
Logical Time

CSE 486/586: Distributed Systems

Ethan Blanton

Computer Science and Engineering

University at Buffalo



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Time Synchronization

As we have seen, time synchronization is hard.

Often, what we actually care about is causality, not time.

Could some event have caused another event?

If we can establish this, we may not need physical time!

© 2026 Ethan Blanton / CSE 486/586: Distributed Systems 1



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Logical Clocks

Logical clocks were first introduced by Lamport in 1978 [2].

They address ordering without requiring time synchronization.

Not all problems can be solved with logical clocks!

© 2026 Ethan Blanton / CSE 486/586: Distributed Systems 2



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Required Readings

This lecture has another required reading [1].

You are expected to keep up with required readings.

You should have already read all previous required readings!

They may show up on the Midterm/Final, such as:

A centralized failure detector model reduces communication overhead, but violates the 

end-to-end-principle. Explain why it does not preserve the end-to-end principle, and 

discuss the trade-offs that it makes in terms of communication complexity and robustness 

versus end-to-end failure detection.

This is an upper level course, read and think! Ask questions!

© 2026 Ethan Blanton / CSE 486/586: Distributed Systems 3



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Event Ordering

Logical clocks directly encode the happens before relationship.

This establishes three possible conditions for events 𝑒1 and 𝑒2:

𝑒1 happens before 𝑒2
𝑒2 happens before 𝑒1
Neither event happens before the other, they are concurrent

This is a partial ordering.

© 2026 Ethan Blanton / CSE 486/586: Distributed Systems 4



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Notation

If 𝑒1 happens before 𝑒2, we say 𝑒1 → 𝑒2

If 𝑒1 does not happen before 𝑒2, we say 𝑒1 ↛ 𝑒2

Note that this does not mean that 𝑒2 happens before 𝑒1!

If 𝑒1 ↛ 𝑒2 and 𝑒2 ↛ 𝑒1, then 𝑒1 and 𝑒2 are concurrent.

© 2026 Ethan Blanton / CSE 486/586: Distributed Systems 5



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Events in a Process

The events within a single process form a total ordering.

Every event in the process happens before the next, sequentially.

For every event within a process, either 𝑝𝑖 → 𝑝𝑗 or 𝑝𝑗 → 𝑝𝑖.

This implies that processes have a single thread of control.

We conventionally number these events in numeric order.

(That is, 𝑝1 → 𝑝2.)

© 2026 Ethan Blanton / CSE 486/586: Distributed Systems 6



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Messages

The sending and receipt of messages are events.

Sending a message happens before the message is recieved.

Suppose that:

Message 𝑚 is sent from process 𝑃 as event 𝑝𝑖
Process 𝑄 receives 𝑚 as event 𝑞𝑗

Then, by definition, 𝑝𝑖 → 𝑞𝑗.

𝑃

𝑄

𝑝𝑖

𝑞𝑗

 𝑚

© 2026 Ethan Blanton / CSE 486/586: Distributed Systems 7



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Transitivity

Happens before is transitive: If 𝑒𝑖 → 𝑒𝑗 and 𝑒𝑗 → 𝑒𝑘, then 𝑒𝑖 → 𝑒𝑘.

This allows messages to order events between processes.

𝑃

𝑄

𝑝1 𝑝2

𝑞1

𝑚

𝑞2

© 2026 Ethan Blanton / CSE 486/586: Distributed Systems 8



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Transitivity

Happens before is transitive: If 𝑒𝑖 → 𝑒𝑗 and 𝑒𝑗 → 𝑒𝑘, then 𝑒𝑖 → 𝑒𝑘.

This allows messages to order events between processes.

𝑃

𝑄

𝑝1 𝑝2

𝑞1

𝑚

𝑞2

𝑝1 → 𝑞2

© 2026 Ethan Blanton / CSE 486/586: Distributed Systems 8



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Concurrent Events

Concurrent events can only occur between processes.

𝑃

𝑄

𝑅
𝑟1

𝑝1

𝑞1

𝑟2

𝑞2

𝑝2

𝑞3

𝑝3

© 2026 Ethan Blanton / CSE 486/586: Distributed Systems 9



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Concurrent Events

Concurrent events can only occur between processes.

𝑃

𝑄

𝑅
𝑟1

𝑝1

𝑞1

𝑟2

𝑞2

𝑝2

𝑞3

𝑝3

𝑟1 and 𝑝1 are concurrent.

