
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 4/587
Data Intensive Computing

Day 08
MapReduce

mailto:epmikida@buffalo.edu

Announcements and Feedback

● Project 1 is actually out now. Due 10/10/22 @ 11:59PM.
○ Register your team ASAP via the Google Form
○ TA assignments for main point of contact will be made soon and sent out
○ Start early, and remember, you can take data from multiple sources

● Attendance will start being taken this week randomly
○ Sign in sheet will be at the front of the class, sign in before class starts, or

after we finish

Additional Reference for MapReduce

Data-Intensive Text Processing with MapReduce, Jimmy Lin and Chris
Dyer, Synthesis Lectures on Human Language Technologies, 2010, Vol. 3,
No. 1, Pages 1-177, (doi: 10.2200/S00274ED1V01Y201006HLT007).

An online version of this text is also available through UB Libraries since
UB subscribes to Morgan and Claypool Publishers.

Online version available at:
http://lintool.github.com/MapReduceAlgorithms/index.html

Recap from Last Class

● Hadoop Distributed File System (HDFS) is the open source version of
the Google File System (GFS)
○ Allows reliable and efficient storage and access of large write-once,

read-many (WORM) files
○ NameNode acts as a server that manages the filesystem
○ DataNodes store data blocks and serve read/write requests
○ Blocks are replicated to allow for fault tolerance and fast reads

Additional References

● http://hadoop.apache.org/
● http://wiki.apache.org/hadoop/
● Hadoop: The Definitive Guide, by Tom White, 2nd edition, Oreilly’s, 2010
● Dean, J. and Ghemawat, S. 2008. MapReduce: simplified data processing on

large clusters. Communication of ACM 51, 1 (Jan. 2008), 107-113.
● B. Hedlund’s blog:

http://bradhedlund.com/2011/09/10/understanding-hadoop-clusters-and-th
e-network/

http://hadoop.apache.org/
http://wiki.apache.org/hadoop/
https://research.google/pubs/pub62/
https://research.google/pubs/pub62/
http://bradhedlund.com/2011/09/10/understanding-hadoop-clusters-and-the-network/
http://bradhedlund.com/2011/09/10/understanding-hadoop-clusters-and-the-network/

Evolution of Hadoop

● Hadoop has undergone an evolution from Hadoop 1.0 to Hadoop 2.0
(and today Hadoop 3.0)

● While the underlying principles related to the distributed file system
(HDFS) have remained largely the same, resource management and
software support has evolved

Evolution of Hadoop

Evolution of Hadoop

HDFS (discussed last lecture) provides the reliable distributed file
system as the backbone of Hadoop.

Evolution of Hadoop

HDFS (discussed last lecture) provides the reliable distributed file
system as the backbone of Hadoop.

Originally, MapReduce was the only supported
software system, and also had to handle resource
management (via JobTracker and TaskTracker)

Evolution of Hadoop

HDFS (discussed last lecture) provides the reliable distributed file
system as the backbone of Hadoop.

In Hadoop 2.0, JobTracker
and TaskTracker were
replaced by YARN (yet
another resource
negotiator). MapReduce was
now only responsible for
data processing, and other
data processing software
could be supported.

A Brief Look at YARN

● The global ResourceManager (RM)
contains a scheduler and an
applications manager

● The scheduler is a pure scheduler, and
allocates resources to the running
applications

● The applications manager handles job
submission, and restart in case of
failure

A Brief Look at YARN

● The NodeManagers along with the
ResourceManager form the
data-computation network

● The NodeManagers monitor their local
jobs and report back to the RM

A Brief Look at YARN

● Each application has an
ApplicationMaster which negotiates
resource requests with the RM

● The ApplicationManager then monitors
progress of each container allocated to
the application

A Brief Look at YARN

● For very large jobs (> ~1000s of
nodes), multiple YARN clusters can be
combined

How Big is Big Data?

