
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 4/587
Data Intensive Computing

Day 15
Midterm Exam Discussion

mailto:epmikida@buffalo.edu

Announcements and Feedback

● Midterm grading is underway
○ Hoping to post grades by the end of the week

● Phase 1 grading will follow after that
● Phase 2 due in two weeks

Question 1 - Algorithms [Lec 4,5,6]

a. How can we help ensure that our supervised learning models are not overfit?

b. In linear regression, what does the error term, ε, capture? What about R2?

c. Name the four parameters we need to define in order to fully specify and
evaluate a K-NN model for a given dataset.

Evaluating Our Model

● How can we be certain our model is good?
● Many solvers will compute a few heuristics to help

○ R2 captures the amount of the variance explained by our model
■ High R2 means we've captured most of the variance

○ p-values captures the likelihood that our coefficients are "unimportant"
■ Low p-values means our coefficients are likely significant

● We can also cross validate ourselves!
○ Divide the data into training data and test data.
○ Fit the model on the training data to find β and ϵ
○ Calculate mean squared error on the test data and see if it's consistent

Capturing Variability

● Add in an error term, ϵ: y = β0 + β1x + ϵ
○ Referred to as noise
○ Represents relationships you have not accounted for
○ This term captures the difference between our observations, and the true

regression line

Remember, our data is just a trace of the real world. It is incomplete.
It has uncertainty. We can only estimate the true regression line.

Noise attempts to capture this fact.

The Basic Process

1. Decide on your similarity metric
2. Split the labeled set into training and test data
3. Pick an evaluation metric (similar to R2 and p-values for linear reg)
4. Run with a few different values of k, check against evaluation metric
5. Select k with the best evaluation metric
6. Run on unlabeled data

Numerical Distance and Scale

● If our data is numerical in nature, there are a number of known ways to
define "distance" between two things
○ Euclidian, Cosine, Manhattan, Mahalanobis, etc

● What about scale?
○ Consider clustering people based on salary and SAT scores:

■ The distance between ($30,000, 1400) and ($100,000, 1450) is
dominated by the salary difference

■ Rescaling data, ie (30, 1400) and (100, 1450) balances the effect of
each parameter…but is that necessarily the goal?

How you scale your data can have a significant impact on outcome, and
therefore is also part of your model!

Question 1 - Algorithms [Lec 4,5,6]

d. If we assume euclidean distance
determines the similarity of two points,
does K-NN predict that a 40 year old client
with a loan of $70k will default for k=3?
What about for k=5?

e. Explain what would happen if we give the
loan amount in terms of dollars instead of
thousands of dollars. Based on that
explanation, what would our model predict
for the same client from part (d) with k=3?

Question 1 - Algorithms [Lec 4,5,6]

d. If we assume euclidean distance
determines the similarity of two points,
does K-NN predict that a 40 year old client
with a loan of $70k will default for k=3?
What about for k=5?

e. Explain what would happen if we give the
loan amount in terms of dollars instead of
thousands of dollars. Based on that
explanation, what would our model predict
for the same client from part (d) with k=3?

?

k=3 Not defaulted, k=5 defaulted

Question 1 - Algorithms [Lec 4,5,6]

d. If we assume euclidean distance
determines the similarity of two points,
does K-NN predict that a 40 year old client
with a loan of $70k will default for k=3?
What about for k=5?

e. Explain what would happen if we give the
loan amount in terms of dollars instead of
thousands of dollars. Based on that
explanation, what would our model predict
for the same client from part (d) with k=3?

?

k=3 Not defaulted, k=5 defaulted

If loan is now in dollars, the loan amount will dominate in the distance calculation. The 3
nearest points to our target are now the three with $70,000 loans, so Defaulted

Question 2 - HDFS [Lec 7,8]

a. List two major differences between Hadoop1.x and Hadoop2.x
versions.

b. How is an HDFS block replicated? Where are map and reduce tasks
executed?

c. In HDFS, what is a (i) heartbeat (ii) BlockReport? Explain.
d. List two functions of a NameNode. List two functions of a DataNode.
e. What is the primary data type of the MapReduce model? Why are

Maps able to run in parallel over the data?

Evolution of Hadoop

HDFS (discussed last lecture) provides the reliable distributed file
system as the backbone of Hadoop.

Originally, MapReduce was the only supported
software system, and also had to handle resource
management (via JobTracker and TaskTracker)

Evolution of Hadoop

HDFS (discussed last lecture) provides the reliable distributed file
system as the backbone of Hadoop.

