Dealing with Intermediate Data

- In distributed applications (ie MapReduce), one of the most important parts of synchronization is **exchange of intermediate results**
 - This usually involves communication of data over the network
 - In Hadoop/MR intermediate results are also written to disk
- Network and disk latencies are much more expensive compared to most other operation

Reducing the amount of intermediate data translates to better performance and efficiency
Local Aggregation

● One way to address the intermediate data problem is to perform local aggregation **before** the data gets written to disk/sent over the network.

● Two basic approaches:
 ○ Combiners
 ○ In-Mapper Combining
Basic Word-Count Example

class Mapper
 method Map(docid id, doc d)
 for all term t in d do
 emit(t, 1)

class Reducer
 method Reduce(term t, int [c₁,c₂,...])
 sum ← 0
 for all int c in [c₁,c₂,...] do
 sum ← sum + c
 emit(t, sum)
Combiners

- Process to aggregate the output of Mappers
- Can be thought of as "mini-reducers"
- Must preserve the types of <key, value> pairs
 - Must take the output from Mapper as its input, and output something in the same form for the reducers
- It is a completely **optional** optimization in the eyes of MapReduce
 - It may not be run, it may be run once, it may be run many times
 - *Correctness cannot rely on the Combiner*
Combiners

- Process to aggregate the output of Mappers
- Can be thought of as "mini-reducers"
- Must preserve the types of <key, value> pairs
 - Must take the output from Mapper as its input, and output something in the same form for the reducers
- It is a completely **optional** optimization in the eyes of MapReduce
 - It may not be run, it may be run once, it may be run many times
 - **Correctness cannot rely on the Combiner**

For WordCount, we can use the same Reducer class for the Combiner
Another option is to do local aggregation in the Mapper itself.

Makes the mapper more complex, but...

class Mapper
 method Map(docid id, doc d)
 for all term t in d do
 emit(t, 1)
Another option is to do local aggregation in the Mapper itself.

Makes the mapper more complex, but...

...also gives direct control over aggregation.

class Mapper
method Map(docid id, doc d)
for all term t in d do
emit(t, 1)
Another option is to do local aggregation in the Mapper itself

Makes the mapper more complex, but...

...also gives direct control over aggregation

class Mapper
 method Map(docid id, doc d)
 map ← new AssociativeArray
 for all term t in d do
 map[t] ← map[t] + 1
 for all term t in map do
 emit(t, map[t])
In-Mapper Combining

Another option is to do local aggregation in the Mapper itself.

Makes the mapper more complex, but...

...also gives direct control over aggregation

```java
class Mapper
    method Map(docid id, doc d)
        map ← new AssociativeArray
        for all term t in d do
            map[t] ← map[t] + 1
        for all term t in map do
            emit(t, map[t])
    Store intermediate result
```
In-Mapper Combining

Another option is to do local aggregation in the Mapper itself.

Makes the mapper more complex, but...

...also gives direct control over aggregation.

```java
class Mapper {
    method Map(docid id, doc d) {
        map ← new AssociativeArray
        for all term t in d do
            map[t] ← map[t] + 1
        for all term t in map do
            emit(t, map[t])
    }
}
```

Only emit after we've processed the whole input.
In-Mapper Combining

What if our mapper is run on multiple <key, value> pair inputs?
In-Mapper Combining

What if our mapper is run on multiple <key, value> pair inputs?

We can utilize the initialize and close methods of our mapper!
In-Mapper Combining

class Mapper
 method Initialize()
 map ← new AssociativeArray

 method Map(docid id, doc d)
 for all term t in d do
 map[t] ← map[t] + 1

 method Close()
 for all term t in map do
 emit(t, map[t])
class Mapper

method Initialize()
 map ← new AssociativeArray

method Map(docid id, doc d)
 for all term t in d do
 map[t] ← map[t] + 1

method Close()
 for all term t in map do
 emit(t, map[t])

Create the AssociativeArray for intermediate aggregation before processing any data
In-Mapper Combining

class Mapper

method Initialize()
 map ← new AssociativeArray

method Map(docid id, doc d)
 for all term t in d do
 map[t] ← map[t] + 1

method Close()
 for all term t in map do
 emit(t, map[t])

Create the AssociativeArray for intermediate aggregation before processing any data

