

Introduction

CSE 486/586: Distributed Systems

Ethan Blanton

Computer Science and Engineering
University at Buffalo

Welcome to CSE 486

My name is Ethan Blanton

Contacting me:

Email: eblanton@buffalo.edu

Office: Davis 334

Office Hours: Mon 13:00-13:50, Wed 09:00-09:50

Syllabus and slides are [on the web page](#), OH info is on Piazza.

Distributed Systems

Distributed systems are:

- multiple processes
- possibly spread out over different networked components
- communicating by passing messages

Many modern software services are distributed systems.

Distributed Systems are Hard

What makes them hard?

In a word: **failures**.

Computers fail, networks fail, software fails.

Failures can be **incidental** (e.g., power failures).

Failures can be **orchestrated** (e.g., a virus or worm).

Add to this challenges of **scale** and **concurrency**.

Failures

Large systems are [unreliable](#):

[Backblaze](#) reported a [1.55% drive failure rate](#) in Q3 2024 [6].

[Facebook](#) says “In general, we always expect some degree of hardware failure in our data centers” [7].

[Microsoft Azure](#) reports that “Last year [written Dec 2020] alone, there were hundreds of routing outages or incidents, such as route hijacking and leaks.” [8]

High-profile service failures are a [steady drumbeat](#) in the news. [9] [10] [11] [12]

Scale

Distributed systems can be mind-bogglingly huge:

YouTube serves over a billion hours a day [13].

The Facebook Scuba Trailer service processes more than 180 GB per second of streaming data [14].

Slack produces 100s of Terabytes of observability data (debugging information) per day [15].

Concurrency

All of this happens concurrently:

Over 500 hours of video are uploaded every minute to YouTube servers [13].

The Facebook Scuba Trailer runs on over 2,000 machines with a total of over 96,000 cores [14].

Expectations

For this course, I expect that you:

- Will be **respectful** to me, TAs, classmates
- Attend **every lecture**
- **Adhere strictly** to the academic integrity policy
- Will seek assistance **early** if necessary
- Meet prereqs; among other things:
 - Have significant experience programming
 - Have a basic understanding of OS interfaces and networking
 - Can rapidly learn (or already know) Go

Most of all, **behave as adults** and strive to **maximize** your and your classmates' **learning experience** in this course.

Communication

We will communicate via:

- **Piazza** (our main tool; you should already be added)
- UB Email ([check yours regularly](#))
- UBlearns (gradebook, Panopto videos, etc.)

Ensure that you have access to [all of these things](#).

Having a Pleasant Semester

I intend for this course to be **fun and rewarding**.

You'll get out of it **what you put in**; no more, no less.

If you're willing to put in the time, **I'm willing to help**.

Basic Academic Integrity Policies

TL;DR: **If you cheat, you will fail.**

No generative AI is permitted!

You must be familiar with the official policies [\[1\]](#) [\[2\]](#) [\[3\]](#) [\[4\]](#).

- All assignments and exams in this course **are individual**.
- Collaboration with other students is forbidden **unless explicitly stated otherwise**.
- Only course-supplied resources are allowed (more later).

The default sanction in this course is **failure in the course**.

Amnesty Policy

If you commit an AI violation and wish to retract it, **you can**.

However, it must be retracted **before I notice it**.

Retracted assignments:

- Receive a **zero in the gradebook**
- **Are not processed as an AI violation**

Retractions must be **in writing** and **explain the violation**.

(See your syllabus.)

Allowable Resources

The **only** resources that are allowed for this course are:

- The lecture slides I provide
- Material covered in lecture
- Required or recommended readings from lecture
- Documentation on [go.dev](#)
- *Distributed Computing* by Kshemkalyani and Singhal [5]

Resources other than these are **not allowable**, and use of other resources **may result in AI proceedings**.