● Man on the moon with 4K RAM, 32KB HDD (1969); my laptop has 16GB RAM
(2017)

● Google collects 270PB data in a month (2007), 20PB a day (2008), 200PB a
day estimated (2020)

● 2010 census data is a huge gold mine of information
● Data mining huge amounts of data collected in a wide range of domains

○ Astronomy, Healthcare, Finance, etc.
● Data is an important asset to any organization
● National Science Foundation refers to it as “data-intensive computing” and

industry calls it “big-data” and “cloud computing”

Introduction (Ch 1. Lin and Dyer)

● Text Processing at large scales
○ Simple word count, cross reference, n-grams, etc

● A simpler technique on more data can beat a more sophisticated
technique on less data.

● Google researchers call this "Unreasonable effectiveness of data" [1]

[1] Alon Halevy, Peter Norvig, and Fernando Pereira. The unreasonable effectiveness of data.
Communications of the ACM, 24(2):8:12, 2009.

MapReduce

● MapReduce is a programming model and an execution framework
○ Developed by Google for operating on its large amounts of data
○ Open Source implementation in Hadoop

● Computation specified in terms of map and reduce functions
● Underlying runtime system (RTS) automatically parallelizes and

coordinates the computation across a cluster of machines
○ Also handles machine failures, communication, and performance issues

● APIs originally in Java, now also supports Python, Ruby, C++, etc…

Big Ideas

● Scale-out not scale-up: Use a large number of commodity servers, as
opposed to smaller number of high-end specialized servers
○ Part of this comes down to economies of scale and warehouse scale

computing — what costs are associated with running such a warehouse?
○ High-end SMP servers will always outperform a network of commodity

servers, but once data gets big, network communication becomes
unavoidable — levels the playing field.

Big Ideas

● Failures are the norm — not an exception
○ Typical MTBF for commodity components of 1000 days — if you have

1000s in your cluster, probability of at least 1 being down at any time
nears 100%

Big Ideas

● Failures are the norm — not an exception
○ Typical MTBF for commodity components of 1000 days — if you have

1000s in your cluster, probability of at least 1 being down at any time
nears 100%

● Move "Processing" to the Data: Co-locate processing of the data with
the data itself rather than sending data around as in HPC.

Big Ideas

● Failures are the norm — not an exception
○ Typical MTBF for commodity components of 1000 days — if you have

1000s in your cluster, probability of at least 1 being down at any time
nears 100%

● Move "Processing" to the Data: Co-locate processing of the data with
the data itself rather than sending data around as in HPC.

● Process Data Sequentially vs Random Access: Do mass analytics on
large sequential build data as opposed to search for individual items

Big Ideas

● Hide System Details from the User Application: Programmers are bad
at details (at least compared to computers). Let the RTS manage
details for you.
○ ie: where is the data located, what communication is required, what is a

given machine doing, etc.

Big Ideas

● Hide System Details from the User Application: Programmers are bad
at details (at least compared to computers). Let the RTS manage
details for you.
○ ie: where is the data located, what communication is required, what is a

given machine doing, etc.
● Seamless Scalability: Machines can be added or removed without

changing the algorithms.
○ Allows scaling up to process larger data sets without rethinking the entire

application

Issues to Address

● How do we decompose large problems into smaller ones?
● How do we assign tasks to workers distributed across the cluster?

○ How do the workers get the data?
○ How do we synchronize among workers?
○ How do we share partial results among workers?

● How do we do all of this in the presence of faults?

Issues to Address

● How do we decompose large problems into smaller ones?
● How do we assign tasks to workers distributed across the cluster?

○ How do the workers get the data?
○ How do we synchronize among workers?
○ How do we share partial results among workers?

● How do we do all of this in the presence of faults?

As discussed last time, MR is supported by a distributed file system that
provides many of these answer.

MapReduce Basics

Fundamental Concept: key-value pairs
● Key-value pairs form the basic structure of MapReduce
● Keys can be anything from simple data types to custom types

MapReduce Basics

Fundamental Concept: key-value pairs
● Key-value pairs form the basic structure of MapReduce
● Keys can be anything from simple data types to custom types
● Examples:

<docid, doc>

<yourName, yourLifeHistory>

<graphNode, nodeCharacteristics>

<geneNum, {pathway, geneExp, proteins}>

<yourID, yourFollowers>

<studentNum, studentDetails>

<word, numberOfOccurences>

etc…

Conceptual Example

Consider a large data collection:
{web, weed, green, sun, moon, land, part, web, green,…}

Problem: Count the occurrences of the different words in the collection.