In Hadoop 2.0, JobTracker
and TaskTracker were
replaced by YARN (yet
another resource
negotiator). MapReduce was
now only responsible for
data processing, and other
data processing software
could be supported.

Replica Placement

Rack Aware Placement

● Goal: Improve reliability, availability, and network bandwidth utilization
● NameNode determines the rack id for each DataNode
● Replicas are typically placed on unique racks

○ Simple scheme but non-optimal
○ Writes are expensive
○ Typical replication factor is 3

● Improvement: Place one on a node in the local rack, one on a node in a remote
rack, and another on a different node in that same remote rack.

● For a file this means ⅓ of the replicas on one node, ⅔ on one rack, and the other ⅓
distributed across all other racks. (not an even distribution)

Big Ideas

● Failures are the norm — not an exception
○ Typical MTBF for commodity components of 1000 days — if you have

1000s in your cluster, probability of at least 1 being down at any time
nears 100%

● Move "Processing" to the Data: Co-locate processing of the data with
the data itself rather than sending data around as in HPC.

● Process Data Sequentially vs Random Access: Do mass analytics on
large sequential build data as opposed to search for individual items

Data Replication

● HDFS is designed to store very large files across machines in a cluster
● Each file is a sequence of blocks

○ All blocks in a file are the same size (except the last block)
○ Blocks are replicated for fault tolerance
○ Block size and replica are configurable per file

● The NameNode receives a heartbeat and BlockReport from each
DataNode
○ This report contains information about all the blocks on the DataNode

DataNode Failure and Heartbeat

● A crashed DataNode or a network partition can cause a subset of
DataNodes to lose connectivity with the NameNode

● NameNode detects this by the absence of a heartbeat
○ NameNode marks these DataNodes, and does not send requests to them
○ Data registered to the failed DataNode is not available to the HDFS
○ Death of a DataNode may cause some blocks to require more replication

Architecture: NameNode and DataNodes

● HDFS clusters consist of a single NameNode and multiple DataNodes

NameNode

A master server that manages the
filesystem namespace, tracks
metadata, and regulates client
access to files.

DataNodes

Usually one per node in a cluster.

Manages storage attached to
their node.

Serves read/write requests, file
creation/deletion, and replication.

MapReduce Basics

Fundamental Concept: key-value pairs
● Key-value pairs form the basic structure of MapReduce
● Keys can be anything from simple data types to custom types
● Examples:

<docid, doc>

<yourName, yourLifeHistory>

<graphNode, nodeCharacteristics>

<geneNum, {pathway, geneExp, proteins}>

<yourID, yourFollowers>

<studentNum, studentDetails>

<word, numberOfOccurences>

etc…

Distribute the Data

Parser

DataCollection ResultTable

Main

web 2

weed 1

green 2

sun 1

moon 1

land 1

part 1

… …

Thread

1..*
Counter

Word List

1..*

Key web weed green sun moon land part web green …

Value

Data

Data

Data

Data

Remember!
We are dealing with WORM data

WORM data is amenable to parallelism

Data without dependencies is amenable to
out-of-order processing

Question 3 - MapReduce [Lec 8,9]

SETI@home is a long-running project searching for extra-terrestrial life by analyzing radio
frequency signals recorded by various telescopes. The radio signal intensity was scaled and
“printed” (stored) as integers from 0-35 inclusive, with digits from 0-9, and a-z representing
10-35. We want to configure a Hadoop-MapReduce infrastructure to analyze this voluminous
repository for any significant contact from extraterrestrials. Consider a Hadoop-MapReduce
configuration as given below:
● We use the word count algorithm from class. Here a "word" is a digit or character

representing the SETI signal. Our reducer class is also used as our combiner class.
● Assume that the input has a total of G = 40Tbyte data. (1T = 1012 bytes, 1M= 106 bytes)
● Input corpus is split equally into S sites, each running a MR cluster.
● Assume you plan to configure M = 200 mappers per site. There are R reducers.

Question 3 - MapReduce [Lec 8,9]

a. What is the:
i. Input keyspace of the mappers?
ii. Size of the input processed by each site?
iii. Workload of each mapper in bytes?

b. Assume that mappers suppress the range of values (0-15) and emit only the radio
signals of values (16-35) inclusive. Assume that all combiners will run right before
the shuffle and sort step.

i. What is the maximum number of <key,value> pairs that will be shuffled and sorted?
ii. How many distinct keys will each reducer have to reduce?
iii. How many <key,value> pairs will be in the final output?

