Logical Time
CSE 486/586: Distributed Systems

Ethan Blanton

Computer Science and Engineering
University at Buffalo



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Time Synchronization

As we have seen, time synchronization is hard.
Often, what we actually care about is causality, not time.
Could some event have caused another event?

If we can establish this, we may not need physical time!

'[é Hﬂiﬁﬁﬁiﬂﬁfﬁﬂﬁam © 2026 Ethan Blanton / CSE 486/586: Distributed Systems

1



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Logical Clocks

Logical clocks were first introduced by Lamport in 1978 [2].
They address ordering without requiring time synchronization.

Not all problems can be solved with logical clocks!

'[é University at Buffalo © 2026 Ethan Blanton / CSE 486/586: Distributed Systems 2

The State University of New York



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Required Readings

This lecture has another required reading [1].

You are expected to keep up with required readings.
You should have already read all previous required readings!

They may show up on the Midterm/Final, such as:

A centralized failure detector model reduces communication overhead, but violates the
end-to-end-principle. Explain why it does not preserve the end-to-end principle, and
discuss the trade-offs that it makes in terms of communication complexity and robustness
versus end-to-end failure detection.

This is an upper level course, read and think! Ask questions!

'[é University at Buffalo © 2026 Ethan Blanton / CSE 486/586: Distributed Systems

The State University of New York



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Event Ordering

Logical clocks directly encode the happens before relationship.

This establishes three possible conditions for events e and ey

= ¢4 happens before eq

= e9 happens before eq
= Neither event happens before the other, they are concurrent

This is a partial ordering.

'[é University at Buffalo © 2026 Ethan Blanton / CSE 486/586: Distributed Systems 4

The State University of New York



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Notation

If e; happens before e, we say ey — eq
If e; does not happen before eg, we say e + eo
Note that this does not mean that e happens before eq!

Ife; - e9 and ey + eq, then ey and ey are concurrent.

'[é University at Buffalo © 2026 Ethan Blanton / CSE 486/586: Distributed Systems 5

The State University of New York



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Events In a Process

The events within a single process form a total ordering.

Every event in the process happens before the next, sequentially.
For every event within a process, either p; — p; orp; — p;.
This implies that processes have a single thread of control.

We conventionally number these events in numeric order.
(Thatis,p1 — P9.)

-[é University at Buffalo © 2026 Ethan Blanton / CSE 486/586: Distributed Systems

The State University of New York



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Messages

The sending and receipt of messages are evenis.

Sending a message happens before the message is recieved.

Suppose that: D,
= Message m is sent from process P as event p; P g
= Process @ receives m as event q; m
Q >
Then, by definition, p; — gq;. q;

-[é University at Buffalo © 2026 Ethan Blanton / CSE 486/586: Distributed Systems

The State University of New York



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Transitivity

Happens before is transitive: Ife; — e; and e; — eg, thene; — e;,.

This allows messages 1o order events between processes.

p p.l P2

'[é University at Buffalo © 2026 Ethan Blanton / CSE 486/586: Distributed Systems 8

The State University of New York



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Transitivity

Happens before is transitive: Ife; — e; and e; — eg, thene; — e;,.

This allows messages 1o order events between processes.

p P1 D2 X

d1 42

P1 ™42

'[é University at Buffalo © 2026 Ethan Blanton / CSE 486/586: Distributed Systems 8

The State University of New York



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Concurrent Events

Concurrent events can only occur between processes.

p P1 p.z P3
Q qo R
q1 qs
R ® >
rh T2

'[é University at Buffalo © 2026 Ethan Blanton / CSE 486/586: Distributed Systems 9

The State University of New York



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Concurrent Events

Concurrent events can only occur between processes.

p P13 P_Q P3 g

Q \ 12 .
q1 qs3

R Lo >

Hrz

r1 and py are concurrent.

-[é University at Buffalo © 2026 Ethan Blanton / CSE 486/586: Distributed Systems 10

The State University of New York



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Concurrent Events

Concurrent events can only occur between processes.

p Pl\ Pé P3

Q q2 X
q1 qs3

R Lo >

r1 and po are concurrent.

