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Time is very important to distributed systems.
As we saw, it can be critical for identifying failures.
It can also be used to determine ordering of events.

For most purposes, there must be agreement on timings.

What is time, anyway?
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Physical Time

We will leave defining spacetime to the physicists!

Instead, we will agree that:

= Time proceeds forward monotonically

»= The passage of time is measurable

® The relative passage of time is computable at different locations

= There is an ideal true time"

"This one is very questionable. Just pretend.
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ldeal Time

The ideal, true physical time is standardized.

We call it International Atomic Time (TAI) [2].

We use the related Coordinated Universal Time (UTC) [3].
UTC is a standardized, global reference for “real time.”

Several government services distribute UTC via radio:
= NIST (WWV, WWVB), CHU, and DCF77
u GPS, GLONASS, Galileo, and BeiDou satellites
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Celestial Time

Early humans measured time by celestial motions:
= The diurnal cycle

= The seasons caused by the Earth’s orbit
= Relationships of the sun/planets/stars

The sundial is an early celestial
timekeeping device.
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Mechanical Oscillators

Later, mechanical oscillators based on physical moment were
developed:

= Tuning forks

= Pendulums

" Spring escapements

These allowed timekeeping to within seconds per week.
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Electromechanical Oscillators

In the early 20th century, crystal oscillators appeared.

Quartz crystals exhibit mechanical resonance when excited by electrical
fields.

The first precision computer oscillators' were crystals.
Modern watches and computers use crystals and related technologies.

Crystal oscillators keep time to within seconds per year.

"“Line clocks,” driven from the electrical power line, have also been used.
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Atomic Clocks and The Second

“The second, symbol s, is the SI unit of time. It is defined by taking the
fixed numerical value of the caesium frequency, Avcg, the unperturbed
ground-state hyperfine transition frequency of the caesium 133 atom, to
be 9,192,631,770 when expressed in the unit Hz, which is equal to

s~ [4]”

Atomic clocks [5] measure sub-nuclear particle spin to achieve
considerable accuracy.

Cesium and Rubidium standards are reasonably available.

Atomic oscillators keep time to within seconds per millenia.
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Phase and Frequency

Two clocks may disagree on:
®m \What time it is: phase error
= How fast time is proceeding: frequency error

One Tick
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Phase and Frequency

Two clocks may disagree on:
®m \What time it is: phase error
= How fast time is proceeding: frequency error

Phase error
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Phase and Frequency

Two clocks may disagree on:
®m \What time it is: phase error
= How fast time is proceeding: frequency error

Frequency error
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Jitter and Discontinuities

Clocks may change speed slightly over time.

If this change is short-term and about a point, we call it jitter.
Clocks may jump forward or backward abruptly.
We call these jumps discontinuities.

Neither one is desirable!
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Clock Discipline

A clock may be corrected by a process called disciplining.
Disciplining is tweaking the clock using external information.

For example:

= A rubidium standard has excellent short-term stability.

= GPS satellite signals have excellent long-term stability.

= The opposites are less true.

» The short-term stability of a GPS signal can be improved by combining
the two into a GPS-disciplined oscillator.
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Thought Experiment

| give you an extremely stable oscillator.
It pulses exactly once per second, with zero error.

What time is it?
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Synchronization

Agreeing on the phase and frequency of time is hard.

It is much easier now than it was just a few years ago!
Computer clocks can be readily synchronized to about £ 10 ms.
External time sources can reduce this to about £ 10 u s.

Higher precision is attainable with more effort.
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Network Time Services

It is impractical to attach a GPS to every computer.

(If nothing else they require a view of the sky!)

We use network time protocols to synchronize clocks.
They can be very precise over fast local networks.

They can be accurate to tens of ms over the global Internet [6].
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A Trivial Approach

A trivial approach to synchronization:
= P sends “What time is it?” to
= @ replies with “It is time ¢”

The problem is delay: P’s clock is behind @:

b Propagation Delay »
N/

Q N ————’ >

Processing Time
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Delay

Communication delay leads to phase error.
Communication delay cannot be eliminated.
(Why not? The speed of light.)

It is also hard to measure.

Think about it:
If clocks aren’t already synchronized, how do you measure it?
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Cristian’s Algorithm

Cristian’s Algorithm [7] tries to estimate and remove delay.

P >

Q >
It does this by removing 1/2 round-trip time from @’s response.
If propagation delays are equal and processing time is small ...

... this approximates the error in the delay.
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NTP

The NTP protocol [8] tries to tighten this bound.
It improves performance over the global Internet.

It does this by:
® Including some extra timestamps
= Querying multiple time servers
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NTP Exchange

P sends ¢4, the local time at which it sends its query.
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NTP Exchange

Q records the local time t5 when it receives the query.
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NTP Exchange

tq
P >
tl tlatZat3
>
? to 13

@ sends its reply at time ¢g, and includes all three timestamps.
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NTP Exchange

tq tq
P >
tl tlatZat3
>
? to 13

P receives the reply at time ¢, and records all four timestamps.
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NTP Exchange

tq tq
P >
tl tlatZat3
>
? to 13

P can calculate:
= The phase difference between P and @’s clocks:

O =35[(ta —t1) + (t3 —t4)]
® The round-trip delay:

0= (tg —t1) — (t3 —t3)
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NTP Exchange

' ty

)2 f1—| | >

y %_a tZa t3

Q >
ty  ts

0= %[(tz - tl)l + .(t?’ - t4)]

These intervals are differences between the clocks at P and Q).
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NTP Exchange

A L4
P Vl—l | >
tl tlatZat3
Q >
to 13
—

0 = .(t4 - tl)l — .(t3 - tz)l

These intervals are local measurements at P and @).
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Summary Readings

NTP tracks multiple servers and tries to build a picture of:

» The absolute accuracy of server clocks.
Network conditions affecting time signals

|
= The relative frequency error of system clocks
» The relative phase error of the local clock to UTC

It continuously selects the best estimate of UTC and disciplines the local

clock.

By tracking local frequency error it can survive network outages.
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Time is important to distributed systems

There are standards for measuring time

Different clock technologies have strengths and weaknesses
Clocks experience relative phase and frequency errors
Synchronization protocols must deal with network delays
NTP provides robust synchronization over Internet paths
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Next Time ...

» Logical Clocks
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