CSE 4/587

Data Intensive Computing

Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

Day 04
Cleaning, Algorithms, and Models

Announcements and Feedback

- Read chapter 3 in Doing Data Science, work through some examples

Recap from Last Class

- Exploratory Data Analysis (EDA)
- Get intuition about the nature of your data
- Gather some basic stats/visualizations: min, max, mean, histograms, etc
- Can be used to form some initial hypotheses
- Related to data cleaning, and feature extraction
- We'll explore these two a bit more today
- Followed by more intensive modeling
- We'll introduce a few modeling algorithms today

Data Cleaning and Munging

- Real-world data is almost always going to be dirty
- Data will be missing/incomplete
- Entries may contain errors
- Entries may not be in the proper format
- Initial cleaning of the data will make the rest of the process smoother
- Issues like formatting can often be dealt with immediately
- Finding errors in the data may require EDA
- EDA may reveal further cleaning that is required

Data Cleaning and Munging

- Examples (Ch 2 DDS, Ch 10 DSfS)
- Clean up formatting for numbers
- Remove nonsensical data (ie: sale prices of $\$ 0$)
- Check for outliers
- Extract columns we want


```
def parse_num(f, s):
    return f(s.replace("$","").replace(",",""))
with open("rollingsales_brooklyn.csv", "r") as f:
    reader = csv.DictReader(f)
    for line in reader:
        data.append([
        parse_num(int,line["YEAR BUILT"])
        parse_num(float,line["LAND SQUARE FEET"]),
        parse_num(float,line["GROSS SQUARE FEET"]),
        parse_num(float,line["SALE PRICE"])
        ])
plot_hist([d[3] for d in data if 0 < d[3] < 1000000], 100000)
```


Intro to Modeling Algorithms

- At this point, we have clean data, we have some intuition about it, and we've extracted just the parts of the data we are interested in
- Now, we can move to modeling to start getting useful information out of our data
- Two different types of algorithms/models
- Optimization algorithms for parameter estimation
- Machine learning algorithms

Optimization Algorithms

- These algorithms attempt to determine the parameters of the process from which the data is generated
- Once we have the parameters, we can use the resulting functions to predict new outcomes
- These algorithms also attempt to quantify the uncertainty; they attempt to give a measure of how good the prediction is
- Examples: Least squares, newton's methods, stochastic gradient descent

Machine Learning Algorithms

- These algorithms attempt to predict, classify, and cluster data
- Don't often make any claims about the degree of uncertainty
- Basis of AI

"Models" vs "Algorithms"?

- Distinction between the two is fuzzy at best
- Models come from the math side (statistics)...sort of
- Equations which attempt to model the actual process at hand
- Come with some measure of uncertainty
- Algorithms come from the computer science side (ML)...sort of
- Set of steps required to achieve some result
- Not designed (generally) to capture the underlying process, just to predict the outcome with the most accuracy

Linear Regression

- Very simple conceptually
- Expresses the relationship between two (or more) variables/attributes
- Assume a linear relationship between an outcome variable (also called dependent variable, response variable or label) and the predictor variable(s) (aka independent variables, features, explanatory variables)
- What if the relationship isn't linear?
- Linear is a good starting point...
- ...but we can also look at other relationships after we get the basics down

Linear Regression

- Specifically, we assume the underlying data is related in the real world by a function of the form: $y=f(x)=\beta_{0}+\beta_{1} x$

Linear Regression

- Specifically, we assume the underlying data is related in the real world by a function of the form: $y=f(x)=\beta_{0}+\beta_{1} x$
y represents the
outcome we are trying
to predict

Linear Regression

- Specifically, we assume the underlying data is related in the real world by a function of the form: $y=f(x)=\beta_{0}+\beta_{1} x$

Linear Regression

- Specifically, we assume the underlying data is related in the real world by a function of the form: $y=f(x)=B_{0}+B_{1} x$

x is our independent variable
β_{0} and β_{1} are the parameters we are trying to solve for

A few examples

Subscriber Revenue

Take the following table of
monthly revenue and subscriber count:

Subscribers (x)	Revenue (y)
5	125
10	250
15	375
20	500

A few examples

Subscriber Revenue

Take the following table of monthly revenue and subscriber count:

Subscribers (x)	Revenue (y)
5	125
10	250
15	375
20	500

In this case it's clear that $y=25 x$.
Notice that in this case, we actually know the truth of the model. The website charges \$25 for a subscription.

The model is attempting to capture that.

