CSE 4/587

Data Intensive Computing

Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

Day 17

Naive Bayes (continued)

Announcements and Feedback

- Read Doing Data Science Chapter 4

Classification of Classification Algorithms

Classification algorithms can be divided into two broad categories:

- Statistical algorithms
- Regression
- Probability based classification: Bayes
- Structural algorithms
- Rule-based algorithms: if-else, decision trees
- Distance-based algorithm: similarity, nearest neighbor
- Neural networks

Classification of Classification Algorithms

Classification of Classification Algorithms

Life Cycle of Classifiers

Production

Training Stage

- Provide classifier with data points for which we have already assigned an appropriate class
- Purpose of this stage is to determine the parameters of our model

Validation Stage

- In the validation stage we validate the classifier to ensure credibility
- Primary goal of this stage is to determine the classification errors
- Quality of the results should be evaluated using various metrics
- Training and testing stages may be repeated several times before a classifier transitions to the production stage
- We could evaluate several types of classifiers and pick one or combine all classifiers into a meta-classifier scheme

Production Stage

- Now our classifier(s) are ready for use in a live production system
- We can enhance the results by allowing human-in-the-loop feedback

All steps are repeated as we get more data from the production system.

Motivating Example: Spam Classification

\square it Pure Saffron Extract

Blue Sky Auto
Watch The Video

Fat Burning Hormone

Kaplan University

Dinn Trophy

me, Philipp (2)

Melt Fat Away - Drop 11-lbs in 7 Days! - Melt Fat Away - Drop 11-Ibs in 7 Days! Melt Fat Away - Drop 11-Ibs Car Loans Available - Bad Credit Accepted

Shocking Discovery Gets You Laid - Scientists at Harvad University have discovered a strange secret that allo Casino Promotions - With the Slots of Vegas Instant-Win Scratch Ticket Game you can get $\$ 100$ on the hous Replica Watches On Sale - Replica Watches: Swiss Luxury Watch Replicas, Rolex, Omega, Breitling Check I'm late to this party - I'm free and interested. Tell me more! I'd have to think about the students, but I know so Fwd: Invitation to speak at upcoming Big Data Workshop, hosted by Imperial College London - Dear Rachel, t 17 Foods that GET RID of stomach fat

Kaplan University online and campus degree programs

Sport Plaques - As Low As $\$ 4.29$ - View this message in a browser. Shop Sport Plaques Shop Now> Change checking in - Hi Rachel, I know I had started writing a few emails to you, but then I (obviously) didn't sent

Motivating Example: Spam Classification

Goal: Classify email into spam and not spam (binary classification)

Motivating Example: Spam Classification

Goal: Classify email into spam and not spam (binary classification)
Let's say you get an email saying "You've won the lottery!"
How do we know right away that this email is spam?

Motivating Example: Spam Classification

Goal: Classify email into spam and not spam (binary classification)
Let's say you get an email saying "You've won the lottery!"
How do we know right away that this email is spam?

Idea: The use of certain words, ie lottery, can indicate an email is spam.

What about previous techniques?

So, our features in this problem are individual words...
Can we use linear regression or k-NN to detect spam?

What about previous techniques?

So, our features in this problem are individual words...
Can we use linear regression or k-NN to detect spam?

- Linear regression deals with continuous variables
- We could use a heuristic to convert a continuous range into a binary range...but we are dealing with a huge number of features

What about previous techniques?

So, our features in this problem are individual words...
Can we use linear regression or k-NN to detect spam?

- Linear regression deals with continuous variables
- We could use a heuristic to convert a continuous range into a binary range...but we are dealing with a huge number of features
- k-NN works well for low dimensionality...but again, we have a huge number of features (potentially thousands of words).
- Curse of Dimensionality...

What about previous techniques?

So, our features in this problem are individual words...
Can we use linear regression or k-NN to detect spam?

