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Announcements and Feedback

● Read chapter 3 in Doing Data Science, work through some examples



Recap from Last Class

● Exploratory Data Analysis (EDA)
○ Get intuition about the nature of your data
○ Gather some basic stats/visualizations: min, max, mean, histograms, etc
○ Can be used to form some initial hypotheses

● Related to data cleaning, and feature extraction
○ We'll explore these two a bit more today

● Followed by more intensive modeling
○ We'll introduce a few modeling algorithms today



Data Cleaning and Munging

● Real-world data is almost always going to be dirty
○ Data will be missing/incomplete
○ Entries may contain errors
○ Entries may not be in the proper format

● Initial cleaning of the data will make the rest of the process smoother
○ Issues like formatting can often be dealt with immediately
○ Finding errors in the data may require EDA
○ EDA may reveal further cleaning that is required



Data Cleaning and Munging

● Examples (Ch 2 DDS, Ch 10 DSfS)
○ Clean up formatting for numbers
○ Remove nonsensical data (ie: sale prices of $0)
○ Check for outliers
○ Extract columns we want

def parse_num(f, s):                                                                    
  return f(s.replace("$","").replace(",",""))                                           
                                                                                        
with open("rollingsales_brooklyn.csv", "r") as f:                                       
  reader = csv.DictReader(f)                                                            
  for line in reader:                                                                   
    data.append([                                                                       
      parse_num(int,line["YEAR BUILT"]),                                                
      parse_num(float,line["LAND SQUARE FEET"]),                                        
      parse_num(float,line["GROSS SQUARE FEET"]),                                       
      parse_num(float,line["SALE PRICE"])                                               
    ])                                                                                  
                                                                                        
plot_hist([d[3] for d in data if 0 < d[3] < 1000000], 100000)



Intro to Modeling Algorithms

● At this point, we have clean data, we have some intuition about it, and 
we've extracted just the parts of the data we are interested in

● Now, we can move to modeling to start getting useful information out 
of our data

● Two different types of algorithms/models
○ Optimization algorithms for parameter estimation
○ Machine learning algorithms



Optimization Algorithms

● These algorithms attempt to determine the parameters of the process 
from which the data is generated

● Once we have the parameters, we can use the resulting functions to 
predict new outcomes

● These algorithms also attempt to quantify the uncertainty; they 
attempt to give a measure of how good the prediction is

● Examples: Least squares, newton's methods, stochastic gradient 
descent



Machine Learning Algorithms

● These algorithms attempt to predict, classify, and cluster data
● Don't often make any claims about the degree of uncertainty
● Basis of AI



"Models" vs "Algorithms"?

● Distinction between the two is fuzzy at best
● Models come from the math side (statistics)...sort of

○ Equations which attempt to model the actual process at hand
○ Come with some measure of uncertainty

● Algorithms come from the computer science side (ML)...sort of
○ Set of steps required to achieve some result
○ Not designed (generally) to capture the underlying process, just to predict 

the outcome with the most accuracy



Linear Regression

● Very simple conceptually
● Expresses the relationship between two (or more) variables/attributes
● Assume a linear relationship between an outcome variable (also called 

dependent variable, response variable or label) and the predictor 
variable(s) (aka independent variables, features, explanatory variables)

● What if the relationship isn't linear?
○ Linear is a good starting point…
○ …but we can also look at other relationships after we get the basics down



Linear Regression

● Specifically, we assume the underlying data is related in the real world 
by a function of the form: y = f(x) = β0 + β1x
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Linear Regression

● Specifically, we assume the underlying data is related in the real world 
by a function of the form: y = f(x) = B0 + B1x

y represents the 
outcome we are trying 

to predict

x is our independent 
variable

β0 and β1 are the 
parameters we are 
trying to solve for



A few examples

Subscriber Revenue

Take the following table of 
monthly revenue and subscriber 
count: Subscribers (x) Revenue (y)

5 125

10 250

15 375

20 500



A few examples

Subscriber Revenue

Take the following table of 
monthly revenue and subscriber 
count:

In this case it's clear that y=25x.

Notice that in this case, we 
actually know the truth of the 
model. The website charges $25 
for a subscription.

The model is attempting to 
capture that.

Subscribers (x) Revenue (y)

5 125

10 250

15 375

20 500



A few examples

Friends vs Time Spent

Now take the following table as a 
more complex example:

7 276

3 43

4 83

6 136

10 417



A few examples

Friends vs Time Spent

Now take the following table:

In this case, the data represents 
the amount of time a user spends 
on a social media site, compared 
to the number of new friends 
they've added this week.

