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Announcements and Feedback

● Project Phase 1 & 2 extended by 1 week
○ Phase 1 due 10/17@11:59PM



What is a Graph?

● A graph is a structure made up of a set of objects, 
where some pairs of the objects are "related"

● Mathematically, objects are represented with 
vertices (or nodes or points) and the relations 
between two vertices are represented with       edges 
(or links or lines)

● Typically, a graph is depicted in diagrammatic form as a set of dots or 
circles for the vertices, joined by lines or curves for the edges

● Edges can be directed or undirected (a relationship can go both ways) 
● Edges can be weighted to show the “strength”, distance, etc



Graph Representations

There are two standard ways to represent a graph G(V,E) [V is the set of vertices, E is the set of edges] 
1. adjacency list representation 
2. adjacency matrix

An adjacency matrix is 2-Dimensional Array of size VxV, where V is the number of vertices in the graph.

An adjacency list is an array of linked lists, where the array size 
is same as number of vertices in the graph. Every vertex has a 
linked list. Each node in this linked list represents the reference 
to another vertex that shares an edge with the current vertex.



Single Source Shortest Path

Sequential solution: Dijkstra’s algorithm
d[s] = 0
for all other vertices d[v] = ∞
Q = {V} // Q is priority queue based on distances
while Q not empty
    u = min(Q) // node with min d value
    for all vertex v in u.adjacencyList
        if d[v] > d[u] + w[u,v]
            d[v] = d[u] + w[u,v]
    mark u and remove from Q

At each iteration of while loop, the algorithm expands the node with the shortest 
distance and updates distances to all reachable nodes



Single Source Shortest Path

How do we apply this algorithm if we have a graph with large number of 
nodes and edges between them? MapReduce?

What is the main issue here?

The algorithm is sequential, needs a global state

Global states are not possible with map reduce…



Graph Processing in MapReduce

Let's see how we can handle a graph problem in parallel with MapReduce

Remember, the MapReduce paradigm requires a mapper function and a 
reducer function



Issues in Processing a Graph in MR

Goal: Start from a given node and label all the nodes in the graph so that 
we can determine the shortest distance.

Assume all the distance between edges is one.

Problems to Tackle:

1. How do we represent our graph?
2. What are our <key,value> pairs?

3. How do we iterate through various stages of processing?
4. When/how do we terminate execution?
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Graph Representation and Input Format

Our graphs will be represented as a collection of Node objects
Node:

nodeId,
distanceLabel,
adjancencyList[nodeId, distance],
... 

Input the graph as text and parse it to build our <key, value> pairs

So what are our <key, value> pairs?



<key, value> pairs

We actually need two types of <key, value> pair:
1. <nodeId n, Node N> // nodeId to Node object

2. <nodeId n, distance> // nodeId to distance so far



Iteration

● Each iteration in the algorithm is a MapReduce job
● Iterations and termination are coordinate by an external driver 

application (more on this in future lectures)
● The first iteration starts at the source node (with distance 0)

○ It updates and emits all distances for nodes in the adjacency list
● The next iteration takes the output from the previous and 

updates/emits all distances for nodes connected to this set of nodes
● Continue until termination



Termination

Termination condition also needs to be tracked in the Node class

Terminate when the graph has reached a steady state:
● All the nodes have been labeled with min distance
● Labels no longer change between iterations
● Potentially use other conditions using counters



Mapper Class

class Mapper
  method map (nodeId n, Node N)
    d ← N.distance
    emit(n, N)   // type 1
    for nodeId m in N.adjacencyList
        emit(m, d+1)  // type 2

The method map takes in two parameters, nodeId n and Node N

The method produces two key value pairs <n, N> and the updated distance to all of the 
adjacent nodes <m, d+1>



Reducer Class

class Reducer
  method Reduce(nodeId n, [d1, d2, d3..])
    dmin ← ∞; // or a large #
    Node N ← null
     
    for all d in [d1, d2, ...]:
      if IsNode(d) then N ← d
      else if d < dmin then dmin ← d

      N.distance ← dmin  // update the shortest distance in N
      emit (n, N)



Trace with Sample Data

Input Graph

1 0 2:3:

2 10000 3:4:

3 10000 2:4:5

4 10000 5:

5 10000 1:4

5

1

2
3

4
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Input Graph

1 0 2:3:

2 10000 3:4:

3 10000 2:4:5

4 10000 5:

5 10000 1:4

5

1

2
3

4

Input to the first iteration

d: 0



Intermediate Result

Input Graph

1 0 2:3:

2 1 3:4:

3 1 2:4:5

4 10000 5:

5 10000 1:4
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4

d: 0

d: 1
d: 1

<nodeId 2, distance 1>
<nodeId 3, distance 1>



Intermediate Result

Input Graph

1 0 2:3:

2 1 3:4:

3 1 2:4:5

4 10000 5:

5 10000 1:4

5

1

2
3

4

d: 0

d: 1
d: 1

<nodeId 2, distance 1>
<nodeId 3, distance 1>

Input to the next iteration



Final Result

Input Graph

1 0 2:3:

2 1 3:4:

3 1 2:4:5

4 2 5:

5 2 1:4

5

1

2
3

4

d: 0

d: 1
d: 1

<nodeId 4, distance 2>
<nodeId 5, distance 2>

d: 2

d: 2



PageRank

● Last time we looked at PageRank
○ Algorithm for ranking the importance of pages on the internet
○ Internet represented as a graph

■ Pages are vertices
■ Links are edges

● The internet is huge, graph requires parallel processing…

How can we do PageRank in MapReduce?