- Linear regression deals with continuous variables
- We could use a heuristic to convert a continuous range into a binary range...but we are dealing with a huge number of features
- k-NN works well for low dimensionality...but again, we have a huge number of features (potentially thousands of words).
- Curse of Dimensionality...

Naive Bayes

Basic Idea: Make a probabilistic model - have many simple rules, and aggregate those rules together to provide a probability.

Bayes Law and Probability Theory

Basic principle: $\mathrm{P}(H \mid E)=\mathrm{P}(E \mid H)$ * $\mathrm{P}(H) / \mathrm{P}(E)$
Posterior probability is proportional to likelihood times prior

- H-hypothesis E-evidence
- Prior = probability of the E given $H ; P(E \mid H)$
- Likelihood $=P(H) / P(E)$
- Posterior = Probability of H given $E ; P(H \mid E)$

Bayes Law - Spam Classification

Given Bayes Law, how can we start classifying emails as spam?

Bayes Law - Spam Classification

Given Bayes Law, how can we start classifying emails as spam?
Let's start one word at a time:
$\mathrm{P}($ spam \mid word $)=\mathrm{P}($ word \mid spam $) * \mathrm{P}($ spam $) / \mathrm{P}($ word $)$

Bayes Law - Spam Classification

Given Bayes Law, how can we start classifying emails as spam?
Let's start one word at a time:
Probability that the given word appears in an email
$\mathrm{P}($ spam \mid word $)=\mathrm{P}($ word \mid spam $)$ * $\mathrm{P}($ spam $) / \mathrm{P}($ word $)$

Probability that an email is spam
if it contains a given word

Probability that the given word appears in an email known to be spam

Probability that an email is spam

Bayes Law - Spam Classification

We've now boiled our classification problem down to a counting problem:

Given a set of emails that have been classified as spam or not spam (ham):

1. Count number of spam vs ham emails to compute \mathbf{P} (spam)
2. Count number of times the given word, ie lottery, appears in emails to compute \mathbf{P} (word)
3. Count number of times the given word appears in spam emails to compute \mathbf{P} (word|spam)

Enron Email Example - DDS Chapter 4

- Input: Enron data set containing employee emails
- A small subset chosen for EDA
- 1500 spam, 3672 ham
- Test word is "meeting"
- Running a simple shell script reveals that there are 16 spam emails containing "meeting" and 153 ham emails containing "meeting"
- Output: What is the probability that an email containing "meeting" is spam? What is your intuition? Now prove it using Bayes Law...

Enron Email Example - DDS Chapter 4

Enron Email Example - DDS Chapter 4

$$
P(\text { spam })=1500 /(1500+3672)=0.29
$$

Enron Email Example - DDS Chapter 4

```
P(spam) = 1500 / (1500+3672) = 0.29
P(ham) = 1-P(spam) = 0.71
```


Enron Email Example - DDS Chapter 4

$P($ spam $)=1500 /(1500+3672)=0.29$
$\mathbf{P}($ ham $)=1-\mathbf{P}($ spam $)=0.71$
$P($ meeting \mid spam $)=16 / 1500=0.0106$

Enron Email Example - DDS Chapter 4

$P($ spam $)=1500 /(1500+3672)=0.29$
$\mathbf{P}($ ham $)=1-\mathbf{P}($ spam $)=0.71$
$P($ meeting \mid spam $)=16 / 1500=0.0106$
$\mathbf{P}($ meeting \mid ham $)=153 / 3672=0.0416$

Enron Email Example - DDS Chapter 4

$P($ spam $)=1500 /(1500+3672)=0.29$
$\mathbf{P}($ ham $)=1-\mathbf{P}($ spam $)=0.71$
$P($ meeting \mid spam $)=16 / 1500=0.0106$
$P($ meeting \mid ham $)=153 / 3672=0.0416$
$P($ meeting $)=(16+153) /(1500+3672)=0.0326$

Enron Email Example - DDS Chapter 4

```
P(spam)=1500 / (1500+3672) = 0.29
P(ham) = 1-P(spam) = 0.71
P(meeting|spam})=16/1500=0.010
P(meeting|ham ) = 153/3672 = 0.0416
P(meeting) = (16+153) / (1500+3672) = 0.0326
P(spam|meeting) = P(meeting|spam)*P(spam)/P(meeting)=0.094 (9.4%)
```


Further Examples

"money": 80\% chance of being spam
"viagra": 100\% chance
"enron": 0\% chance

With one word, we end up overfitting...

