A Model of Distributed

Systems
CSE 486: Distributed Systems

Ethan Blanton

Computer Science and Engineering
University at Buffalo



Introduction Synchrony Communication Concurrency CSP Summary Readings

Distributed Systems

Early on, we defined a distributed system as:
“... multiple computer programs, possibly spread out over different
networked components, communicating by passing messages”

What are:

® computer programs?
= communication?

" messages”?

What is our model of distributed systems?

'[é University at Buffalo © 2026 Ethan Blanton / CSE 486: Distributed Systems 1

The State University of New York



Introduction Synchrony Communication Concurrency CSP Summary Readings

Computer Programs

What is a computer program? is a hard question.

We will take an abstract view:
= A sequence of instructions
» Performing some task

For our purposes, these multiple programs could be:
= Built from the same source code

= Built from different source code

® Threads in a single process

m Separate processes possibly on different computers

'[é University at Buffalo © 2026 Ethan Blanton / CSE 486: Distributed Systems 2

The State University of New York



Introduction Synchrony Communication Concurrency CSP Summary Readings

Message Passing

There are many avenues for message passing:
= Shared memory

= Files

= Sockets

= Pipes

= Go channels

This is distinct from general shared state, however.

Many programming models can be implemented through message
passing.

'[é University at Buffalo © 2026 Ethan Blanton / CSE 486: Distributed Systems 3

The State University of New York



Introduction Synchrony Communication Concurrency CSP Summary Readings

Concurrency

In this model, many programs run concurrently.

This means that multiple programs may appear to make progress
simultaneously.

From the perspective of a program P:
Between time ¢t and ¢ + ¢, a program () may take some action.

Whether P and @) actually run simultaneously is irrelevant! [2]

'[é University at Buffalo © 2026 Ethan Blanton / CSE 486: Distributed Systems 4

The State University of New York



Introduction Synchrony Communication Concurrency CSP Summary Readings

Synchronous Systems

In a synchronous system, all actions take predictable time:
= A message sent from P to () always arrives in bounded time.
® The relative rate of progress in P and () is known.

Examples of synchronous systems are:
= Symmetric multiprocessor computers
= Bluetooth

® Some circuit-switched networks

Some tasks are substantially easier in synchronous systems.

We usually will not examine synchronous systems.

-[é University at Buffalo © 2026 Ethan Blanton / CSE 486: Distributed Systems 5

The State University of New York



Introduction Synchrony Communication Concurrency CSP Summary Readings

Asynchronous Systems

In an asynchronous system, actions take unpredictable time:

= Messages may be arbitrarily delayed
= The difference in rate of progress in different processes is unbounded

All Internet protocols are asynchronous.
Asynchronous systems have special challenges.

We will focus on asynchronous systems.

'[é University at Buffalo © 2026 Ethan Blanton / CSE 486: Distributed Systems 6

The State University of New York



Introduction Synchrony Communication Concurrency CSP Summary Readings

Implications of Asynchrony

Asynchronous systems present challenges.

Suppose that:
= P sends a message to () and expects a response.
= No message arrives for longer than expected.

What happened?

= Did @ fail?

= Is () much slower than P expects, and still working?
= Was the request message delayed in the network?
= \Was the request message lost?

® Was the response delayed or lost?

'[é University at Buffalo © 2026 Ethan Blanton / CSE 486: Distributed Systems 7

The State University of New York



Introduction Synchrony Communication Concurrency CSP Summary Readings

Loss and Delay

Loss and delay are indistinguishable in an asynchronous system.

You cannot tell whether a message is:
u |ate, or
B never going to arrive.

In particular: Loss at a lower layer may look like delay at a higher layer.
(We’'ll see more about this later)

'[é University at Buffalo © 2026 Ethan Blanton / CSE 486: Distributed Systems

The State University of New York

8



Introduction Synchrony Communication Concurrency CSP Summary Readings

Loss and Failure

Loss and failure may also be indistinguishable.

