CSE 4/587
Data Intensive Computing

Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

Day 18
Logistic (Logit) Regression
Announcements and Feedback

- Read Chapter 5 from Doing Data Science
- Grading for midterm is complete, grades just need to be uploaded to UBLearns
- Grading for Phase 1 is underway
Recap from Last Class

- Naive Bayes is a classifier based on Bayes Law
 - **Bayes Law:** $P(H | E) = P(E | H) * P(H) / P(E)$
 - Aggregate the results of **many simple rules** (Bayes Law) into a probabilistic result
 - Can be used with many many features (high dimensionality)
 - Assumes independent features, and reduces features to 0 or 1 *(this is why it is called naive)*
 - Laplace Smoothing introduces α and β as parameters of the model
More on Classifiers

Example Questions and Answers

- "Will someone click on this ad?" 0 or 1 (no or yes)
- "What number is this (image recognition)?" 0, 1, 2, 3, etc
- "What is this news article about?" "Sports"
- "Is this spam?" 0 or 1
- "Is this pill good for headaches?" 0 or 1

Answering these questions can be done with classifiers
Choosing a Classifier?

1. What classifier should you use?
2. Which optimization method should you use for that classifier?
3. Which loss function should you minimize?
4. Which features of your data should you use?
5. Which evaluation metric should you use?
Choosing a Classifier?

1. What classifier should you use?
2. Which optimization method should you use for that classifier?
3. Which loss function should you minimize?
4. Which features of your data should you use?
5. Which evaluation metric should you use?
Choosing a Classifier?

Why not just try them all and see what performs best?

The real-world has constraints...

- Time constraints (these models take time to run)
- Your understanding (we can't be experts on every model)
- Interpretability (how do you understand/explain the models decisions)
- Scalability (how long to train? how long to score? how much memory?)
Choosing a Classifier?

- **First and foremost, you must understand your problem domain**
 - ie if you are working with election data, understand how election results are computed, etc
 - Which algorithm works best will be problem dependent **AND** question dependent (what is the question you are asking about your domain)

- **Rule of thumb**: simpler models are often easier to interpret but not as powerful (ie decision tree vs random forest)
Feature Engineering

Concern: bad feature selection will lead to bad classification, regardless of classifier choice

Observation: Much of data science is about understanding the data sets and the domain well enough that you can extract meaningful features

From Wikipedia:

"...a feature is an individual measurable property or characteristic of a phenomenon being observed. Choosing informative, discriminating and independent features is a crucial step for effective algorithms in pattern recognition, classification and regression."
Binary vs Multi-Class

- Binary classification is about 0,1 (no, yes) outputs
 - i.e. is an email spam, is this patient sick, will this person click this ad, etc
- Multi-class problems have more than two labels. The standard solution is to train one binary classifier for each label, which classifies an input as having that label or not (binary).
Multi-Class Example

Article classification example to the right →

Classes are WORLD, BIZ, USA, SPAM, SPORT
Multi-Class Example

Article classification example to the right →

Classes are WORLD, BIZ, USA, SPAM, SPORT

Run a binary classifier for each class, i.e Naive Bayes.

<table>
<thead>
<tr>
<th>Class</th>
<th>Probability</th>
<th>Classified as</th>
</tr>
</thead>
<tbody>
<tr>
<td>WORLD</td>
<td>0.085106382978723</td>
<td>BIZ</td>
</tr>
<tr>
<td>BIZ</td>
<td>0.765957446808511</td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>0.063829787234043</td>
<td></td>
</tr>
<tr>
<td>SPAM</td>
<td>0.042553191489362</td>
<td></td>
</tr>
<tr>
<td>SPORT</td>
<td>0.042553191489362</td>
<td></td>
</tr>
</tbody>
</table>

