CSE 4/587 Data Intensive Computing

Dr. Eric Mikida epmikida@buffalo.edu 208 Capen Hall

Lec 06 Review of Models/Algorithms and Demo

Announcements and Feedback

Project Phase 1 description should be released by tonight (will be announced on Piazza)

Recap

- So far we've looked at three different modeling algorithms
 - Linear regression
 - k-Nearest Neighbors
 - o k-Means
- Each one has a different purpose and different factors consider as you develop your model/algorithm
- Today we will review each one, and demo it in Python

Linear Regression

- Attempts to model the relationship between two or more variables
 - If we can model the actual relationship, then our model can be used to predict outcomes not included in our dataset
- Linear regression is an example of a supervised algorithm: we know what the "right" answer is, and we use that to train the model
 - The "right" answer in this case is the observed value of an outcome variable for given values in our predictor variables

Linear Regression

• Specifically, we assume the underlying data is related in the real world by a function of the form: $y = f(x) = \beta_0 + \beta_1 x$

y represents the outcome we are trying to predict x is our independent variable

 β_0 and β_1 are the parameters we are trying to solve for

Linear Regression

Intuition

Each observed point has some vertical distance from a regression line.

The best line is the one that minimizes this distance.

In particular we minimize the square of the distance (least squares estimation).

Linear Regression - Example

• In Real Estate, what determines the sale price of a property?

Linear Regression - Example

- In Real Estate, what determines the sale price of a property?
 - Size (of the building and of the land?)
 - Location
 - Date of Sale
 - Age of the property
 - Type of property (commercial, residential, rental, etc)
 - Quality of the build
 - Amenities
 - **etc...**

• What data do we have? (and do we need to get more?)

- What data do we have? (and do we need to get more?)
 - Square footage: numeric, presumably bigger properties cost more

- What data do we have? (and do we need to get more?)
 - Square footage: numeric, presumably bigger properties cost more
 - Location: neighborhood name...non-numeric
 - Are there underlying factors at the core of this?
 - Crime Rate? Schools? Number of parks? etc...

- What data do we have? (and do we need to get more?)
 - Square footage: numeric, presumably bigger properties cost more
 - Location: neighborhood name...non-numeric
 - Are there underlying factors at the core of this?
 - Crime Rate? Schools? Number of parks? etc...
 - Property Type: class of building...non-numeric
 - Does it make sense to include all classes in our model? Maybe we want to model each class separately? Depends on our problem.

- What data do we have? (and do we need to get more?)
 - Square footage: numeric, presumably bigger properties cost more

To start, let's focus on square footage.

Thought experiment: What if square footage was the only factor in the sale price of a property? What might the model look like?

Demo in JupyterLab

Takeaways?

- The more thorough your cleaning and EDA, the easier the modeling process becomes
- Understand what you are modeling
 - If neighborhood has a large impact on sale price, we need to capture that in our model or use different models per neighborhood
- Sometimes the best answer is more data

- Attempts to label data points based on training
 - No analog to a "model" of the real world
 - Used to classify new data points based on their similarity to already classified data points in our training dataset
- k-Nearest Neighbors is an example of a supervised algorithm
 - The "right" answer in this case is the labels of data points in our training dataset

Intuition:

For a given point, look at labels of the k "nearest" neighbors.

Label the unknown point with the most common label among these neighbors.

unlabeled data

2

attribute

attribute 1

Intuition:

- For a given point, look at labels of the k "nearest" neighbors.
- Label the unknown point with the most common label among these neighbors.

k=3, label is "Green Triangle"

Intuition:

- For a given point, look at labels of the k "nearest" neighbors.
- Label the unknown point with the most common label among these neighbors.

k=5, label is "Red Circle"

k-Nearest Neighbors - Model Considerations

• What are the important factors we need to determine in order to fully define our model?

k-Nearest Neighbors - Model Considerations

- What are the important factors we need to determine in order to fully define our model?
 - How do we measure the "similarity" of two points?
 - Relatedly, how do we scale our data?
 - How do we evaluate our model's effectiveness?
 - What is the best choice for k?

k-Nearest Neighbors - Example

- Can we use characteristics of a given property to classify the neighborhood of the property? The type of property?
 - Let's use all of the numeric attributes we have: size, price, year built
 - As an aside...does this make sense? It works as an example, but might not be a problem that makes sense to solve...

Demo in JupyterLab

Takeaways?

- Scale can have a significant impact on your results
- Make sure what you are using in your model makes sense for the problem you are trying to solve
 - And if needed...get more data :)

k-Means

- Attempts to cluster data into k groups based on similar attributes
 No analog to a "model" of the real world, just looking for patterns in data
- k-Means is an example of an unsupervised algorithm: we don't have a notion of the "right" way to cluster the data to guide the algorithm

k-Means

Intuition

Cluster points to minimize distance between each point in the cluster and the center of the cluster.

k-Means

Intuition

Cluster points to minimize distance between each point in the cluster and the center of the cluster.

How do we find the centroids?

k-Means - Algorithm

- Choose k centroids (randomly or via algorithm)
- 2. Until convergence:
 - a. Assign each point to the closest centroid
 - Move each centroid to the center of all points assigned to it

k-Means - Example

• How might we cluster properties?

k-Means - Example

- How might we cluster properties?
 - Perhaps we are trying to make policies/decisions based on size and age of a property
 - In a real scenario, may want to include more attributes, but for an example, 2D is easy to visualize
 - Motivation is going to based on problem statement and domain expertise

Demo in JupyterLab

Takeaways?

- Scale is an important part of a k-means model as well
- Results can be tricky to interpret
- Choice of k is also based on some sense of intuition/domain knowledge

Summary

- Three different algorithms, three **different** purposes
 - Important to pick the model that makes sense for your problem
 - Understanding the intuition behind the model, and the high level concepts at hands can help with this. But nothing replaces practice.
 - Do not underestimate the helpfulness of EDA
- Important to define all parts of your model. Parameter choices and even scaling data can have a large impact on results
- When in doubt, get more data
 - This example is on the small side...how can we apply these algorithms when size gets unruly

References

- Dataset from Doing Data Science Ch. 3
- Pandas tutorial: <u>https://pandas.pydata.org/</u>