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Time Synchronization

As we have seen, time synchronization is hard.
Often, what we actually care about is causality, not time.
Could some event have caused another event?

If we can establish this, we may not need physical time!
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Logical Clocks

Logical clocks were first introduced by Lamport in 1978 [2].
They address ordering without requiring time synchronization.

Not all problems can be solved with logical clocks!
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Required Readings

This lecture has another required reading [1].

You are expected to keep up with required readings.
You should have already read all previous required readings!

They may show up on the Midterm/Final, such as:

A centralized failure detector model reduces communication overhead, but violates the
end-to-end-principle. Explain why it does not preserve the end-to-end principle, and
discuss the trade-offs that it makes in terms of communication complexity and robustness
versus end-to-end failure detection.

This is an upper level course, read and think! Ask questions!
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Event Ordering

Logical clocks directly encode the happens before relationship.

This establishes three possible conditions for events e and ey

= ¢4 happens before eq

= e9 happens before eq
= Neither event happens before the other, they are concurrent

This is a partial ordering.
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Notation

If e; happens before e, we say ey — eq
If e; does not happen before eg, we say e + eo
Note that this does not mean that e happens before eq!

Ife; - e9 and ey + eq, then ey and ey are concurrent.
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Events In a Process

The events within a single process form a total ordering.

Every event in the process happens before the next, sequentially.
For every event within a process, either p; — p; orp; — p;.
This implies that processes have a single thread of control.

We conventionally number these events in numeric order.
(Thatis,p1 — P9.)
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Messages

The sending and receipt of messages are evenis.

Sending a message happens before the message is recieved.

Suppose that: D,
= Message m is sent from process P as event p; P g
= Process @ receives m as event q; m
Q >
Then, by definition, p; — gq;. q;
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Transitivity

Happens before is transitive: Ife; — e; and e; — eg, thene; — e;,.

This allows messages 1o order events between processes.

p p.l P2
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Transitivity

Happens before is transitive: Ife; — e; and e; — eg, thene; — e;,.

This allows messages 1o order events between processes.

p P1 D2 X

d1 42

P1 ™42
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Concurrent Events

Concurrent events can only occur between processes.

p P1 p.z P3
Q qo R
q1 qs
R ® >
rh T2
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Concurrent Events

Concurrent events can only occur between processes.

p P13 P_Q P3 g

Q \ 12 .
q1 qs3

R Lo >

Hrz

r1 and py are concurrent.
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Concurrent Events

Concurrent events can only occur between processes.

p Pl\ Pé P3

Q q2 X
q1 qs3

R Lo >

r1 and po are concurrent.
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Concurrent Events

Concurrent events can only occur between processes.

p P1 P.Q Ps3 g
Q qo R
d1 qs
R >
rn 7rg

rl —>p3.
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Lamport Clocks

Lamport clocks number events with a logical timestamp.

The rules are simple:

= Every process starts with a timestamp of 1.

= Every time a process takes an action, it increments its timestamp.
Sending a message is an action.

Messages include the timestamp of their action.

Receiving a message is an action.

After reception, processes set their timestamp to the maximum of their
local timestamp and the message timestamp plus 1.
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Timestamp Example

These timestamps follow the Lamport clock rules.
P 1\ g 0 >
3 /
< 2 /' 4 "
>

2 Time —

@

If e; — eq, the timestamp of e is numerically less than that of eq.
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Timestamp Example

Note that concurrency is ambiguous in the timestamps.

P 1 ﬁo\ O >

=
3
@
l

These points are concurrent.
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Timestamp Example

Note that concurrency is ambiguous in the timestamps.

So are these!
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Timestamp Example

Note that concurrency is ambiguous in the timestamps.

P
Q \?3/, /
€1 €9
R ,T >

2 Time —

e1 and eg are both concurrent with eg, bute; — eo
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Timestamp Example

Note that concurrency is ambiguous in the timestamps.

SR /
A

2 Time —

@

. and e9 and e4 are concurrent, too!
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Causality

Lamport clocks approximate causality:

If the timestamp of e; < that of e9, then ey could have caused eq.
If e; > eq, then e could not have caused es.

The mapping is not perfect, with false positives.

There are no false negatives.
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Vector Clocks

Vector clocks associate more than one timestamp with an event [3].
Each process has its own timestamp.

Each event is timestamped with the causality of every process.
This provides a tighter mapping with fewer false positives.

There are still no false negatives.
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Vector Clock Rules

Every process P; keeps a vector of clock values.

There is one vector entry for each process.

P; can increment only the i'th entry.

Each process takes the max of every vector position on message
receipt.
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Vector Clock Ordering

For vector v = (pg, ..., p,,) and another vector u:

u=uv iff V7o ulil =vli]
u<v iff Vi o ulil <vli]
u<v iff u<vandu #v

ullv iff =(u<v)and =(v<u)
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Vector Clock Example

(1,0,0,0) (2,1,3,1)

Pl / >
P2 <09 17 O) O) >
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Vector Clock Example

(1,0,0,0) (2,1,3,1)

P, .
€1 /
P2 <09 17 O) O) >

(Oa 09 Oa 1) Time —

e1 IS unambiguously concurrent with eg
because (1,0,0,0) || (0,1,3,1)
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Disadvantages of Vector Clocks

Vector clocks have better precision than Lamport clocks.
They identify concurrent events more precisely.

However, they require more state.

For large numbers of processes they may be impractical.
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Total Ordering

Both Lamport and vector clocks can provide a total ordering.
This requires breaking ties between concurrent events.

Some arbitrary mechanism can be used; e.qg.:
m process |Ds for Lamport clocks
= numerical order for vector clocks

(For example: (1, 2, 3,4) comes before (1, 3, 2, 5))
= Supplementary physical timestamps

This total ordering is not physical time ordering!
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Summary

» Logical clocks track causality of events

= Lamport clocks use a single integer to define causality

= Vector clocks provide greater precision than Lamport clocks, but
require more state

= Logical clock orderings can be partial or total
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Next Time ...

®= Naming in Distributed Systems
= The Domain Name System
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