© 2026 Ethan Blanton / CSE 486/586: Distributed Systems 10



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Concurrent Events

Concurrent events can only occur between processes.

𝑃

𝑄

𝑅
𝑟1

𝑝1

𝑞1

𝑟2

𝑞2

𝑝2

𝑞3

𝑝3

𝑟1 and 𝑝2 are concurrent.

© 2026 Ethan Blanton / CSE 486/586: Distributed Systems 11



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Concurrent Events

Concurrent events can only occur between processes.

𝑃

𝑄

𝑅
𝑟1

𝑝1

𝑞1

𝑟2

𝑞2

𝑝2

𝑞3

𝑝3

𝑟1 → 𝑝3.

© 2026 Ethan Blanton / CSE 486/586: Distributed Systems 12



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Lamport Clocks

Lamport clocks number events with a logical timestamp.

The rules are simple:

Every process starts with a timestamp of 1.

Every time a process takes an action, it increments its timestamp.

Sending a message is an action.

Messages include the timestamp of their action.

Receiving a message is an action.

After reception, processes set their timestamp to the maximum of their 

local timestamp and the message timestamp plus 1.

© 2026 Ethan Blanton / CSE 486/586: Distributed Systems 13



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Timestamp Example

These timestamps follow the Lamport clock rules.

𝑃

𝑄

𝑅
Time →1

1

2

2

3

2

4

5

If 𝑒1 → 𝑒2, the timestamp of 𝑒1 is numerically less than that of 𝑒2.

© 2026 Ethan Blanton / CSE 486/586: Distributed Systems 14



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Timestamp Example

Note that concurrency is ambiguous in the timestamps.

𝑃

𝑄

𝑅
Time →1

1

2

2

3

2

4

5

These points are concurrent.

© 2026 Ethan Blanton / CSE 486/586: Distributed Systems 15



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Timestamp Example

Note that concurrency is ambiguous in the timestamps.

𝑃

𝑄

𝑅
Time →1

1

2

2

3

2

4

5

So are these!

© 2026 Ethan Blanton / CSE 486/586: Distributed Systems 16



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Timestamp Example

Note that concurrency is ambiguous in the timestamps.

𝑃

𝑄

𝑅
Time →1

1

2

2

3

2

4

5

𝑒1 𝑒2  

 𝑒3

𝑒1 and 𝑒2 are both concurrent with 𝑒3, but 𝑒1 → 𝑒2

© 2026 Ethan Blanton / CSE 486/586: Distributed Systems 17



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Timestamp Example

Note that concurrency is ambiguous in the timestamps.

𝑃

𝑄

𝑅
Time →1

1

2

2

3

2

4

5

𝑒2  

𝑒4

… and 𝑒2 and 𝑒4 are concurrent, too!

© 2026 Ethan Blanton / CSE 486/586: Distributed Systems 18



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Causality

Lamport clocks approximate causality:

If the timestamp of 𝑒1 < that of 𝑒2, then 𝑒1 could have caused 𝑒2.

If 𝑒1 > 𝑒2, then 𝑒1 could not have caused 𝑒2.

The mapping is not perfect, with false positives.

There are no false negatives.

© 2026 Ethan Blanton / CSE 486/586: Distributed Systems 19



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Vector Clocks

Vector clocks associate more than one timestamp with an event [3].

Each process has its own timestamp.

Each event is timestamped with the causality of every process.

This provides a tighter mapping with fewer false positives.

There are still no false negatives.

© 2026 Ethan Blanton / CSE 486/586: Distributed Systems 20



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Vector Clock Rules

Every process 𝑃𝑖 keeps a vector of clock values.

There is one vector entry for each process.

𝑃𝑖 can increment only the i’th entry.

Each process takes the max of every vector position on message 

receipt.

© 2026 Ethan Blanton / CSE 486/586: Distributed Systems 21



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Vector Clock Ordering

For vector 𝑣 = ⟨𝑝0,…, 𝑝𝑛⟩ and another vector 𝑢:

𝑢 = 𝑣 iff ∀𝑛
𝑖=0 𝑢[𝑖] = 𝑣[𝑖]

𝑢 ≤ 𝑣 iff ∀𝑛
𝑖=0 𝑢[𝑖] ≤ 𝑣[𝑖]

𝑢 < 𝑣 iff 𝑢 ≤ 𝑣 and 𝑢 ≠ 𝑣

𝑢 ‖ 𝑣 iff ¬(𝑢 < 𝑣) and ¬(𝑣 < 𝑢)