Page Rank: The Flow Model

A link from an important page (higher ranking 
page) is worth more 

A page is important if it is pointed to by other 
important pages 

Define a “rank” rj for page j as:



Solving the Flow Equation

3 equations, 3 unknowns, no constants 

No unique solution: All solutions equivalent modulo the 
scale factor 

Adding an additional constraint forces uniqueness: 

ry + ra+ rm = 1

Gaussian Elimination can be used to find the solution. 

This method will work for small graphs, but won’t scale for 
larger graphs



Page Rank: Matrix Formulation

Stochastic Adjacency matrix M

Mji = 1/(di) if there is a link from i to j, else value is 0

If r is vector with the initial importance of a page and

Then the flow equation can be written as

r = M · r
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Solving with Power Iteration

Given a web graph with n nodes, where the vertices are pages and edges 
are hyperlinks 

Power iteration: a simple iterative scheme 

Suppose there are N web pages
1. Initialize: r(0) = [1/N,….,1/N]T

2. Iterate: r(t+1) = M ∙ r(t) 
3. Stop when: ||r(t+1) – r(t)||1< ε



Random Walk Interpretation

Imagine a random web surfer
● At any time t, the surfer is on some page i
● At time t + 1, the surfer follows an out-link 

from i uniformly at random
○ Ends up on some page j linked from i

● Process repeats infinitely

P(t) is the vector whose ith coordinate is the 
probability that the surfer is at page i at time t

So P(t) is a probability distribution over pages
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Google Formulation

Does this value converge ?

Does it converge to the results that we want?

Are the results reasonable?
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Page Rank: Problems

Some pages are dead ends:
● Random walk has nowhere to go
● Such pages cause important information to leak

Spider traps
● All out-links are within the group
● Random walk gets stuck in a trap
● And eventually spider traps absorbs all 

importance 
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Spider Traps



Solution: Teleports

The Google solution for spider traps: Teleports

At each time step, the random surfer has two options:
1. With probability β, follow a link at random 
2. With prob. 1-β, jump to some random page

Common values for β are
in the range 0.8 to 0.9

This will help the surfer to teleport out of spider trap within a few steps



Dead Ends



Dead Ends



Solution: Teleports

Teleport with probability 1.0 at dead ends



Google's Solution

Googles solution for 
PageRank:



Google's Solution

Googles solution for 
PageRank:

In matrix notation:



PageRank with MapReduce

Let us assume for now that β is 1.0 (no teleporting)

class Mapper
  method map (nodeId n, Node N)
    p ← N.pagerank / N.adajacencyList.size
    emit(n, N) // Emit the graph structure
    for all m in N.adjacencyList
      emit(m, p) // Emit the contributions from N



PageRank with MapReduce

Class Reducer

  method Reduce(nodeId n, [p1, p2, p3..])

    node N ← null; s ← 0;

    for all p in [p1,p2, ..]:

      if IsNode(p) then: N ← p

      else: s ← s + p

    N.pagerank ← s

    emit(n, N)



PageRank with MapReduce

How do we account for dead ends nodes?
● Simply redistribute its PageRank to all other nodes
● One iteration requires PageRank computation + redistribution of “unused” PageRank

○ Track total leaked PageRank during the computation, then redistribute it as a second 
MapReduce job in the same iteration

What about breaking out of spider traps?
● This can also be taken care of when the leaked PageRank is redistributed from dead ends

Second Phase Redistribution Formula:
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PageRank with MapReduce

How do we account for dead ends nodes?
● Simply redistribute its PageRank to all other nodes
● One iteration requires PageRank computation + redistribution of “unused” PageRank

○ Track total leaked PageRank during the computation, then redistribute it as a second 
MapReduce job in the same iteration

What about breaking out of spider traps?
● This can also be taken care of when the leaked PageRank is redistributed from dead ends

Second Phase Redistribution Formula:
Random hop probability

Total leaked PageRank 
"mass"

PageRank from first phase



PageRank with MapReduce

How do we know when convergence is reached?
● When the ranks of pages do not change (or change by less than some 

small epsilon value)

For large graphs, the rank of any particular node is often so small that it 
underflows standard floating point representations 
● A very common solution to this problem is to represent ranks using 

their logarithms