Naive Bayes

Basic Idea: Make a probabilistic model - have many simple rules, and aggregate those rules together to provide a probability.

Naive Bayes

Bayes law for each word

Basic Idea: Make a probabilistic model - have many simple rules, and aggregate those rules together to provide a probability.

Naive Bayes

Bayes law for each word

Basic Idea: Make a probabilistic model - have many simple rules, and aggregate those rules together to provide a probability.

Putting It All Together - Naive Bayes

So we've counted and computed probabilities for all words in our input

Putting It All Together - Naive Bayes

So we've counted and computed probabilities for all words in our input
Let's say we have \boldsymbol{i} words. Let \boldsymbol{x} be a vector of size \boldsymbol{i}, where $\boldsymbol{x}_{j}=\mathbf{1}$ if the $\boldsymbol{j}^{\text {th }}$ word is present in an email, $\mathbf{0}$ otherwise.

Putting It All Together - Naive Bayes

So we've counted and computed probabilities for all words in our input
Let's say we have \boldsymbol{i} words. Let \boldsymbol{x} be a vector of size \boldsymbol{i}, where $\boldsymbol{x}_{j}=\mathbf{1}$ if the $\boldsymbol{j}^{\text {th }}$ word is present in an email, $\mathbf{0}$ otherwise.

Now how do we compute $\mathrm{P}(x \mid$ spam $)$?
Once we do this, we can apply Bayes Law to find $\mathrm{P}($ spam $\mid x)$

Naive Bayes

Naive Bayes

Let \boldsymbol{c} represent the condition that an email is spam

Naive Bayes

Let \boldsymbol{c} represent the condition that an email is spam
Let $x_{j}=1$ if the $j^{\text {th }}$ word is in the email

Naive Bayes

Let \boldsymbol{c} represent the condition that an email is spam
Let $\boldsymbol{x}_{j}=1$ if the $j^{\text {th }}$ word is in the email
Let $\boldsymbol{\theta}_{j c}$ be the probability that an email is spam if it has the $\boldsymbol{j}^{\text {th }}$ word

Naive Bayes

Let \boldsymbol{c} represent the condition that an email is spam

$$
\text { Let } x_{j}=1 \text { if the } j^{\text {th }} \text { word is in the email }
$$

Let $\boldsymbol{\theta}_{j c}$ be the probability that an email is spam if it has the $\boldsymbol{j}^{\text {th }}$ word

$$
p(x \mid c)=\prod_{j} \theta_{j c}^{x_{j}}\left(1-\theta_{j c}\right)^{\left(1-x_{j}\right)}
$$

Naive Bayes

Let \boldsymbol{c} represent the condition that an email is spam

$$
\text { Let } x_{j}=1 \text { if the } j^{\text {th }} \text { word is in the email }
$$

Let $\boldsymbol{\theta}_{j c}$ be the probability that an email is spam if it has the $\boldsymbol{j}^{\text {th }}$ word

$$
p(x \mid c)=\prod_{j} \theta_{j c}^{x_{j}}\left(1-\theta_{j c}\right)^{\left(1-x_{j}\right)}
$$

$\boldsymbol{\theta}_{j c}$ if the $j^{\text {th }}$ word is in the email

Naive Bayes

Let \boldsymbol{c} represent the condition that an email is spam

$$
\text { Let } x_{j}=1 \text { if the } j^{\text {th }} \text { word is in the email }
$$