Conceptual Example

Consider a large data collection:
{web, weed, green, sun, moon, land, part, web, green,…}

Problem: Count the occurrences of the different words in the collection.

Let's design a solution for this problem:
● We will start from scratch
● We will add and relax constraints
● We will do incremental design, improving solution as we go

Sequential Counter and Table

WordCounter

parse()
count()

DataCollection ResultTable

Main web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

… …

Data

Sequential Counter and Table

WordCounter

parse()
count()

DataCollection ResultTable

Main web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

… …

Data Single WordCounter
is a sequential

bottleneck

Multiple Word Counters

WordCounter

parse()
count()

DataCollection ResultTable

Main web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

… …

Data
Thread

1..*

Multiple Word Counters

WordCounter

parse()
count()

DataCollection ResultTable

Main web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

… …

Data
Thread

1..*

What additional
constraints does
this introduce?

Multiple Word Counters

WordCounter

parse()
count()

DataCollection ResultTable

Main web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

… …

Data
Thread

1..*

What additional
constraints does
this introduce?

We need a lock!

Splitting Up Our Tasks

Parser

DataCollection ResultTable

Main

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

… …

Data
Thread

1..*
Counter

Word List

1..*

Key web weed green sun moon land part web green …

Value

Splitting Up Our Tasks

Parser

DataCollection ResultTable

Main

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

… …

Data
Thread

1..*
Counter

Word List

1..*

Key web weed green sun moon land part web green …

Value

Separate counters
removes need for

locks

What if our Data is "Big"?

Parser

DataCollection ResultTable

Main

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

… …

Peta-Scale
Data

Thread

1..*
Counter

Word List

1..*

Key web weed green sun moon land part web green …

Value

Addressing the Scale Issue

● Eventually a single machine can't hold all of our data
○ We need a distributed file system! (HDFS)

● Large number of commodity disks; ie 1000s of disks @ 1TB each
○ Issue: with a failure rate of 1/1000, then at least 1 of the above disks would be

down at any given time
○ Failure is the norm; need reliability

■ Replication, checksum, etc
○ Bandwidth of data transfer also becomes critical at this point

● We need to exploit parallelism afforded by splitting parsing and counting
● Move these computations to where the data is

What if our Data is "Big"?

Parser

DataCollection ResultTable

Main

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

… …

Peta-Scale
Data

Thread

1..*
Counter

Word List

1..*

Key web weed green sun moon land part web green …

Value

Distribute the Data

Parser

DataCollection ResultTable

Main

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

… …

Thread

1..*
Counter

Word List

1..*

Key web weed green sun moon land part web green …

Value

Data

Data

Data

Data

Distribute the Data

Parser

DataCollection ResultTable

Main

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

… …

Thread

1..*
Counter

Word List

1..*

Key web weed green sun moon land part web green …

Value

Data

Data

Data

Data

Remember!
We are dealing with WORM data

WORM data is amenable to parallelism

Data without dependencies is amenable to
out-of-order processing

Divide and Conquer

Parser

DataCollection ResultTable

Main

Thread

Counter

Word List

Data

Data

Data

Data

Parser

DataCollection ResultTable

Main

Thread

Counter

Word List

Parser

DataCollection ResultTable

Main

Thread

Counter

Word List

Parser

DataCollection ResultTable

Main

Thread

Counter

Word List

Divide and Conquer

Parser

DataCollection ResultTable

Main

Thread

Counter

Word List

Data

Data

Data

Data

Parser

DataCollection ResultTable

Main

Thread

Counter

Word List

Parser

DataCollection ResultTable

Main

Thread

Counter

Word List

Parser

DataCollection ResultTable

Main

Thread

Counter

Word List

For our example:
1. We schedule parse tasks
2. We then schedule count

Divide and Conquer

Parser

DataCollection ResultTable

Main

Thread

Counter

Word List

Data

Data

Data

Data

Parser

DataCollection ResultTable

Main

Thread

Counter

Word List

Parser

DataCollection ResultTable

Main

Thread

Counter

Word List

Parser

DataCollection ResultTable

Main

Thread

Counter

Word List

For our example:
1. We schedule parse tasks
2. We then schedule count

Let's generalize this:

