CSE 4/587 Data Intensive Computing

Dr. Eric Mikida epmikida@buffalo.edu 208 Capen Hall

Day 17 Naive Bayes (continued)

Announcements and Feedback

• Read Doing Data Science Chapter 4

Classification of Classification Algorithms

Classification algorithms can be divided into two broad categories:

- Statistical algorithms
 - \circ Regression
 - Probability based classification: Bayes
- Structural algorithms
 - Rule-based algorithms: if-else, decision trees
 - Distance-based algorithm: similarity, nearest neighbor
 - Neural networks

Classification of Classification Algorithms

Classification of Classification Algorithms

Life Cycle of Classifiers

Training Stage

- Provide classifier with data points for which we have already assigned an appropriate class
- Purpose of this stage is to determine the parameters of our model

Validation Stage

- In the validation stage we validate the classifier to ensure credibility
- Primary goal of this stage is to determine the classification errors
- Quality of the results should be evaluated using various metrics
- Training and testing stages *may be repeated several times* before a classifier transitions to the production stage
 - We could evaluate several types of classifiers and pick one or combine all classifiers into a meta-classifier scheme

Production Stage

- Now our classifier(s) are ready for use in a live production system
- We can enhance the results by allowing human-in-the-loop feedback

All steps are repeated as we get more data from the production system.

	Pure Saffron Extract	Melt Fat Away - Drop 11-Ibs in 7 Days! - Melt Fat Away - Drop 11-Ibs in 7 Days! Melt Fat Away - Drop 11-Ibs i
	Blue Sky Auto	Car Loans Available - Bad Credit Accepted
	Watch The Video	Shocking Discovery Gets You Laid - Scientists at Harvad University have discovered a strange secret that allo
	Casino	Casino Promotions - With the Slots of Vegas Instant-Win Scratch Ticket Game you can get \$100 on the hous
	Designer Watch Replica	Replica Watches On Sale - Replica Watches: Swiss Luxury Watch Replicas, Rolex, Omega, Breitling Check
	A.C., me (10)	I'm late to this party - I'm free and interested. Tell me more! I'd have to think about the students, but I know so
$\Box \stackrel{\wedge}{\asymp} \Box$	Rachel Christoforos (18)	Fwd: Invitation to speak at upcoming Big Data Workshop, hosted by Imperial College London - Dear Rachel, t
	Fat Burning Hormone	17 Foods that GET RID of stomach fat
	Kaplan University	Kaplan University online and campus degree programs
	Dinn Trophy	Sport Plaques - As Low As \$4.29 - View this message in a browser. Shop Sport Plaques Shop Now> Change
	me, Philipp (2)	checking in - Hi Rachel, I know! I had started writing a few emails to you, but then I (obviously) didn't sent

Goal: Classify email into spam and not spam (binary classification)

Goal: Classify email into spam and not spam (binary classification) Let's say you get an email saying "You've won the lottery!" *How do we know right away that this email is spam?*

Goal: Classify email into spam and not spam (binary classification) Let's say you get an email saying "You've won the lottery!" *How do we know right away that this email is spam?*

Idea: The use of certain words, ie lottery, can indicate an email is spam.

So, our features in this problem are individual words... *Can we use linear regression or k-NN to detect spam?*

So, our features in this problem are individual words...

Can we use linear regression or k-NN to detect spam?

- Linear regression deals with continuous variables
 - We could use a heuristic to convert a continuous range into a binary range...but we are dealing with a huge number of features

So, our features in this problem are individual words...

Can we use linear regression or k-NN to detect spam?

- Linear regression deals with continuous variables
 - We could use a heuristic to convert a continuous range into a binary range...but we are dealing with a huge number of features
- k-NN works well for low dimensionality...but again, we have a huge number of features (potentially thousands of words).
 - Curse of Dimensionality...

So, our features in this problem are individual words...

Can we use linear regression or k-NN to detect spam?

- Linear regression deals with continuous variables
 - We could use a heuristic to convert a continuous range into a binary range...but we are dealing with a huge number of features
- k-NN works well for low dimensionality...but again, we have a huge number of features (potentially thousands of words).
 - Curse of Dimensionality...

So what do we do?

Basic Idea: Make a probabilistic model – have many *simple rules*, and aggregate those rules together to provide a probability.

Bayes Law and Probability Theory

Basic principle: P(H | E) = P(E | H) * P(H) / P(E)

Posterior probability is proportional to likelihood times prior

- *H* hypothesis *E* evidence
- **Prior** = probability of the *E* given *H*; P(E | H)
- Likelihood = P(H) / P(E)
- **Posterior** = Probability of *H* given *E*; P(H | E)

Given Bayes Law, how can we start classifying emails as spam?

Given Bayes Law, how can we start classifying emails as spam? Let's start one word at a time: P(spam|word) = P(word|spam) * P(spam) / P(word)

Given Bayes Law, how can we start classifying emails as spam?