(40TB / S) per site 40TB / S / 200 = 2 x 1011 / S bytes per mapper

Input keyspace to mappers: {0-9}∪
{a-z}

Each mapper will output at
most 20 different keys.

Assuming combiners do as
much aggregation as possible,
then there will be 20 kv pairs x

200 mappers x S sites

20 different keys / R reducers
= 20 / R keys per reducer

20 kv pairs in
final output

Question 4 - PageRank [Lec 11,12]

a. Given the above graph, write down the adjacency matrix used to
compute the PageRank of the graph. (Use the naive formulation
without using teleportation)

b. State the initial condition r0 for power iteration. Perform 3 iterations of
power iteration to find r1, r2, and r3.

c. Will the power iteration solution for the above graph converge to what
we want? Why or why not? If not, explain how to implement a fix.

d. Describe at least 2 differences in the MapReduce implementation of
PageRank.

Page Rank: Matrix Formulation

Stochastic Adjacency matrix M

Mji = 1/(di) if there is a link from i to j, else value is 0

If r is vector with the initial importance of a page and

Then the flow equation can be written as

r = M · r
0 0 ⅓ 0
½ 0 ⅓ 0
0 1 0 0
½ 0 ⅓ 0

Solving with Power Iteration

Given a web graph with n nodes, where the vertices are pages and edges
are hyperlinks

Power iteration: a simple iterative scheme

Suppose there are N web pages
1. Initialize: r(0) = [1/N,….,1/N]T

2. Iterate: r(t+1) = M ∙ r(t)
3. Stop when: ||r(t+1) – r(t)||1< ε

Google Formulation

¼
¼
¼
¼

1/12
5/24
1/4
5/24

A = ⅓ C
B = ⅓ C + ½ A
C = B
D = ⅓ C + ⅓ A

1/12
3/24
5/24
3/24

5/72
8/72
3/24
8/72

Does this converge to what we want?

Solution: Teleports

Teleport with probability 1.0 at dead ends

Graph Representation and Input Format

Our graphs will be represented as a collection of Node objects
Node:

nodeId,
distanceLabel,
adjancencyList[nodeId, distance],
...

Input the graph as text and parse it to build our <key, value> pairs

So what are our <key, value> pairs?

<key, value> pairs

We actually need two types of <key, value> pair:
1. <nodeId n, Node N> // nodeId to Node object

2. <nodeId n, distance> // nodeId to distance so far

Iteration

● Each iteration in the algorithm is a MapReduce job
● Iterations and termination are coordinate by an external driver

application (more on this in future lectures)
● The first iteration starts at the source node (with distance 0)

○ It updates and emits all distances for nodes in the adjacency list
● The next iteration takes the output from the previous and

updates/emits all distances for nodes connected to this set of nodes
● Continue until termination

PageRank with MapReduce

How do we account for dead ends nodes?
● Simply redistribute its PageRank to all other nodes
● One iteration requires PageRank computation + redistribution of “unused” PageRank

○ Track total leaked PageRank during the computation, then redistribute it as a second
MapReduce job in the same iteration

What about breaking out of spider traps?
● This can also be taken care of when the leaked PageRank is redistributed from dead ends

Second Phase Redistribution Formula:
Random hop probability

Total leaked PageRank
"mass"

PageRank from first phase

Question 5 - Word Co-Occurrence [Lec 13]

a. Write pseudocode for a mapper and a reducer to compute word
co-occurrence using the pairs approach. You can assume that the
function Neighbors(w) is already defined for you, and returns a list of
words in the same context as w.

b. The other approach for computing word co-occurrence is using
stripes. How do pairs and stripes relate to our original sequential
formulation using matrix M.

c. Describe one advantage and one disadvantage that the stripes
approach has compared to the pairs approach.

Word Co-Occurrence - Pairs Method

class Mapper

 method Map(docid id, doc d)

 for all w in d do

 for all u in Neighbors(w) do

 emit((w,u), 1)

class Reducer

 method Reduce(pair p, int[] cnts)

 sum ← 0

 for all c in cnts do

 sum ← s + c

 emit(p, sum)

Pairs produce N2 keys, each key is an entry in the matrix
Stripes produce N keys, each key is a row in the matrix

Analysis of Stripes

+ Stripes generate far fewer <key, value> pairs
+ Stripes are much more compact (the pairs approach duplicates the left

word in the pair for every pair)
+ Fewer and shorter keys means less sorting
+ Better for local aggregation
- Values are larger and more complex with more serialization overhead
- Scalability concerns similar to In-Mapper combining (memory

overflow)