Our "parse" is a mapping operation
MAP: input →<key, value> pairs

Divide and Conquer

Parser

DataCollection ResultTable

Main

Thread

Counter

Word List

Data

Data

Data

Data

Parser

DataCollection ResultTable

Main

Thread

Counter

Word List

Parser

DataCollection ResultTable

Main

Thread

Counter

Word List

Parser

DataCollection ResultTable

Main

Thread

Counter

Word List

For our example:
1. We schedule parse tasks
2. We then schedule count

Let's generalize this:

Our "parse" is a mapping operation
MAP: input →<key, value> pairs

Our "count" is a reduce operation
REDUCE: <key, value> pairs reduced

Divide and Conquer

Parser

DataCollection ResultTable

Main

Thread

Counter

Word List

Data

Data

Data

Data

Parser

DataCollection ResultTable

Main

Thread

Counter

Word List

Parser

DataCollection ResultTable

Main

Thread

Counter

Word List

Parser

DataCollection ResultTable

Main

Thread

Counter

Word List

For our example:
1. We schedule parse tasks
2. We then schedule count

Let's generalize this:

Our "parse" is a mapping operation
MAP: input →<key, value> pairs

Our "count" is a reduce operation
REDUCE: <key, value> pairs reduced

RTS adds distribution, fault
tolerance, replication, monitoring,
load balancing, etc…

Mapper and Reducer

Mapper

MyMapper MyReducer

MapReduceTask

Counter

Reducer

Parser

Map Operation

Data

Data

Data

Data Parser : Mapper

Parser : Mapper

Parser : Mapper

Parser : Mapper

web 1

weed 1

green 1

sun 1

moon 1

land 1

part 1

… …

color 1

green 1

green 1

color 1

blue 1

land 1

part 1

… …

flower 1

weed 1

green 1

sun 1

flower 1

land 1

grow 1

… …

web 1

web 1

order 1

dollar 1

moon 1

land 1

moon 1

… …

Map Operation

Data

Data

Data

Data Parser : Mapper

Parser : Mapper

Parser : Mapper

Parser : Mapper

web 1

weed 1

green 1

sun 1

moon 1

land 1

part 1

… …

color 1

green 1

green 1

color 1

blue 1

land 1

part 1

… …

flower 1

weed 1

green 1

sun 1

flower 1

land 1

grow 1

… …

web 1

web 1

order 1

dollar 1

moon 1

land 1

moon 1

… …

Sp
lit

 th
e

da
ta

 to
 s

up
pl

y
m

ul
tip

le
 p

ro
ce

ss
or

s

Map Operation

Data

Data

Data

Data Parser : Mapper

Parser : Mapper

Parser : Mapper

Parser : Mapper

web 1

weed 1

green 1

sun 1

moon 1

land 1

part 1

… …

color 1

green 1

green 1

color 1

blue 1

land 1

part 1

… …

flower 1

weed 1

green 1

sun 1

flower 1

land 1

grow 1

… …

web 1

web 1

order 1

dollar 1

moon 1

land 1

moon 1

… …

Sp
lit

 th
e

da
ta

 to
 s

up
pl

y
m

ul
tip

le
 p

ro
ce

ss
or

s

Ea
ch

 m
ap

pe
r m

ap
s

it'
s

ow
n

pi
ec

e
of

 th
e

da
ta

The Big Picture

MapReduce Design

● Your focus is on map, reduce, and other associated functions like
combiner
○ Mapper and Reducer are classes in Java

● Configure the MR "Job" for location of these functions, location of
input and output (paths), scale or size of the cluster in terms of #maps
#reduces etc.

● Full job is code for the mapper, reducer, combiner, partitioner, plus job
configuration. Execution framework handles everything else.