Let $\boldsymbol{\theta}_{j c}$ be the probability that an email is spam if it has the $\boldsymbol{j}^{\text {th }}$ word

$$
p(x \mid c)=\prod_{j} \theta_{j c}^{x_{j}}\left(1-\theta_{j c}\right)^{\left(1-x_{j}\right)}
$$

$\boldsymbol{\theta}_{j c}$ if the $j^{\text {th }}$ word is in the email
$1-\boldsymbol{\theta}_{j c}$ if the $j^{\text {th }}$ word is not in the email

Example

> "meeting": 1% chance of being in a spam email "money": 10% chance of being in a spam email "viagra": 4% chance of being in a spam email "enron": 0% chance of being in a spam email

What is the probability that a spam email contains "meeting" and "money"? (but not "viagra" or "enron")

Example

$$
x=[1,1,0,0] \quad \theta_{1 c}=0.01 \quad \theta_{2 c}=0.10 \quad \theta_{3 c}=0.04 \quad \theta_{4 c}=0.0
$$

Example

$$
\begin{gathered}
x=[1,1,0,0] \quad \theta_{1 c}=0.01 \quad \theta_{2 c}=0.10 \quad \theta_{3 c}=0.04 \quad \theta_{4 c}=0.0 \\
p(x \mid c)=\theta_{1 c} \theta_{2 c}\left(1-\theta_{3 c}\right)\left(1-\theta_{4 c}\right)
\end{gathered}
$$

Example

$$
\begin{gathered}
x=[1,1,0,0] \quad \theta_{1 c}=0.01 \quad \theta_{2 c}=0.10 \quad \theta_{3 c}=0.04 \quad \theta_{4 c}=0.0 \\
p(x \mid c)=\theta_{1 c} \theta_{2 c}\left(1-\theta_{3 c}\right)\left(1-\theta_{4 c}\right) \\
p(x \mid c)=0.01 * 0.1 * 0.96 * 1.0=0.00096
\end{gathered}
$$

Example

$$
\begin{gathered}
x=[1,1,0,0] \quad \theta_{1 c}=0.01 \quad \theta_{2 c}=0.10 \quad \theta_{3 c}=0.04 \quad \theta_{4 c}=0.0 \\
p(x \mid c)=\theta_{1 c} \theta_{2 c}\left(1-\theta_{3 c}\right)\left(1-\theta_{4 c}\right) \\
p(x \mid c)=0.01 * 0.1 * 0.96 * 1.0=0.00096
\end{gathered}
$$

There is a 0.09% chance that this exact vector x appears in a spam email

Cleaning it up...

- Multiplying many small probabilities can result in numerical issues
- A common method for avoiding this is to take the log of both side

$$
\log (p(x \mid c))=\sum_{j} x_{j} \log \left(\theta_{j} /\left(1-\theta_{j}\right)\right)+\sum_{j} \log \left(1-\theta_{j}\right)
$$

Cleaning it up...

Many of these terms don't depend on the email and can be precomputed

$$
\log (p(x \mid c))=\sum_{j} x_{j} \log \left(\theta_{j} /\left(1-\theta_{j}\right)\right)+\sum_{j} \log \left(1-\theta_{j}\right)
$$

Cleaning it up...

Many of these terms don't depend on the email and can be precomputed

$$
\log (p(x \mid c))=\sum_{j} x_{j} \frac{\log \left(\theta_{j} /\left(1-\theta_{j}\right)\right)}{/}+\sum_{j} \log \left(1-\theta_{j}\right)
$$

Call this $\boldsymbol{w}_{\boldsymbol{j}}$

Cleaning it up...

Many of these terms don't depend on the email and can be precomputed

$$
\log (p(x \mid c))=\sum_{j} x_{j} \frac{\sqrt{\log \left(\theta_{j} /\left(1-\theta_{j}\right)\right)}}{/}+\sum_{j} \log \left(1-\theta_{j}\right)
$$

Call this $\boldsymbol{w}_{\boldsymbol{j}}$
Call this w_{0}

Cleaning it up...