This is a consequence of the system relying on message passing.

Consider:
= Process P sends a message to () and expects a reply
= P never receives a reply

Did @ fail (crash, shut down, etc)?
Was P’s message lost, or Q’s reply lost?

P can't tell.

'[é University at Buffalo © 2026 Ethan Blanton / CSE 486: Distributed Systems 9

The State University of New York



Introduction Synchrony Communication Concurrency CSP Summary Readings

Correctness and Safety

The introduction of concurrency has implications on correctness.

Operations that are safe without concurrency may become unsafe.

Example:
Suppose we have a variable x = 8 visible to both P and Q.

P:x=x+1

QX =%x-1
If these execute concurrently, what is x?

We don’t have enough information.

-[é University at Buffalo © 2026 Ethan Blanton / CSE 486: Distributed Systems 10

The State University of New York



Introduction Synchrony Communication Concurrency CSP Summary Readings

Race Conditions

This is a race, or race condition:

= Two or more events are dependent upon each other

= Some of the events may happen in more than one order, or even
simultaneously

= There exists some ordering of the events that is incorrect

For example:
= Some state will be updated multiple times
= Qutput will be produced based on the state

If some order of updates results in invalid output, this is a race.

'[é University at Buffalo © 2026 Ethan Blanton / CSE 486: Distributed Systems 11

The State University of New York



CSP

Introduction Synchrony Communication

Example Race

P :x=x+1
QX =%x-1

Concurrency

Summary

Readings

There are at least three possible outcomes here:

mx = -]
mXx =0
X o=
Why?

Gh

University at Buffalo

The State University of New York

© 2026 Ethan Blanton / CSE 486: Distributed Systems

12



Introduction Synchrony Communication Concurrency CSP Summary Readings

Atomicity

These statements are not atomic: they can be interrupted.

x = X + 1is at least three operations:
= Read the value of x

= Add one to that value

= Write the new value to x

P reads x
() reads X

P computes x + 1 (Q computes x - 1

P storesx = x + 1
Q) storesx = x - 1

'[é University at Buffalo © 2026 Ethan Blanton / CSE 486: Distributed Systems 13

The State University of New York



Introduction Synchrony Communication Concurrency CSP Summary Readings

Happens Before

The happens before relationship ensures a particular outcome.
If x = x + 1 happens beforex = x - 1,thenx = 0.

By judicious use of happens before, we can prevent races.
Many languages define happens before relationships.

The Go Memory Model [3] defines this for Go.

'[é University at Buffalo © 2026 Ethan Blanton / CSE 486: Distributed Systems 14

The State University of New York



Introduction Synchrony Communication Concurrency CSP Summary Readings

Mutexes

Mutexes can be expressed as happens before relationships.
From the Go memory model:

“For any sync.Mutex or sync.RWMutex variable 1 and n < m, call n of
1.Unlock() [happens before] call m of 1.Lock() returns.”

These guarantees must be made explicit in a language!

You cannot assume happens before relationships.

'In the 2022 memory model, this reads “synchronizes before”.

'[é University at Buffalo © 2026 Ethan Blanton / CSE 486: Distributed Systems 15

The State University of New York



Introduction Synchrony Communication Concurrency CSP Summary Readings

Messages

A message send happens before its corresponding receive.
This is trivially true for a network transmission.

This is guaranteed by Go channels.

In shared memory, use mutexes or other synchronization.

'[é Hﬂiﬁﬁﬁgﬂﬁfﬁﬂﬁah © 2026 Ethan Blanton / CSE 486: Distributed Systems 16




Introduction Synchrony Communication Concurrency CSP Summary Readings

Communicating Sequential Processes

Tony Hoare proposed communicating sequential processes in 1978 [4].
CSP is a programming model built on message passing.