● Configuration methodology has been evolving with different versions
of Hadoop

Pseudo Code

1. class Mapper

2. method Map(doc d):

3. for term t in doc d:

4. emit(t, count = 1)

1. class Reducer

2. method Reduce(term t, counts):

3. sum = 0

4. for count c in counts:

5. sum = sum + c

6. emit(t, count = sum)

Word Count Problem Revisited

This is a cat
Cat sits on a roof
The roof is a tin roof
There is a tin can on the roof
Cat kicks the can
It rolls on the roof and falls on the next roof
The cat rolls too
It sits on the can

Word Count Problem: Mappers

This is a cat
Cat sits on a roof
<this 1> <is 1> <a 1> <cat 1> <cat 1> <sits 1> <on 1> <a 1> <roof 1>

The roof is a tin roof
There is a tin can on the roof
<the 1> <roof 1> <is 1> <a 1> <tin 1> <roof 1> <there 1> <is 1> <a 1> <can 1> <on 1> <the 1> <roof 1>

Cat kicks the can
It rolls on the roof and falls on the next roof
<cat 1> <kicks 1> <the 1> <can 1> <it 1> <rolls 1> <on 1> <the 1> <roof 1> <and 1> <falls 1> <on 1> <the 1> <next 1>
<roof 1>

The cat rolls too
It sits on the can
<the 1> <cat 1> <rolls 1> <too 1> <it 1> <sits 1> <on 1> <the 1> <can 1>

Word Count Problem: Shuffle to Reducers

Output of Mappers:
<this 1> <is 1> <a 1> <cat 1> <cat 1> <sits 1> <on 1> <a 1> <roof 1> <the 1> <roof 1> <is 1> <a 1>
<tin 1> <roof 1> <there 1> <is 1> <a 1> <can 1> <on 1> <the 1> <roof 1> <cat 1> <kicks 1> <the 1>
<can 1> <it 1> <rolls 1> <on 1> <the 1> <roof 1> <and 1> <falls 1> <on 1> <the 1> <next 1> <roof
1> <the 1> <cat 1> <rolls 1> <too 1> <it 1> <sits 1> <on 1> <the 1> <can 1>

Input to the Reducers: delivered sorted, by key
…
<can <1,1>>
<cat <1,1,1,1>>
…
<roof <1,1,1,1,1,1>>
….

Word Count Problem: Shuffle to Reducers

Output of Mappers:
<this 1> <is 1> <a 1> <cat 1> <cat 1> <sits 1> <on 1> <a 1> <roof 1> <the 1> <roof 1> <is 1> <a 1>
<tin 1> <roof 1> <there 1> <is 1> <a 1> <can 1> <on 1> <the 1> <roof 1> <cat 1> <kicks 1> <the 1>
<can 1> <it 1> <rolls 1> <on 1> <the 1> <roof 1> <and 1> <falls 1> <on 1> <the 1> <next 1> <roof
1> <the 1> <cat 1> <rolls 1> <too 1> <it 1> <sits 1> <on 1> <the 1> <can 1>

Input to the Reducers: delivered sorted, by key
…
<can <1,1>>
<cat <1,1,1,1>>
…
<roof <1,1,1,1,1,1>>
…

Word Count Problem: Reduce

Reduce (sum in this case) the values:
…
<can 2>
<cat 4>
…
<roof 6>
…

More on MapReduce

● All mappers work in parallel
● Barriers enforce that all mappers complete before reducers start
● Mappers and Reducers execute on same machine
● Jobs can be configured to have other combinations besides

mapper/reducer.
● Mappers and reducers can have side effects

○ Allows sharing between iterations

What is it used for?

● Googe uses it (we think) for wordcount, adwords, pagerank, indexing
● Simple algorithms such as grep, text-indexing, reverse indexing
● Bayesian classification: data mining
● Facebook uses it for various things, ie demographic information
● Financial services use it for analytics
● Astronomy: Gaussian analysis for location extra-terrestrial objects
● Expected to play a critical role in semantic web and web3.0

Summary

● Very large scale WORM data (allows for parallelism)
● Map and Reduce are the main operations → simple code
● There are other supporting operations we'll look at later
● Operations are executed near the data
● Commodity hardware and storage
● RTS takes care of splitting and moving data
● Requires a distributed file system (HDFS) and runtime (Hadoop

runtime)