© 2026 Ethan Blanton / CSE 486/586: Distributed Systems 22



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Vector Clock Example

𝑃1

𝑃2

𝑃3

𝑃4
Time →

⟨1, 0, 0, 0⟩

⟨0, 0, 0, 1⟩

⟨0, 0, 1, 1⟩

⟨0, 1, 0, 0⟩

⟨0, 1, 2, 1⟩      ⟨0, 1, 3, 1⟩

⟨2, 1, 3, 1⟩

© 2026 Ethan Blanton / CSE 486/586: Distributed Systems 23



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Vector Clock Example

𝑃1

𝑃2

𝑃3

𝑃4
Time →

⟨1, 0, 0, 0⟩

⟨0, 0, 0, 1⟩

⟨0, 0, 1, 1⟩

⟨0, 1, 0, 0⟩

⟨0, 1, 2, 1⟩      ⟨0, 1, 3, 1⟩

⟨2, 1, 3, 1⟩

𝑒1

𝑒2   

𝑒1 is unambiguously concurrent with 𝑒2
because ⟨1, 0, 0, 0⟩ ‖ ⟨0, 1, 3, 1⟩

© 2026 Ethan Blanton / CSE 486/586: Distributed Systems 23



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Disadvantages of Vector Clocks

Vector clocks have better precision than Lamport clocks.

They identify concurrent events more precisely.

However, they require more state.

For large numbers of processes they may be impractical.

© 2026 Ethan Blanton / CSE 486/586: Distributed Systems 24



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Total Ordering

Both Lamport and vector clocks can provide a total ordering.

This requires breaking ties between concurrent events.

Some arbitrary mechanism can be used; e.g.:

process IDs for Lamport clocks

numerical order for vector clocks

(For example: ⟨1, 2, 3, 4⟩ comes before ⟨1, 3, 2, 5⟩)

Supplementary physical timestamps

This total ordering is not physical time ordering!

© 2026 Ethan Blanton / CSE 486/586: Distributed Systems 25



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Summary

Logical clocks track causality of events

Lamport clocks use a single integer to define causality

Vector clocks provide greater precision than Lamport clocks, but 

require more state

Logical clock orderings can be partial or total

© 2026 Ethan Blanton / CSE 486/586: Distributed Systems 26



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Next Time …

Naming in Distributed Systems

The Domain Name System

© 2026 Ethan Blanton / CSE 486/586: Distributed Systems 27



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Bibliography

Required Readings

[1]

Ajay D. Kshemkalyani and Mukesh Singhal. Distributed Computing: Principles, Algorithms, 

and Systems. Chapter 2: 2.1–2.3, 2.6; Chapter 3: 3.1–3.4. Cambridge University Press, 

2008.

Optional Readings

[2]

Leslie Lamport. “Time, Clocks, and the Ordering of Events in a Distributed System”. In: 

Communications of the ACM 21.7 (July 1978), Edited by R. Stockton Gaines, pages 558–

565.

[3]

Friedemann Mattern. “Virtual Time and Global States of Distributed Systems”. In: 

Proceedings of the Workshop on Parallel and Distributed Algorithms. Elsevier Science 

Publishers B.V., October 1988. pages 215–226.

© 2026 Ethan Blanton / CSE 486/586: Distributed Systems 28

https://dl-acm-org.gate.lib.buffalo.edu/doi/pdf/10.1145/359545.359563
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1068.1331


Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Copyright

Copyright 2021, 2023–2026 Ethan Blanton, All Rights Reserved.

Reproduction of this material without written consent of the author is 

prohibited.

To retrieve a copy of this material, or related materials, see

https://cse.buffalo.edu/~eblanton/.

© 2026 Ethan Blanton / CSE 486/586: Distributed Systems 29

https://cse.buffalo.edu/~eblanton/


Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Copyright

© 2026 Ethan Blanton / CSE 486/586: Distributed Systems 30


	Introduction
	Time Synchronization
	Logical Clocks
	Required Readings

	Happens Before
	Event Ordering
	Notation
	Events in a Process
	Messages
	Transitivity
	Concurrent Events

	Lamport Clocks
	Lamport Clocks
	Timestamp Example
	Causality

	Vector Clocks
	Vector Clocks
	Vector Clock Rules
	Vector Clock Ordering
	Vector Clock Example
	Disadvantages of Vector Clocks
	Total Ordering

	Summary
	Summary
	Next Time …

	Readings
	Bibliography
	Required Readings
	Optional Readings

	Copyright