Let's start one word at a time: Probability that the given word appears in an email Probability that an email is spam if it contains a given word Probability that the given word appears in an email Probability that the given word appears in an email

spam

word appears in an email known to be spam

We've now boiled our classification problem down to a counting problem:

Given a set of emails that have been classified as spam or not spam (ham):

- 1. Count number of spam vs ham emails to compute P(spam)
- 2. Count number of times the given word, ie lottery, appears in emails to compute P(word)
- 3. Count number of times the given word appears in spam emails to compute **P(word|spam)**

- **Input:** Enron data set containing employee emails
- A small subset chosen for EDA
- 1500 spam, 3672 ham
- Test word is "meeting"
- Running a simple shell script reveals that there are 16 spam emails containing "meeting" and 153 ham emails containing "meeting"
- **Output:** What is the probability that an email containing "meeting" is spam? What is your intuition? Now prove it using Bayes Law...

P(spam) = 1500 / (1500+3672) = 0.29

P(spam) = 1500 / (1500+3672) = 0.29

P(ham) = 1 - **P(spam)** = 0.71

P(spam) = 1500 / (1500+3672) = 0.29

```
P(ham) = 1 - P(spam) = 0.71
```

```
P(meeting|spam) = 16/1500 = 0.0106
```

P(spam) = 1500 / (1500+3672) = 0.29

```
P(ham) = 1 - P(spam) = 0.71
```

```
P(meeting|spam) = 16/1500 = 0.0106
```

P(meeting|ham) = 153/3672 = 0.0416

P(spam) = 1500 / (1500+3672) = 0.29

```
P(ham) = 1 - P(spam) = 0.71
```

```
P(meeting|spam) = 16/1500 = 0.0106
```

```
P(meeting|ham) = 153/3672 = 0.0416
```

```
P(meeting) = (16+153) / (1500+3672) = 0.0326
```

P(spam) = 1500 / (1500+3672) = 0.29

```
P(ham) = 1 - P(spam) = 0.71
```

```
P(meeting|spam) = 16/1500 = 0.0106
```

```
P(meeting|ham) = 153/3672 = 0.0416
```

P(meeting) = (16+153) / (1500+3672) = 0.0326

P(spam|meeting) = P(meeting|spam)*P(spam)/P(meeting) = 0.094 (9.4%)

Further Examples

"money": 80% chance of being spam

"viagra": 100% chance

"enron": 0% chance

With one word, we end up overfitting...

Basic Idea: Make a probabilistic model – have many *simple rules*, and aggregate those rules together to provide a probability.

Bayes law for each word

Basic Idea: Make a probabilistic model – have many *simple rules*, and aggregate those rules together to provide a probability.

Bayes law for each word

Basic Idea: Make a probabilistic model – have many *simple rules*, and <u>aggregate those rules together to provide a probability</u>.

Putting It All Together - Naive Bayes

So we've counted and computed probabilities for all words in our input

Putting It All Together - Naive Bayes

So we've counted and computed probabilities for all words in our input Let's say we have *i* words. Let *x* be a vector of size *i*,

where $x_i = 1$ if the j^{th} word is present in an email, 0 otherwise.

Putting It All Together - Naive Bayes

So we've counted and computed probabilities for all words in our input Let's say we have *i* words. Let *x* be a vector of size *i*, where *x_j* = 1 if the *jth* word is present in an email, 0 otherwise. Now how do we compute P(*x*|*spam*)? Once we do this, we can apply Bayes Law to find P(*spam*|*x*)

Let c represent the condition that an email is spam

Let **c** represent the condition that an email is spam Let $\mathbf{x}_j = \mathbf{1}$ if the \mathbf{j}^{th} word is in the email

Let **c** represent the condition that an email is spam Let $x_j = 1$ if the j^{th} word is in the email Let θ_{jc} be the probability that an email is spam if it has the j^{th} word

Let **c** represent the condition that an email is spam Let $x_j = 1$ if the j^{th} word is in the email Let θ_{jc} be the probability that an email is spam if it has the j^{th} word

$$p(x|c) = \prod_{j} \theta_{jc}^{x_j} (1 - \theta_{jc})^{(1-x_j)}$$

Let **c** represent the condition that an email is spam Let $x_j = 1$ if the j^{th} word is in the email Let θ_{jc} be the probability that an email is spam if it has the j^{th} word

$$p(x|c) = \prod_{j \neq jc} \theta_{jc}^{x_j} (1 - \theta_{jc})^{(1-x_j)}$$

 $\boldsymbol{\theta}_{jc}$ if the j^{th} word is in the email

Let **c** represent the condition that an email is spam Let $x_j = 1$ if the j^{th} word is in the email Let θ_{jc} be the probability that an email is spam if it has the j^{th} word

$$p(x|c) = \prod_{j \neq jc} \theta_{jc}^{x_j} (1 - \theta_{jc})^{(1-x_j)}$$

$$1 - \theta_{jc} \text{ if the } j^{th} \text{ word is in the email}$$

$$not \text{ in the email}$$

"meeting": 1% chance of being in a spam email "money": 10% chance of being in a spam email "viagra": 4% chance of being in a spam email "enron": 0% chance of being in a spam email