Don't emit and <key, value> pairs until after we've seen all of our input
Trade-Offs

Combiner

+ Simple mapper code
+ Let MapReduce manage the optimization
 - No direct control
 - Overhead of generating intermediate <k,v> pairs

In-Mapper Aggregation

+ More efficient aggregation
+ Direct control
 - Scalability bottleneck requires memory management
 - No "purity" of functional programming
 - May introduce ordering bugs
Correctness with Local Aggregation

Example: \(<key, value>\) pairs associate a string with a number, we want to compute the mean value for each key.

```java
class Mapper
    method Map(str s, int i)
        emit(s, i)

class Reducer
    method Reduce(str s, int [i₁,i₂,...])
        sum ← 0; count ← 0
        for all int i in [i₁,i₂,...] do
            sum ← sum + i
            count ← count + 1
        avg = sum / count
        emit(t, avg)
```
Correctness with Local Aggregation

Example: <key, value> pairs associate a string with a number, we want to compute the mean value for each key.

class Mapper
 method Map(str s, int i)
 emit(s, i)

class Reducer
 method Reduce(str s, int [i_1,i_2,...])
 sum ← 0; count ← 0
 for all int i in [i_1,i_2,...] do
 sum ← sum + i
 count ← count + 1
 avg = sum / count
 emit(t, avg)

Can this reducer also be the combiner?
Correctness with Local Aggregation

Observation: $\text{Mean}(1,2,3,4,5) \neq \text{Mean}($\text{Mean}(1,2),\text{Mean}(3,4,5))$

Count was associative and commutative, Mean is not!

How can we write a combiner to do local aggregation?
Combiner Attempt #1

class Combiner
 method Combine(str s, int [i_1,i_2,...])
 sum ← 0; count ← 0;
 for all int i in [i_1,i_2,...] do
 sum ← sum + i
 count ← count + 1
 emit(s, (sum, count)) // Emit a pair
class Combiner
 method Combine(str s, int [i_1, i_2, ...])
 sum ← 0; count ← 0;
 for all int i in [i_1, i_2, ...] do
 sum ← sum + i
 count ← count + 1
 emit(s, (sum, count)) // Emit a pair

Will this work for local aggregation?
Combiners

- Process to aggregate the output of Mappers
- Can be thought of as "mini-reducers"
- Must preserve the types of <key, value> pairs
 - Must take the output from Mapper as its input, and output something in the same form for the reducers
- It is a completely **optional** optimization in the eyes of MapReduce
 - It may not be run, it may be run once, it may be run many times
 - **Correctness cannot rely on the Combiner**
class Mapper
 method Map(str s, int i)
 emit(s, (i, 1))

class Combiner
 method Combine(str s, pair [(s_1, c_1), ...])
 sum ← 0; count ← 0
 for all pair (s, c) in [(s_1, c_1), ...] do
 sum ← sum + s
 count ← count + c
 emit(t, (sum, count))

class Reducer
 method Reduce(str s, pair [(s_1, c_1), ...])
 sum ← 0; count ← 0
 for all pair (s, c) in [(s_1, c_1), ...] do
 sum ← sum + s
 count ← count + c
 avg = sum / count
 emit(t, avg)
Combiner Attempt #2

```java
class Mapper
    method Map(str s, int i)
        emit(s, (i, 1))

class Combiner
    method Combine(str s, pair [(s, c), ...])
        sum ← 0; count ← 0
        for all pair (s, c) in [(s, c), ...] do
            sum ← sum + s
            count ← count + c
        emit(t, (sum, count))

class Reducer
    method Reduce(str s, pair [(s, c), ...])
        sum ← 0; count ← 0
        for all pair (s, c) in [(s, c), ...] do
            sum ← sum + s
            count ← count + c
        avg = sum / count
        emit(t, avg)
```

Outputs pairs

Inputs AND outputs are pairs

Inputs are pairs
In-Mapper Aggregation

class Mapper
 method Initialize()
 sumMap ← new AssociativeArray
 countMap ← new AssociativeArray
 method Map(str s, int i)
 sumMap[s] ← sumMap[s] + i
 countMap[s] ← countMap[s] + 1
 method Close()
 for all key in sumMap do
 emit(key, (sumMap[key], countMap[key]))
Word Co-Occurrence