Many of these terms don't depend on the email and can be precomputed

$$
\log (p(x \mid c))=\sum_{j} x_{j} w_{j}+w_{0}
$$

The Final Formula

Now given $\boldsymbol{p}(x \mid$ spam $)$ we can use Baye's Law we can compute $p(s p a m \mid x)$:

$$
p(\text { spam } \mid x)=p(x \mid \text { spam }) * p(\text { spam }) / p(x)
$$

The Final Formula

Now given $\boldsymbol{p}(x \mid$ spam $)$ we can use Baye's Law we can compute $p(s p a m \mid x)$:

$$
p(\text { spam } \mid x)=p(x \mid \text { spam }) * p(\text { spam }) / p(x)
$$

These other two terms are pretty straightforward to compute, and \boldsymbol{p} (spam) is independent of the input email

Naive Bayes

A few notes:

- Occurrences of words are considered independent events
- Don't care how many times a word appears
- Don't care about combinations of words
- This is why it's called "naive"

Extending our Model: Laplace Smoothing

From the previous formula, $\boldsymbol{\theta}_{j c}$ is just a ratio of counts: $\boldsymbol{n}_{j c} / \boldsymbol{n}_{j}$ Where $\boldsymbol{n}_{\boldsymbol{j c}}$ is the number of times the word appears in a spam email and \boldsymbol{n}_{j} is the number of times the word appears in any email

Extending our Model: Laplace Smoothing

From the previous formula, $\boldsymbol{\theta}_{j c}$ is just a ratio of counts: $\boldsymbol{n}_{j c} / \boldsymbol{n}_{j}$ Where $\boldsymbol{n}_{j c}$ is the number of times the word appears in a spam email and \boldsymbol{n}_{j} is the number of times the word appears in any email

This is just an estimate based on our dataset...what if $\theta_{j c}=1$ (or 0)?

Extending our Model: Laplace Smoothing

Laplace Smoothing is a technique to avoid these extreme probabilities
Introduce parameters α, β to our computation of $\boldsymbol{\theta}_{\mathrm{jc}}$

$$
\theta_{j c}=\frac{n_{j c}+\alpha}{n_{j}+\beta}
$$

Extending our Model: Laplace Smoothing

$\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ are parameters of your model (just like \boldsymbol{k} for $\mathrm{k}-\mathrm{NN}$)

Extending our Model: Laplace Smoothing

$\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ are parameters of your model (just like \boldsymbol{k} for $\mathrm{k}-\mathrm{NN}$)
Small values for $\boldsymbol{\alpha}, \boldsymbol{\beta}$ will ensure that the distribution of $\boldsymbol{\theta}$ vanishes at 0,1

Extending our Model: Laplace Smoothing

$\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ are parameters of your model (just like \boldsymbol{k} for $\mathrm{k}-\mathrm{NN}$)
Small values for $\boldsymbol{\alpha}, \boldsymbol{\beta}$ will ensure that the distribution of $\boldsymbol{\theta}$ vanishes at 0,1
Larger values will squeeze the distribution even more into the middle

Extending our Model: Laplace Smoothing

$\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ are parameters of your model (just like \boldsymbol{k} for $\mathrm{k}-\mathrm{NN}$)
Small values for $\boldsymbol{\alpha}, \boldsymbol{\beta}$ will ensure that the distribution of $\boldsymbol{\theta}$ vanishes at 0,1
Larger values will squeeze the distribution even more into the middle More data allows you to relax the values of $\alpha, \boldsymbol{\beta}$

Extending our Model: Multiple Classes

What if we want more than two classes?
Example from DDS: Classifying NYTimes articles based on section

Extending our Model: Multiple Classes

What if we want more than two classes?
Example from DDS: Classifying NYTimes articles based on section
Idea: For a given article, compute the probabilities for each class (section), and then classify the article as the one with the highest probability