-[é University at Buffalo © 2026 Ethan Blanton / CSE 486/586: Distributed Systems 11

The State University of New York



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Concurrent Events

Concurrent events can only occur between processes.

p P1 P.Q Ps3 g
Q qo R
d1 qs
R >
rn 7rg

rl —>p3.

-[é University at Buffalo © 2026 Ethan Blanton / CSE 486/586: Distributed Systems 12

The State University of New York



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Lamport Clocks

Lamport clocks number events with a logical timestamp.

The rules are simple:

= Every process starts with a timestamp of 1.

= Every time a process takes an action, it increments its timestamp.
Sending a message is an action.

Messages include the timestamp of their action.

Receiving a message is an action.

After reception, processes set their timestamp to the maximum of their
local timestamp and the message timestamp plus 1.

-[é University at Buffalo © 2026 Ethan Blanton / CSE 486/586: Distributed Systems 13

The State University of New York



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Timestamp Example

These timestamps follow the Lamport clock rules.
P 1\ g 0 >
3 /
< 2 /' 4 "
>

2 Time —

@

If e; — eq, the timestamp of e is numerically less than that of eq.

'[é University at Buffalo © 2026 Ethan Blanton / CSE 486/586: Distributed Systems 14

The State University of New York



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Timestamp Example

Note that concurrency is ambiguous in the timestamps.

P 1 ﬁo\ O >

=
3
@
l

These points are concurrent.

-[é University at Buffalo © 2026 Ethan Blanton / CSE 486/586: Distributed Systems 15

The State University of New York



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Timestamp Example

Note that concurrency is ambiguous in the timestamps.

So are these!

'[é University at Buffalo © 2026 Ethan Blanton / CSE 486/586: Distributed Systems 16

The State University of New York



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Timestamp Example

Note that concurrency is ambiguous in the timestamps.

P
Q \?3/, /
€1 €9
R ,T >

2 Time —

e1 and eg are both concurrent with eg, bute; — eo

'[é University at Buffalo © 2026 Ethan Blanton / CSE 486/586: Distributed Systems 17

The State University of New York



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Timestamp Example

Note that concurrency is ambiguous in the timestamps.

SR /
A

2 Time —

@

. and e9 and e4 are concurrent, too!

'[é University at Buffalo © 2026 Ethan Blanton / CSE 486/586: Distributed Systems 18

The State University of New York



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Causality

Lamport clocks approximate causality:

If the timestamp of e; < that of e9, then ey could have caused eq.
If e; > eq, then e could not have caused es.

The mapping is not perfect, with false positives.

There are no false negatives.

'[é University at Buffalo © 2026 Ethan Blanton / CSE 486/586: Distributed Systems 19

The State University of New York



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Vector Clocks

Vector clocks associate more than one timestamp with an event [3].
Each process has its own timestamp.

Each event is timestamped with the causality of every process.
This provides a tighter mapping with fewer false positives.

There are still no false negatives.

-[é University at Buffalo © 2026 Ethan Blanton / CSE 486/586: Distributed Systems 20

The State University of New York



Readings

Introduction Happens Before Lamport Clocks Vector Clocks Summary

Vector Clock Rules

Every process P; keeps a vector of clock values.

There is one vector entry for each process.

P; can increment only the i'th entry.

Each process takes the max of every vector position on message
receipt.

'[é University at Buffalo © 2026 Ethan Blanton / CSE 486/586: Distributed Systems 21

The State University of New York



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Vector Clock Ordering

For vector v = (pg, ..., p,,) and another vector u:

u=uv iff V7o ulil =vli]
u<v iff Vi o ulil <vli]
u<v iff u<vandu #v

ullv iff =(u<v)and =(v<u)

'[é University at Buffalo © 2026 Ethan Blanton / CSE 486/586: Distributed Systems

The State University of New York

22



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Vector Clock Example

(1,0,0,0) (2,1,3,1)

Pl / >
P2 <09 17 O) O) >

-[é Hggggg;fgm'gwléogﬁalo © 2026 Ethan Blanton / CSE 486/586: Distributed Systems 23



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Vector Clock Example

(1,0,0,0) (2,1,3,1)

P, .
€1 /
P2 <09 17 O) O) >

(Oa 09 Oa 1) Time —

e1 IS unambiguously concurrent with eg
because (1,0,0,0) || (0,1,3,1)

157 5 e e 1 e © 2026 Ethan Blanton / CSE 486/586: Distributed Systems 23



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Disadvantages of Vector Clocks

Vector clocks have better precision than Lamport clocks.
They identify concurrent events more precisely.