- Word Co-Occurrence counts the number of times pairs of words occur in the same context, i.e., a sentence.
- Involves constructing an $N \times N$ matrix, M, where N is the total number of words in the vocabulary.
 - M_{ij} is the number of times words w_i and w_j occurred in the same context.
 - Very simple to compute... if the matrix fits in memory.
Word Co-Occurrence

Can come up in a number of different domains, not just in text processing

Some Examples:
- Information retrieval, NLP, text mining, etc
- Co-Occurrence in consumer purchases (can help with inventory mgmt)
- Finding associations between recurring financial transactions
class Mapper
 method Map(docid id, doc d)
 for all w in d do
 for all u in Neighbors(w) do
 emit((w,u), 1)

class Reducer
 method Reduce(pair p, int[] cnts)
 sum ← 0
 for all c in cnts do
 sum ← s + c
 emit(p, sum)
class Mapper
 method Map(docid id, doc d)
 for all w in d do
 for all u in Neighbors(w) do
 emit((w,u), 1)

The key in our <key,value> pair is a pair of words. Represents a single entry in our co-occurrence matrix.

class Reducer
 method Reduce(pair p, int[] cnts)
 sum ← 0
 for all c in cnts do
 sum ← s + c
 emit(p, sum)
class Mapper
 method Map(docid id, doc d)
 for all w in d do
 for all u in Neighbors(w) do
 emit((w,u), 1)

The key in our <key,value> pair is a pair of words. Represents a single entry in our co-occurrence matrix.

class Reducer
 method Reduce(pair p, int[] cnts)
 sum ← 0
 for all c in cnts do
 sum ← s + c
 emit(p, sum)

How many possible keys are there? Any issues with this method?
What else could we use as a key?
What else could we use as a key?

Could we use a single word as a key?
What else could we use as a key?

Could we use a single word as a key?

If so, what would be the value?
class Mapper
 method Map(docid id, doc d)
 for all w in d do
 map ← new AssociativeArray
 for all u in Neighbors(w) do
 map[u] ← map[u] + 1
 emit(w, map)

class Reducer
 method Reduce(str w, stripes)
 map ← new AssociativeArray
 for all s in stripes do
 Sum(map, s)
 emit(w, map)
class Mapper
 method Map(docid id, doc d)
 for all w in d do
 map ← new AssociativeArray
 for all u in Neighbors(w) do
 map[u] ← map[u] + 1
 emit(w, map)

Build and emit a map containing the counts of all neighbors of w

class Reducer
 method Reduce(str w, stripes)
 map ← new AssociativeArray
 for all s in stripes do
 Sum(map, s)
 emit(w, map)
Word Co-Occurrence - Stripes Method

class Mapper
method Map(docid id, doc d)
 for all w in d do
 map ← new AssociativeArray
 for all u in Neighbors(w) do
 map[u] ← map[u] + 1
 emit(w, map)

Build and emit a map containing the counts of all neighbors of w

class Reducer
method Reduce(str w, stripes)
 map ← new AssociativeArray
 for all s in stripes do
 Sum(map, s)
 emit(w, map)

Combine all maps for w into one map and output it
Analysis of Stripes

+ Stripes generate far fewer <key, value> pairs
+ Stripes are much more compact (the pairs approach duplicates the left word in the pair for every pair)
+ Fewer and shorter keys means less sorting
+ Better for local aggregation
 - Values are larger and more complex with more serialization overhead
 - Scalability concerns similar to In-Mapper combining (memory overflow)
Local Aggregation

● Both combiners and In-Mapper combining can be used with either the pairs or stripes method
 ○ The pairs method has less opportunity for combining (it is less likely to find many occurrences of a specific pair of words)
 ○ The stripes method may run into scalability issues as the maps get larger
Performance Study

Performance study from Lin and Dyer Chapter 3

Figure 3.10: Running time of the “pairs” and “stripes” algorithms for computing word co-occurrence matrices on different fractions of the APW corpus. These experiments were performed on a Hadoop cluster with 19 slaves, each with two single-core processors and two disks.
Relative Co-Occurrence Problem

- Individual words occur with different frequency.
 - In English, we expect to come across "the" much more often than "zebra"
- Using absolute counts can be deceiving – more frequent words may have a higher co-occurrence count simply due to being more common
 - "the" and "stripe" may have more co-occurrences than "stripe" and "zebra" simply because "the" is way more common than "zebra"