Example Problematic Resources

Examples of resources that may land you in hot water:

- VS Code default-on LLM tools
- Stack Overflow
- GitHub
- Geeks for Geeks
- Chegg, Course Hero, *etc.*
- ChatGPT, Copilot, Cursor, *etc.*
- Your work from previous semesters

This is not an exhaustive list!

Asking is Always OK

It is **always OK** to ask whether a resource is allowable.

It is **always OK** to ask course staff for assistance.

When in doubt, **ask**.

Programming Projects

A significant portion of your course grade will be projects.

- They are **individual projects**.
- Projects must be implemented in **Go**.
- You will receive detailed specifications.
- You will have to **do your own testing**.

Programming Background

You will write thousands of lines of Go for this course.

You will have to manage your time wisely.

If you are not prepared for this, [resign early](#).

Project Assistance

Your student assistants will be your primary source of project help.

To get the most out of your SAs, **do**:

- try the obvious things first,
- create minimal examples to show problems, and
- **consult the documentation**.

To avoid wasting SA time and failing to get help, **don't**:

- ask for help before you've tried to understand the problem
- **start at the last minute**.

Office hours are (budgetarily) limited this semester!

Today's Assignments

As soon as possible:

- Read the syllabus [4]
- Complete <https://go.dev/tour>

Next Time ...

A model of Distributed Systems

Bibliography

Required Readings

- [1] University at Buffalo. [University at Buffalo Academic Integrity Policies](#). 2026.
- [2] UB CSE. [Department of Computer Science and Engineering Academic Integrity Policy](#). 2026.
- [3] Ethan Blanton. [Ethan's Academic Integrity Policy](#). 2026.
- [4] Ethan Blanton. CSE 486/586 Syllabus. January 2026.
- [5] Ajay D. Kshemkalyani and Mukesh Singhal. *Distributed Computing: Principles, Algorithms, and Systems*. Cambridge University Press, 2008.

Optional Readings

- [6] Drive Stats Team. [Backblaze Drive Stats for Q3 2025](#). November 2025.
- [7] Fred Lin, Harish Dattatraya Dixit, and Sriram Sankar. [How Facebook keeps its large-scale infrastructure hardware up and running](#). December 2020.

[8] Albert Greenberg. [Microsoft introduces steps to improve internet routing security](#). December 2020.

[9] Joe Mutascio. “[Instagram is getting too raggedy](#)”: Users react as more than 30K outages reported”. In: *The Indianapolis Star* (20 March 2025). visited on 2026-01-13.

[10] Dan Goodin. [A single point of failure triggered the Amazon outage affecting millions](#). 24 October 2025. visited on 2026-01-13.

[11] Jonathan Vanian. [Azure outage: Microsoft still working on fix, says recovery expected in several hours](#). 29 October 2025. visited on 2026-01-13.

[12] Victor Mather. “[Cloudflare Says It Has Resolved Outage That Disrupted Parts of the Internet](#)”. In: *The New York Times* (18 November 2025). visited on 2026-01-13.

[13] Google. YouTube for Press, viewed 2021-01-18. no date.

[14] Yuan Mei, Luwei Cheng, Vanish Talwar, Michael Y. Levin, Gabriela Jacques Silva, Nikhil Simha, Anirban Banerjee, Brian Smith, Tim Williamson, Serhat Yilmaz, Weitao Chen, and Guoqiang Jerry Chen. “[Turbine: Facebook’s Service Management Platform for Stream Processing](#)”. In: *IEEE International Conference on Data Engineering*. April 2020.

Suman Karumuri, Franco Solleza, Stan Zdonik, and Nesime Tatbul. “[Cloud Observability: A MELTING Pot for Petabytes of Heterogeneous Time Series](#)”. In: *11th Annual Conference on Innovative Data Systems Research*. January 2021.

Copyright

Copyright 2021, 2023–2026 Ethan Blanton, All Rights Reserved.

Reproduction of this material without written consent of the author is prohibited.

To retrieve a copy of this material, or related materials, see
<https://www.cse.buffalo.edu/~eblanton/>.