What does our intuition say?

What does the data look like?

New Friends (x) Time Spent (y)

7 276

3 43

4 83

6 136

10 417



A few examples

● The right shows a plot of the 
dataset where the table came 
from

● We do see a generally linear 
looking relationship

● This time the model isn't 
deterministic…but can we 
estimate it?



A few examples

● We want to capture 2 factors: 
trend and variation

● Assume a linear relationship 
(y=β0 + β1x)

● Now we must "fit" the model - 
use an algorithm to find the 
best values of β0 and β1



A few examples

● We want to capture 2 factors: 
trend and variation

● Assume a linear relationship 
(y=β0 + β1x)

● Now we must "fit" the model - 
use an algorithm to find the 
best values of β0 and β1

tre
nd

variation



Fitting a Model

● Find the values of β0 and β1 that yield the "best" line
● What do we mean by "best"?

○ For now, the line that is on average closest to all the points
○ Closeness measured as vertical distance squared

● Therefore, we want the function that minimizes the sum of the 
squares for all points
○ This is called, unsurprisingly, least squares estimation



Fitting Our Example

● Running the data through a 
solver yields β0 = -32.08 and 
β1= 45.92

● How confident are we in this 
model?

● If we have a new user, with 5 
new friends, can we predict 
how much time they'll spend?



Fitting Our Example

● Running the data through a 
solver yields β0 = -32.08 and 
β1= 45.92

● How confident are we in this 
model?

● If we have a new user, with 5 
new friends, can we predict 
how much time they'll spend?

…This, afterall, is the whole goal for modeling in 
the first place, right?



Next Steps…

● We have an initial model, how can we build on it?
○ Evaluate our model and add error terms
○ Add in more predictors
○ Transform the predictors



Capturing Variability

● With our model so far, predictions are deterministic
○ We claim that for a given x, the outcome will be y
○ However, our data has some amount of variability



Capturing Variability

● With our model so far, predictions are deterministic
○ We claim that for a given x, the outcome will be y
○ However, our data has some amount of variability

How do we capture this 
variability?



Capturing Variability

● Add in an error term, ϵ: y = β0 + β1x + ϵ
○ Referred to as noise
○ Represents relationships you have not accounted for
○ This term captures the difference between our observations, and the true 

regression line



Capturing Variability

● Add in an error term, ϵ: y = β0 + β1x + ϵ
○ Referred to as noise
○ Represents relationships you have not accounted for
○ This term captures the difference between our observations, and the true 

regression line

Remember, our data is just a trace of the real world. It is incomplete.  
It has uncertainty. We can only estimate the true regression line. 

Noise attempts to capture this fact.



Finding Noise

● A common first assumption is that noise follows a normal distribution
○ ϵ ~ N(0, σ2)
○ It then follows that p(y|x) ~ N(β0 + β1x, σ2)
○ We have already found β0 and β1
○ σ2 is the mean squared error (roughly the sum of all of the observed error 

squared, divided by n-2)



Finding Noise

● A common first assumption is that noise follows a normal distribution
○ ϵ ~ N(0, σ2)
○ It then follows that p(y|x) ~ N(β0 + β1x, σ2)
○ We have already found β0 and β1
○ σ2 is the mean squared error (roughly the sum of all of the observed error 

squared, divided by n-2)

Our prediction now becomes: Given x = 5, we 
predict y is a random variable with the 

distribution shown to the right.

β0 + β1x



Evaluating Our Model

● How can we be certain our model is good?
● Many solvers will compute a few heuristics to help

○ R2 captures the amount of the variance explained by our model
■ High R2 means we've captured most of the variance

○ p-values captures the likelihood that our coefficients are "unimportant"
■ Low p-values means our coefficients are likely significant

● We can also cross validate ourselves!
○ Divide the data into training data and test data.
○ Fit the model on the training data to find β and ϵ
○ Calculate mean squared error on the test data and see if it's consistent



Extending Our Model

● Add more predictors…
○ y = β0 + β1x1 + β2x2 + … + ϵ
○ Fit using the package of your choice
○ May even have interaction between predictors

● Transformation on predictors
○ Why did we assume linear…what about y = β0 + β1x + β2x2 + …
○ We can still use linear regression:

■ assume z = x2

■ Now do a linear regression based on z