How can we determine the "relative" co-occurrence?
Relative Co-Occurrence Problem

\[f(w_j | w_i) = \frac{N(w_i, w_j)}{\sum_{w'} N(w_i, w')} \]
Relative Co-Occurrence Problem

\[f(w_j | w_i) = \frac{N(w_i, w_j)}{\sum_{w'} N(w_i, w')} \]

Number of times \(w_i \) co-occurs with \(w_j \)
Relative Co-Occurrence Problem

\[f(w_j | w_i) = \frac{N(w_i, w_j)}{\sum_{w'} N(w_i, w')} \]

- Number of times \(w_i \) co-occurs with \(w_j \)
- Number of times \(w_i \) co-occurs with anything else
Relative Co-Occurrence Problem

\[f(w_j | w_i) = \frac{N(w_i, w_j)}{\sum_{w'} N(w_i, w')} \]

Number of times \(w_i \) co-occurs with \(w_j \)

Number of times \(w_i \) co-occurs with anything else

This is called the marginal
Relative Co-Occurrence Problem

- Computing relative co-occurrence with stripes is trivial
 - Reducer can sum all counts for a particular key to get the **marginal**
Relative Co-Occurrence Problem

- Computing relative co-occurrence with stripes is trivial
 - Reducer can sum all counts for a particular key to get the **marginal**

Can we compute relative co-occurrence with the pairs approach?
Reducer-Side Aggregation

- The reducer in the pairs method reduces single pairs at a time
 - Just having counts for a single pair is not enough to compute relative co-occurrence, we can't compute the marginal
Reducer-Side Aggregation

● The reducer in the pairs method reduces single pairs at a time
 ○ Just having counts for a single pair is not enough to compute relative co-occurrence, we can't compute the *marginal*
● Just like the Mapper, our Reducers can preserve state across calls to `Reduce(...)` by using `Initialize()` and `Close()`
 ○ To do this we need a few modifications...
Reducer-Side Aggregation

Given the following co-occurrence pairs, what assumptions do we need in order to do reducer side aggregation on, for example, the word dog?

(dog, aardvark), (dog, zebra), (dog, apple), (cat, tail), (dog, fur), (fly, banana), (dog, banana), ...
Reducer-Side Aggregation

Given the following co-occurrence pairs, what assumptions do we need in order to do reducer side aggregation on, for example, the word dog?

(dog, aardvark), (dog, zebra), (dog, apple), (cat, tail), (dog, fur), (fly, banana), (dog, banana), ...

1. We need to ensure that all pairs starting with dog go to the same reducer.
Reducer-Side Aggregation

Given the following co-occurrence pairs, what assumptions do we need in order to do reducer side aggregation on, for example, the word dog?

(dog, aardvark), (dog, zebra), (dog, apple), (cat, tail), (dog, fur), (fly, banana), (dog, banana), ...

1. We need to ensure that all pairs starting with dog go to the same reducer.
2. We need to be able to tell when we have reduced all the dog pairs.
Reducer-Side Aggregation

Given the following co-occurrence pairs, what assumptions do we need in order to do reducer side aggregation on, for example, the word dog?

(dog, aardvark), (dog, zebra), (dog, apple), (cat, tail), (dog, fur), (fly, banana), (dog, banana), ...

1. We need to ensure that all pairs starting with dog go to the same reducer.
2. We need to be able to tell when we have reduced all the dog pairs.

This can be accomplished with a custom partitioner/sort order.
Reducer-Side Aggregation

(dog, aardvark),
(dog, apple),
(dog, banana),
(dog, fur),
...
(dog, zebra),
(door, open),
...
Reducer-Side Aggregation

(dog, aardvark),
(dog, apple),
(dog, banana),
(dog, fur),
...
(dog, zebra),
(door, open),
...