A few examples

Friends vs Time Spent

Now take the following table as a more complex example:

7	276
3	43
4	83
6	136
10	417

A few examples

Friends vs Time Spent

Now take the following table:

New Friends (x)	Time Spent (\mathbf{y})
7	276
3	43
4	83
6	136
10	417

In this case, the data represents the amount of time a user spends on a social media site, compared to the number of new friends they've added this week.

What does our intuition say?
What does the data look like?

A few examples

- The right shows a plot of the dataset where the table came from
- We do see a generally linear looking relationship
- This time the model isn't deterministic...but can we estimate it?

A few examples

- We want to capture 2 factors: trend and variation
- Assume a linear relationship $\left(y=\beta_{0}+\beta_{1} x\right)$
- Now we must "fit" the model use an algorithm to find the best values of β_{0} and β_{1}

A few examples

- We want to capture 2 factors: trend and variation
- Assume a linear relationship $\left(y=\beta_{0}+\beta_{1} x\right)$
- Now we must "fit" the model use an algorithm to find the best values of β_{0} and β_{1}

Fitting a Model

- Find the values of β_{0} and β_{1} that yield the "best" line
- What do we mean by "best"?
- For now, the line that is on average closest to all the points
- Closeness measured as vertical distance squared
- Therefore, we want the function that minimizes the sum of the squares for all points
- This is called, unsurprisingly, least squares estimation

Fitting Our Example

- Running the data through a solver yields $\beta_{0}=-32.08$ and $\beta_{1}=45.92$
- How confident are we in this model?
- If we have a new user, with 5 new friends, can we predict how much time they'll spend?

Fitting Our Example

- Running the data through a solver yields $\beta_{0}=-32.08$ and $\beta_{1}=45.92$
- How confident are we in this model?
- If we have a new user, with 5 new friends, can we predict how much time they'll spend?
...This, afterall, is the whole goal for modeling in the first place, right?

Next Steps...

- We have an initial model, how can we build on it?
- Evaluate our model and add error terms
- Add in more predictors
- Transform the predictors

Capturing Variability

- With our model so far, predictions are deterministic
- We claim that for a given x, the outcome will be y
- However, our data has some amount of variability

Capturing Variability

- With our model so far, predictions are deterministic
- We claim that for a given x, the outcome will be y
- However, our data has some amount of variability

How do we capture this variability?

Capturing Variability

- Add in an error term, $\epsilon: y=\beta_{0}+\beta_{1} x+\epsilon$
- Referred to as noise
- Represents relationships you have not accounted for
- This term captures the difference between our observations, and the true regression line

Capturing Variability

- Add in an error term, $\epsilon: y=\beta_{0}+\beta_{1} x+\epsilon$
- Referred to as noise
- Represents relationships you have not accounted for
- This term captures the difference between our observations, and the true regression line

Remember, our data is just a trace of the real world. It is incomplete. It has uncertainty. We can only estimate the true regression line.

Noise attempts to capture this fact.

Finding Noise

- A common first assumption is that noise follows a normal distribution
- $\epsilon \sim N\left(0, \sigma^{2}\right)$
- It then follows that $p(y \mid x) \sim N\left(\beta_{0}+\beta_{1} x, \sigma^{2}\right)$
- We have already found β_{0} and β_{1}
- σ^{2} is the mean squared error (roughly the sum of all of the observed error squared, divided by $n-2$)

Finding Noise

- A common first assumption is that noise follows a normal distribution
- $\epsilon \sim N\left(0, \sigma^{2}\right)$
- It then follows that $p(y \mid x) \sim N\left(\beta_{0}+\beta_{1} x, \sigma^{2}\right)$
- We have already found β_{0} and β_{1}
- σ^{2} is the mean squared error (roughly the sum of all of the observed error squared, divided by $\mathrm{n}-2$)

Our prediction now becomes: Given $x=5$, we predict y is a random variable with the distribution shown to the right.

Evaluating Our Model

- How can we be certain our model is good?
- Many solvers will compute a few heuristics to help
- R^{2} captures the amount of the variance explained by our model - High R^{2} means we've captured most of the variance
- p-values captures the likelihood that our coefficients are "unimportant"
- Low p-values means our coefficients are likely significant
- We can also cross validate ourselves!
- Divide the data into training data and test data.
- Fit the model on the training data to find β and ϵ
- Calculate mean squared error on the test data and see if it's consistent

Extending Our Model

- Add more predictors...
- $y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\epsilon$
- Fit using the package of your choice
- May even have interaction between predictors
- Transformation on predictors
- Why did we assume linear...what about $y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\ldots$
- We can still use linear regression:
- assume $z=x^{2}$
- Now do a linear regression based on z

