if every reachable configuration
from C has the same decision.

It is 0-valent if every decision is 0.

It is 1-valent if every decision is 1.

A configuration C is bivalent if the reachable configurations from
C contain both possible decisions.

©2021 Ethan Blanton / CSE 486/586: Distributed Systems 25



Introduction Synchronous Consensus FLP Summary References

Lemma 1

Lemma 1 says that disjoint schedules are commutative.

Given σ1 and σ2, such that:
σ1(C) = C1

σ2(C) = C2

If the sets of processes in events in σ1 and σ2 are disjoint, then:
σ1(C2) = σ2(C1) = C3

©2021 Ethan Blanton / CSE 486/586: Distributed Systems 26



Introduction Synchronous Consensus FLP Summary References

Lemma 2

Lemma 2 in the paper claims that schedules matter. [2]

It states that:
Any starting state is bivalent
The set of failures and messages in an execution from that
state determines this

Thus, the initial configuration is not enough to determine
valence.

©2021 Ethan Blanton / CSE 486/586: Distributed Systems 27



Introduction Synchronous Consensus FLP Summary References

Lemma 3

Lemma 3 claims that, starting from a bivalent configuration C [2]:
any event e can be applied last
There exists some sequence σ for which e(σ(C)) is bivalent

The proof for this is very confusing.

©2021 Ethan Blanton / CSE 486/586: Distributed Systems 28



Introduction Synchronous Consensus FLP Summary References

Lemma 3 Intuition

Ultimately Lemma 3 uses contradiction to show:
There is some event e′ ̸= e that determines whether
e(σ(C)) is 0-valent or 1-valent
If e is applied to a different process than e′, Lemma 1 says
they can be applied in either order, so e(σ(C)) must be
bivalent without e′

If e is applied to the same process p as e′, then p can do
nothing indefinitely; if a decision is made in this state, then p
can apply either e or both e and e′, to achieve either
0-valence or 1-valence, so the decision might be invalid

©2021 Ethan Blanton / CSE 486/586: Distributed Systems 29



Introduction Synchronous Consensus FLP Summary References

Using Consensus

We already said that we use consensus!

How, if it’s impossible?

We either:

Narrow the window of undecidability
Change the rules (e.g., with partial synchrony)
Tolerate occasional failures of consensus

©2021 Ethan Blanton / CSE 486/586: Distributed Systems 30



Introduction Synchronous Consensus FLP Summary References

Summary

Deciding on zero or one is powerful
Synchronous systems can decide with an arbitrary,
predefined number of failures
Asynchronous systems cannot decide …maybe

Failure is indistinguishable from delay

©2021 Ethan Blanton / CSE 486/586: Distributed Systems 31



Introduction Synchronous Consensus FLP Summary References

References I
Required Readings
[1] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson.

“Impossibility of Distributed Consensus with One Faulty Process”.
In: Journal of the ACM 32.2 (Apr. 1995). Ed. by S. L. Graham,
pp. 374–382. DOI: 10.1145/3149.214121. URL:
https://groups.csail.mit.edu/tds/papers/Lynch/jacm85.pdf.

Recommended Readings
[2] Henry Robinson. A Brief Tour of FLP Impossibility. Blog post on

the Paper Trail blog. Aug. 2008. URL: https://www.the-paper-
trail.org/post/2008-08-13-a-brief-tour-of-flp-impossibility/.

©2021 Ethan Blanton / CSE 486/586: Distributed Systems 32

https://doi.org/10.1145/3149.214121
https://groups.csail.mit.edu/tds/papers/Lynch/jacm85.pdf
https://www.the-paper-trail.org/post/2008-08-13-a-brief-tour-of-flp-impossibility/
https://www.the-paper-trail.org/post/2008-08-13-a-brief-tour-of-flp-impossibility/


Introduction Synchronous Consensus FLP Summary References

Copyright 2021 Ethan Blanton, All Rights Reserved.

These slides include material copyright 2020 Cristina
Nita-Rotaru, with permission.

Reproduction of this material without written consent of the
author is prohibited.

To retrieve a copy of this material, or related materials, see
https://www.cse.buffalo.edu/~eblanton/.

©2021 Ethan Blanton / CSE 486/586: Distributed Systems 33

https://www.cse.buffalo.edu/~eblanton/

	Introduction
	Synchronous Consensus
	FLP
	Summary
	References