If we sort our keys by the first word, we know as soon as we encounter (door, open) we are done with all of the dog keys.
Reducer-Side Aggregation

class Reducer
 method Initialize()
 currWord ← ""
 map ← new AssociativeArray
 method Reduce(pair p, int[] cnts)
 if pair.first != currWord then
 computeAndEmitRelative()
 currWord ← pair.first
 map ← new AssociativeArray
 for all c in cnts do
 map[pair.second] = map[pair.second] + c
Reducer-Side Aggregation

class Reducer

method Initialize()
 currWord ← ""
 map ← new AssociativeArray

method Reduce(pair p, int[] cnts)
 if pair.first != currWord then
 computeAndEmitRelative()
 currWord ← pair.first
 map ← new AssociativeArray
 for all c in cnts do
 map[pair.second] = map[pair.second] + c

Since we sorted based on the first word in the pair, we can assume all keys with the same first word will appear in a row...once we encounter a different word, we can output the result for our previous word.
Reducer-Side Aggregation

```java
class Reducer {
    method Initialize() {
        currWord ← ""
        map ← new AssociativeArray
    }
    method Reduce(pair p, int[] cnts) {
        if pair.first != currWord then {
            computeAndEmitRelative()
            currWord ← pair.first
            map ← new AssociativeArray
        }
        for all c in cnts do {
            map[pair.second] = map[pair.second] + c
        }
    }
}

The map holds the total number of co-occurrences with our current word
```
Reducer-Side Aggregation

class Reducer
 method computeAndEmitRelative()
 marginal ← 0
 for all key in map do
 marginal ← marginal + map[key]
 for all key in map do
 N ← map[key]
 relative = N / (marginal - N)
 emit(currWord, relative)
Reducer-Side Aggregation

class Reducer

method computeAndEmitRelative()
 marginal ← 0
 for all key in map do
 marginal ← marginal + map[key]
 end for
 for all key in map do
 N ← map[key]
 relative = N / (marginal - N)
 emit(currWord, relative)
end method

Compute marginal across all words co-occurring with our current word
Reducer-Side Aggregation

class Reducer
 method computeAndEmitRelative()
 marginal ← 0
 for all key in map do
 marginal ← marginal + map[key]
 end for
 for all key in map do
 N ← map[key]
 relative = N / (marginal - N)
 emit(currWord, relative)
 end for

Compute relative co-occurrence for all words
Observation: This method has the same scalability issues as the stripes method In-Mapper aggregation...as our vocabulary gets bigger, the map may not fit in memory

...but we need it to compute the marginal...or do we?
Order Inversion

- Can we compute the marginal **before** we compute the individual co-occurrences?
Can we compute the marginal before we compute the individual co-occurrences? **YES!**

Emit to a special pair that contains total occurrences of a word

- i.e. (dog, *) would count co-occurrences of dog with **any** word
- In our sorting, make sure this pair comes before all other dog pairs

<\(d, 10,2,147\)>, \<(d, aardvark),[2,1]\>, ..., \<(d, zebra), [3,1,1]\>, \<(c, [31,491,6]\>,
Order Inversion

- Can we compute the marginal before we compute the individual co-occurrences? **YES**!
- Emit to a special pair that contains total occurrences of a word
 - ie: (dog, *) would count co-occurrences of dog with any word
 - In our sorting, make sure this pair comes before all other dog pairs

\[<\text{(dog, *)}, [10, 2, 147]> <\text{(dog, aardvark)}, [2, 1]>, \ldots, <\text{(dog, zebra)}, [3, 1, 1]>, <\text{(cat, *)}, [31, 491, 6]>, \ldots\]

This is the first "dog" pair our reducer will encounter, and can be used to compute the marginal for dog before we compute the individual co-occurrences for dog. This is called **order inversion**.
Word Co-Occurrence - Pairs Method

class Mapper
 method Map(docid id, doc d)
 for all w in d do
 for all u in Neighbors(w) do
 emit((w,u), 1)
 emit((w,*), 1)

class Reducer
 method Initialize()
 marginal ← 0
 method Reduce(pair p, int[] cnts)
 N ← 0
 for all c in cnts do
 N ← N + c
 if p.second == * then
 marginal ← N
 else
 emit(p, N / (marginal - N))
Word Co-Occurrence - Pairs Method

class Mapper

method Map(docid id, doc d)

 for all w in d do
 for all u in Neighbors(w) do
 emit((w,u), 1)
 emit((w,*), 1)

Special pair can be used to compute the marginal and indicates we are starting a new word in the reducer

class Reducer

method Initialize()

 marginal ← 0

method Reduce(pair p, int[] cnts)

 N ← 0
 for all c in cnts do
 N ← N + c
 if p.second == * then
 marginal ← N
 else
 emit(p, N / (marginal - N))