CSE 4/587
Data Intensive Computing

Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

Review of Models/Algorithms and Demo
Announcements and Feedback

- Project Phase 1 description should be released by tonight (will be announced on Piazza)
Recap

- So far we've looked at three different modeling algorithms
 - Linear regression
 - k-Nearest Neighbors
 - k-Means
- Each one has a different purpose and different factors consider as you develop your model/algorithm
- Today we will review each one, and demo it in Python
Linear Regression

- Attempts to model the relationship between two or more variables
 - If we can model the actual relationship, then our model can be used to predict outcomes not included in our dataset
- Linear regression is an example of a supervised algorithm: we know what the "right" answer is, and we use that to train the model
 - The "right" answer in this case is the observed value of an outcome variable for given values in our predictor variables
Linear Regression

- Specifically, we assume the underlying data is related in the real world by a function of the form: $y = f(x) = \beta_0 + \beta_1 x$

 - y represents the outcome we are trying to predict
 - x is our independent variable
 - β_0 and β_1 are the parameters we are trying to solve for
Linear Regression

Intuition

Each observed point has some vertical distance from a regression line.

The best line is the one that minimizes this distance.

In particular we minimize the square of the distance (least squares estimation).
In Real Estate, what determines the sale price of a property?
Linear Regression - Example

- In Real Estate, what determines the sale price of a property?
 - Size (of the building and of the land?)
 - Location
 - Date of Sale
 - Age of the property
 - Type of property (commercial, residential, rental, etc)
 - Quality of the build
 - Amenities
 - etc...
Linear Regression - Developing a Model

- What data do we have? (and do we need to get more?)
What data do we have? (and do we need to get more?)

- Square footage: numeric, presumably bigger properties cost more
Linear Regression - Developing a Model

- What data do we have? (and do we need to get more?)
 - Square footage: numeric, presumably bigger properties cost more
 - Location: neighborhood name...non-numeric
 - Are there underlying factors at the core of this?
 - Crime Rate? Schools? Number of parks? etc...
Linear Regression - Developing a Model

- What data do we have? (and do we need to get more?)
 - Square footage: numeric, presumably bigger properties cost more
 - Location: neighborhood name...non-numeric
 - Are there underlying factors at the core of this?
 - Crime Rate? Schools? Number of parks? etc...
 - Property Type: class of building...non-numeric
 - Does it make sense to include all classes in our model? Maybe we want to model each class separately? Depends on our problem.
To start, let's focus on square footage.

Thought experiment: What if square footage was the only factor in the sale price of a property? What might the model look like?
Demo in JupyterLab
Takeaways?

- The more thorough your cleaning and EDA, the easier the modeling process becomes.
- Understand what you are modeling:
 - If neighborhood has a large impact on sale price, we need to capture that in our model or use different models per neighborhood.
- Sometimes the best answer is more data.
k-Nearest Neighbors

- Attempts to label data points based on training
 - No analog to a "model" of the real world
 - Used to **classify** new data points based on their similarity to already classified data points in our training dataset

- k-Nearest Neighbors is an example of a supervised algorithm
 - The "right" answer in this case is the labels of data points in our training dataset
k-Nearest Neighbors

Intuition:

For a given point, look at labels of the k "nearest" neighbors.

Label the unknown point with the most common label among these neighbors.
Intuition:
For a given point, look at labels of the k "nearest" neighbors.
Label the unknown point with the most common label among these neighbors.

k=3, label is "Green Triangle"
k-Nearest Neighbors

Intuition:
For a given point, look at labels of the k "nearest" neighbors.
Label the unknown point with the most common label among these neighbors.

$k=5$, label is "Red Circle"
What are the important factors we need to determine in order to fully define our model?
k-Nearest Neighbors - Model Considerations

- What are the important factors we need to determine in order to fully define our model?
 - How do we measure the "similarity" of two points?
 - Relatedly, how do we scale our data?
 - How do we evaluate our model's effectiveness?
 - What is the best choice for k?
Can we use characteristics of a given property to classify the neighborhood of the property? The type of property?
 ○ Let's use all of the numeric attributes we have: size, price, year built
 ○ *As an aside...does this make sense? It works as an example, but might not be a problem that makes sense to solve...*
Demo in JupyterLab
Takeaways?

- Scale can have a significant impact on your results
- Make sure what you are using in your model makes sense for the problem you are trying to solve
 - And if needed...get more data :)

k-Means

- Attempts to **cluster** data into k groups based on similar attributes
 - No analog to a "model" of the real world, just looking for patterns in data
- k-Means is an example of an unsupervised algorithm: we don't have a notion of the "right" way to cluster the data to guide the algorithm
k-Means

Intuition

Cluster points to minimize distance between each point in the cluster and the center of the cluster.

Example with k = 7
k-Means

Intuition

Cluster points to minimize distance between each point in the cluster and the center of the cluster.

How do we find the centroids?

Example with $k = 7$
k-Means - Algorithm

1. Choose k centroids
 (randomly or via algorithm)
2. Until convergence:
 a. Assign each point to the closest centroid
 b. Move each centroid to the center of all points assigned to it

Example with k = 7
k-Means - Example

- How might we cluster properties?
k-Means - Example

- How might we cluster properties?
 - Perhaps we are trying to make policies/decisions based on size and age of a property
 - In a real scenario, may want to include more attributes, but for an example, 2D is easy to visualize
 - Motivation is going to based on problem statement and domain expertise
Demo in JupyterLab
Takeaways?

- Scale is an important part of a k-means model as well
- Results can be tricky to interpret
- Choice of k is also based on some sense of intuition/domain knowledge
Summary

● Three different algorithms, three different purposes
 ○ Important to pick the model that makes sense for your problem
 ○ Understanding the intuition behind the model, and the high level concepts at hands can help with this. But nothing replaces practice.
 ○ Do not underestimate the helpfulness of EDA
● Important to define all parts of your model. Parameter choices and even scaling data can have a large impact on results
● When in doubt, get more data
 ○ This example is on the small side...how can we apply these algorithms when size gets unruly
References

- Dataset from Doing Data Science Ch. 3
- Pandas tutorial: https://pandas.pydata.org/