Classifying instance: biz-01.html

<table>
<thead>
<tr>
<th>Class</th>
<th>Probability</th>
<th>Classified as</th>
</tr>
</thead>
<tbody>
<tr>
<td>WORLD</td>
<td>0.121212121212121</td>
<td>BIZ</td>
</tr>
<tr>
<td>BIZ</td>
<td>0.181818181818182</td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>0.090909090909091</td>
<td></td>
</tr>
<tr>
<td>SPAM</td>
<td>0.0606060606060606</td>
<td></td>
</tr>
<tr>
<td>SPORT</td>
<td>0.5454545454545454</td>
<td></td>
</tr>
</tbody>
</table>

Classified biz-01.html as BIZ

Classifying instance: sport-01.html

<table>
<thead>
<tr>
<th>Class</th>
<th>Probability</th>
<th>Classified as</th>
</tr>
</thead>
<tbody>
<tr>
<td>WORLD</td>
<td>0.235294117647059</td>
<td>USA</td>
</tr>
<tr>
<td>BIZ</td>
<td>0.352941176470588</td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>0.176470588235294</td>
<td></td>
</tr>
<tr>
<td>SPAM</td>
<td>0.117647058823529</td>
<td></td>
</tr>
<tr>
<td>SPORT</td>
<td>0.117647058823529</td>
<td></td>
</tr>
</tbody>
</table>

Classified sport-01.html as SPORT

Classifying instance: usa-01.html

<table>
<thead>
<tr>
<th>Class</th>
<th>Probability</th>
<th>Classified as</th>
</tr>
</thead>
<tbody>
<tr>
<td>WORLD</td>
<td>0.805970149253731</td>
<td>BIZ</td>
</tr>
<tr>
<td>BIZ</td>
<td>0.08955238805970</td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>0.044776119402985</td>
<td></td>
</tr>
<tr>
<td>SPAM</td>
<td>0.029850746268657</td>
<td></td>
</tr>
<tr>
<td>SPORT</td>
<td>0.029850746268657</td>
<td></td>
</tr>
</tbody>
</table>

Classified usa-01.html as BIZ

Classifying instance: world-01.html

<table>
<thead>
<tr>
<th>Class</th>
<th>Probability</th>
<th>Classified as</th>
</tr>
</thead>
<tbody>
<tr>
<td>WORLD</td>
<td>0.805970149253731</td>
<td>USA</td>
</tr>
<tr>
<td>BIZ</td>
<td>0.08955238805970</td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>0.044776119402985</td>
<td></td>
</tr>
<tr>
<td>SPAM</td>
<td>0.029850746268657</td>
<td></td>
</tr>
<tr>
<td>SPORT</td>
<td>0.029850746268657</td>
<td></td>
</tr>
</tbody>
</table>

Classified world-01.html as WORLD
Multi-Class Example

Article classification example to the right →

Classes are WORLD, BIZ, USA, SPAM, SPORT

Run a binary classifier for each class, ie Naive Bayes.

BIZ was the class that has the highest probability
Logistic Regression

What is it?
- Statistical model
- An approach for calculating the odds of an event happening vs other possibilities
- Discriminative classification vs Naive Bayes generative classification

Why are we studying it?
- To use it for classification!
- [1] Evidence suggests it performs better than Naive Bayes for large datasets
- Can model non-independent features

Motivating Example - Ad Clicks

- Given a list of websites a particular user visits, can you determine whether or not they will click a particular ad (ie a shoe ad)
 - We do not care about the content of the website, can just convert URL to some hash value or index
 - For each user, can create a vector, where each entry corresponds to a website, and has value 1 if the user visited the website, or 0 otherwise
 - Our training data is now a matrix where each row corresponds to a user, and there is an extra column with a 1 if they clicked the ad, or 0 otherwise
Motivating Example - Ad Clicks

<table>
<thead>
<tr>
<th>click</th>
<th>url1</th>
<th>url2</th>
<th>url3</th>
<th>url4</th>
<th>url5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Motivating Example - Ad Clicks

Goal: Predict the probability of a click, based on URLs visited

<table>
<thead>
<tr>
<th>click</th>
<th>url1</th>
<th>url2</th>
<th>url3</th>
<th>url4</th>
<th>url5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Motivating Example - Ad Clicks

This looks just like our formulation for Naive Bayes...