Hoare showed that it can:

= Model other constructions (such as subroutines)
= Enable parallel computation

m Naturally express concurrent problems

'[é University at Buffalo © 2026 Ethan Blanton / CSE 486: Distributed Systems 17

The State University of New York



Introduction Synchrony Communication Concurrency CSP Summary Readings

CSP in Distributed Systems

CSP maps naturally to distributed systems:
= Distributed systems communicate by message passing
= Message exchanges create happens before relationships

Many distributed systems languages and libraries emulate CSP.
Go channels implement CSP input and output operations.

Socket communications can also provide CSP input and output.

University at Buffalo © 2026 Ethan Blanton / CSE 486: Distributed Systems 18

The State University of New York




Introduction Synchrony Communication Concurrency CSP Summary Readings

FixXing X

With CSP, we can ask a single process to manipulate x:

func handleX() {
for cmd := range ¢ {

switch cmd {
case INCREMENT:

func P() {
c <- INCREMENT

: }
X =X + ]
caseXDECEEwETTi func 0() {
| ¢ <- DECREMENT
} }

'[é University at Buffalo © 2026 Ethan Blanton / CSE 486: Distributed Systems 19

The State University of New York



Introduction Synchrony Communication Concurrency CSP Summary Readings

Summary

= Distributed systems communicate by message passing
= We will work with asynchronous systems

u Delay is indistinguishable from loss

= Concurrent execution can lead to races

= Happens before is the cure for races

m CSP is a programming model for message passing

'[é University at Buffalo © 2026 Ethan Blanton / CSE 486: Distributed Systems 20

The State University of New York



Introduction Synchrony Communication Concurrency CSP Summary Readings

Next Time Idots

= Network communication basics
= A brief introduction to the Internet protocol suite

'[é University at Buffalo © 2026 Ethan Blanton / CSE 486: Distributed Systems 21

The State University of New York



Introduction Synchrony Communication Concurrency CSP Summary Readings

Bibliography

Required Readings
] Ajay D. Kshemkalyani and Mukesh Singhal. Distributed Computing: Principles, Algorithms,
and Systems. Chapter 1: 1.1-1.3, 1.5-1.8. Cambridge University Press, 2008.

Optional Readings
[2] Rob Pike. Concurrency is not Parallelism. January 2012.

[3] Various. The Go Memory Model. May 2022.

C. A. R. Hoare. “Communicating Sequential Processes”. In. Communications of the ACM

4
14] 21.8 (August 1978), pages 666—677.

[5] C.A. R. Hoare. Communicating Sequential Processes. Prentice Hall International, 1985.

University at Buffalo © 2026 Ethan Blanton / CSE 486: Distributed Systems

Gh

The State University of New York

22


https://go.dev/blog/waza-talk
https://go.dev/ref/mem
https://search.lib.buffalo.edu/permalink/01SUNY_BUF/12pkqkt/cdi_crossref_primary_10_1145_359576_359585
http://www.usingcsp.com/

Introduction Synchrony Communication Concurrency CSP Summary Readings

Copyright

Copyright 2019, 2021, 2023-2026 Ethan Blanton, All Rights Reserved.

Reproduction of this material without written consent of the author is
prohibited.

To retrieve a copy of this material, or related materials, see
https://www.cse.buffalo.edu/~eblanton/.

University at Buffalo

- © 2026 Ethan Blanton / CSE 486: Distributed Systems 23
The State University of New York


https://www.cse.buffalo.edu/~eblanton/

	Introduction
	Distributed Systems
	Computer Programs
	Message Passing
	Concurrency

	Synchrony
	Synchronous Systems
	Asynchronous Systems
	Implications of Asynchrony

	Communication
	Loss and Delay
	Loss and Failure

	Concurrency
	Correctness and Safety
	Race Conditions
	Example Race
	Atomicity
	Happens Before
	Mutexes
	Messages

	CSP
	Communicating Sequential Processes
	CSP in Distributed Systems
	Fixing x

	Summary
	Summary
	Next Time ldots

	Readings
	Bibliography
	Required Readings
	Optional Readings

	Copyright