What is the probability that a spam email contains "meeting" and "money"? (but not "viagra" or "enron")

x = [1,1,0,0] $\theta_{1c} = 0.01$ $\theta_{2c} = 0.10$ $\theta_{3c} = 0.04$ $\theta_{4c} = 0.0$

x = [1,1,0,0] $\theta_{1c} = 0.01$ $\theta_{2c} = 0.10$ $\theta_{3c} = 0.04$ $\theta_{4c} = 0.0$

$$p(\mathbf{x}|\mathbf{c}) = \theta_{1c}\theta_{2c}(1 - \theta_{3c})(1 - \theta_{4c})$$

x = [1,1,0,0] $\theta_{1c} = 0.01$ $\theta_{2c} = 0.10$ $\theta_{3c} = 0.04$ $\theta_{4c} = 0.0$

$$p(x|c) = \theta_{1c}\theta_{2c}(1 - \theta_{3c})(1 - \theta_{4c})$$
$$p(x|c) = 0.01 * 0.1 * 0.96 * 1.0 = 0.00096$$

x = [1,1,0,0] $\theta_{1c} = 0.01$ $\theta_{2c} = 0.10$ $\theta_{3c} = 0.04$ $\theta_{4c} = 0.0$

$$p(x|c) = \theta_{1c}\theta_{2c}(1 - \theta_{3c})(1 - \theta_{4c})$$
$$p(x|c) = 0.01 * 0.1 * 0.96 * 1.0 = 0.00096$$

There is a 0.09% chance that this exact vector x appears in a spam email

- Multiplying many small probabilities can result in numerical issues
- A common method for avoiding this is to take the log of both side

$$log(p(x|c)) = \sum_{j} x_{j} log(\theta_{j}/(1-\theta_{j})) + \sum_{j} log(1-\theta_{j})$$

$$log(p(x|c)) = \sum_{j} x_{j} log(\theta_{j}/(1-\theta_{j})) + \sum_{j} log(1-\theta_{j})$$

$$log(p(x|c)) = \sum_{j} x_{j} log(\theta_{j}/(1-\theta_{j})) + \sum_{j} log(1-\theta_{j})$$

$$(all this w_{j})$$

$$log(p(x|c)) = \sum_{j} x_{j} \frac{log(\theta_{j}/(1-\theta_{j}))}{\sqrt{1-\theta_{j}}} + \sum_{j} log(1-\theta_{j})$$
Call this w_{j} Call this w_{0}

$$log(p(x|c)) = \sum_{j} x_{j}w_{j} + w_{0}$$

The Final Formula

Now given p(x|spam) we can use Baye's Law we can compute p(spam|x): p(spam|x) = p(x|spam) * p(spam) / p(x)

The Final Formula

Now given p(x|spam) we can use Baye's Law we can compute p(spam|x): p(spam|x) = p(x|spam) * p(spam) / p(x)

These other two terms are pretty straightforward to compute, and **p**(**spam**) is independent of the input email

A few notes:

- Occurrences of words are considered independent events
 - Don't care how many times a word appears
 - Don't care about combinations of words
 - This is why it's called "naive"

From the previous formula, θ_{jc} is just a ratio of counts: n_{jc} / n_j Where n_{jc} is the number of times the word appears in a spam email and n_j is the number of times the word appears in any email

From the previous formula, θ_{jc} is just a ratio of counts: n_{jc} / n_j Where n_{jc} is the number of times the word appears in a spam email and n_j is the number of times the word appears in any email

This is just an estimate based on our dataset...what if $\theta_{ic} = 1$ (or 0)?

Laplace Smoothing is a technique to avoid these extreme probabilities Introduce parameters α , β to our computation of θ_{jc}

$$\theta_{jc} = \frac{n_{jc} + \alpha}{n_j + \beta}$$

 α and β are parameters of your model (just like **k** for k-NN)

 α and β are parameters of your model (just like **k** for k-NN) Small values for α , β will ensure that the distribution of **\theta** vanishes at 0, 1

lpha and eta are parameters of your model (just like m k for k-NN)

Small values for α , β will ensure that the distribution of θ vanishes at 0, 1

Larger values will squeeze the distribution even more into the middle

 α and β are parameters of your model (just like **k** for k-NN) Small values for α , β will ensure that the distribution of θ vanishes at 0, 1 Larger values will squeeze the distribution even more into the middle More data allows you to relax the values of α , β

Extending our Model: Multiple Classes

What if we want more than two classes?

Example from DDS: Classifying NYTimes articles based on section

Extending our Model: Multiple Classes

What if we want more than two classes?

Example from DDS: Classifying NYTimes articles based on section

Idea: For a given article, compute the probabilities for each class (section), and then classify the article as the one with the highest probability