Naive Bayes could work for this problem as well

<table>
<thead>
<tr>
<th>click</th>
<th>url1</th>
<th>url2</th>
<th>url3</th>
<th>url4</th>
<th>url5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Goal: Predict the probability of a click, based on URLs visited
Logistic Regression - The Math

Odds Ratio: \(\frac{p}{1 - p} \)

The logit function is the basic building block of Logistic Regression:

\[
\text{logit}(p) = \log\left(\frac{p}{1 - p}\right) = \log(p) - \log(1 - p)
\]

It takes an \(x \) value in the range [0,1] (ie a probability) and transforms it to \(y \) values ranging across all real numbers.
Inverse of logit function

The inverse of the logit function therefore takes a real number, and maps it to a result in the range \([0,1]\)

\[
\text{logit}^{-1}(t) = \frac{e^t}{1 + e^t}
\]
Inverse of logit function

The inverse of the logit function therefore takes a real number, and maps it to a result in the range $[0,1]$

$$\text{logit}^{-1}(t) = \frac{e^t}{1 + e^t}$$

We can use this to get a probability
$P(c_i | x_i) = \left[\text{logit}^{-1}(\alpha + \beta^\top x_i) \right]^{c_i} \cdot \left[1 - \text{logit}^{-1}(\alpha + \beta^\top x_i) \right]^{1-c_i}$
$P(c_i | x_i) = [\logit^{-1}(\alpha + \beta^T x_i)]^{c_i} \cdot [1 - \logit^{-1}(\alpha + \beta^T x_i)]^{1-c_i}$

- c_i is the class (or label) for user i
 - 1 for clicked, 0 for did not click
- x_i is the vector of features for user i
 - 1s for URLs visited, 0s for the rest
Classification with Logit

\[P(c_i|x_i) = \left[\text{logit}^{-1}(\alpha + \beta^T x_i) \right]^{c_i} \cdot \left[1 - \text{logit}^{-1}(\alpha + \beta^T x_i) \right]^{1-c_i} \]

If \(c_i = 0 \), the first term is canceled, if \(1 \) the second term is canceled.
Classification with Logit

\[P(c_i = 1| x_i) = \text{logit}^{-1}(\alpha + \beta^\top x_i) \]

To convert this to a linear function, we can take the log of the odds ratio

\[
\log \left(\frac{P(c_i = 1| x_i)}{1 - P(c_i = 1| x_i)} \right) = \alpha + \beta^\top x_i
\]
Classification with Logit

\[
\log \left(\frac{P(c_i = 1|x_i)}{1 - P(c_i = 1|x_i)} \right) = \alpha + \beta^\top x_i
\]

This can be rewritten as...

\[
\log\text{it}(P(c_i = 1|x_i)) = \alpha + \beta^\top x_i
\]
Classification with Logit

\[
\text{logit}\left(P(c_i = 1 | x_i)\right) = \alpha + \beta^\top x_i
\]

Now we have a model we can fit to find \(\alpha, \beta \)
Fitting our Model

- As with linear regression, the math behind fitting a model is outside the scope of the class
- SciKit Learn has methods for fitting Python data using logistic regression

Given one possible logistic regression equation for lung cancer odds:

\[
\text{logit}(p) = -4.48 + 0.11 \times \text{AGE} + 1.16 \times \text{SMOKING}
\]

With this model, 40 year olds that smoke have a logit\((p)\) value of 1.08.

We can perform a back transformation to get the actual probability.

Or look it up in a table to find out for logit\((p)\) = 1.08, \(p = 0.75\)