However, they require more state.

For large numbers of processes they may be impractical.

'[é Hﬂiﬁﬁﬁgﬂﬁfﬁﬂﬁah © 2026 Ethan Blanton / CSE 486/586: Distributed Systems

24



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Total Ordering

Both Lamport and vector clocks can provide a total ordering.
This requires breaking ties between concurrent events.

Some arbitrary mechanism can be used; e.qg.:
m process |Ds for Lamport clocks
= numerical order for vector clocks

(For example: (1, 2, 3,4) comes before (1, 3, 2, 5))
= Supplementary physical timestamps

This total ordering is not physical time ordering!

'[é University at Buffalo © 2026 Ethan Blanton / CSE 486/586: Distributed Systems 25

The State University of New York



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Summary

» Logical clocks track causality of events

= Lamport clocks use a single integer to define causality

= Vector clocks provide greater precision than Lamport clocks, but
require more state

= Logical clock orderings can be partial or total

'[é University at Buffalo © 2026 Ethan Blanton / CSE 486/586: Distributed Systems 26

The State University of New York



Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Next Time ...

®= Naming in Distributed Systems
= The Domain Name System

'[é University at Buffalo © 2026 Ethan Blanton / CSE 486/586: Distributed Systems 27

The State University of New York



Introduc

tion Happens Before Lamport Clocks Vector Clocks Summary Readings

Bibliography

Gh

Required Readings
Ajay D. Kshemkalyani and Mukesh Singhal. Distributed Computing: Principles, Algorithms,
[1] and Systems. Chapter 2: 2.1-2.3, 2.6; Chapter 3: 3.1-3.4. Cambridge University Press,
2008.

Optional Readings
Leslie Lamport. “Time, Clocks, and the Ordering of Events in a Distributed System”. In:
[2] Communications of the ACM 21.7 (July 1978), Edited by R. Stockton Gaines, pages 558—
565.

Friedemann Mattern. “Virtual Time and Global States of Distributed Systems”. In:
[3] Proceedings of the Workshop on Parallel and Distributed Algorithms. Elsevier Science
Publishers B.V., October 1988. pages 215-226.

University at Buffalo © 2026 Ethan Blanton / CSE 486/586: Distributed Systems

The State University of New York


https://dl-acm-org.gate.lib.buffalo.edu/doi/pdf/10.1145/359545.359563
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1068.1331

Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Copyright

Copyright 2021, 2023-2026 Ethan Blanton, All Rights Reserved.

Reproduction of this material without written consent of the author is
prohibited.

To retrieve a copy of this material, or related materials, see
https://cse.buffalo.edu/~eblanton/.

University at Buffalo

- © 2026 Ethan Blanton / CSE 486/586: Distributed Systems 29
The State University of New York


https://cse.buffalo.edu/~eblanton/

Introduction Happens Before Lamport Clocks Vector Clocks Summary Readings

Copyright

'[é University at Buffalo © 2026 Ethan Blanton / CSE 486/586: Distributed Systems 30

The State University of New York



	Introduction
	Time Synchronization
	Logical Clocks
	Required Readings

	Happens Before
	Event Ordering
	Notation
	Events in a Process
	Messages
	Transitivity
	Concurrent Events

	Lamport Clocks
	Lamport Clocks
	Timestamp Example
	Causality

	Vector Clocks
	Vector Clocks
	Vector Clock Rules
	Vector Clock Ordering
	Vector Clock Example
	Disadvantages of Vector Clocks
	Total Ordering

	Summary
	Summary
	Next Time …

	Readings
	Bibliography
	Required Readings
	Optional Readings

	Copyright


