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Announcements and Feedback

● Project Phase 2 due tonight at 11:59pm
● Project Phase 3 due 11/28 at 11:59pm



Remaining Lecture Road-Map (TENTATIVE)

This week: Spark, spark demo, spark examples, ungraded HW

Next week: Monday will be a workshop day (no attendance), Wed no class

11/28,30: Review ungraded HW, Ethics in Big Data

12/5,7: Course wrap-up, summary, final exam review



References

● Advanced Analytics with Spark by S. Ryza, U. Laserson, S. Owen and J. Wills

● Apache Spark documentation
○ http://spark.apache.org/
○ http://spark.apache.org/docs/latest/programming-guide.html 

● Pyspark
○ http://spark.apache.org/docs/latest/api/python/pyspark.html 

● Resilient Distributed Dataset: A Fault-tolerant Abstraction for 
in-Memory Cluster Computing. M. Zaharia et al.
○ https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf

http://spark.apache.org/
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/api/python/pyspark.html
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf


Challenges

Data cleaning: Majority of the work that goes into analyses lies in pre-processing data
● Munging, fusing, mushing and cleansing
● We need computational methods to clean data and data pipeline certainly should 

include an important step of “data cleaning” and “feature engineering”.
● Choosing from many features, the relevant features.
● Designing a math model from a 2D array (Ex: page rank)
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● Choosing the right features, picking the right algorithms, running the right 

significance tests, finding the right hyperparameters: all require experimentation
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Challenges

Information updates: The results of data analysis presented and the application 
becomes part of the production system…
● This system must frequently or in real time update itself driven by the availability of 

new data; ie fraud detection system.

How about the existing approaches?
● C++, Java are not good for EDA
● R is slow for large data sets and does not integrate well with production stacks
● Read-Evaluate-Print-Loop (REPL) are good for interaction but not work production

Want a framework that makes modeling easy, but also fits well in production systems
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Apache Spark

Apache Spark is an open-source, distributed processing system commonly 
used for big data workloads. 
● Utilizes in-memory caching 
● Optimized execution for fast performance 
● Supports general batch processing, streaming analytics, machine 

learning, graph databases, and ad hoc queries

http://spark.apache.org/


Programming Productivity

Biggest bottleneck in data applications is not CPU, disk, or network but 
analyst productivity

If only we could collapse the entire pipeline from pre-processing of data to 
model evaluation into a single programming environment…

Spark transitions seamlessly between exploratory analytics and 
operational analytics



Word Count in Spark (Python API)

text_file = spark.textFile("hdfs://...")

 

text_file.flatMap(lambda line: line.split())

    .map(lambda word: (word, 1))

    .reduceByKey(lambda a, b: a+b)



Resilient Distributed Datasets (RDDs)

The building block of the Spark API 
(http://spark.apache.org/docs/latest/programming-guide.html#resilient-di

stributed-datasets-rdds)

In RDD API there are two types of operations:
1. Transformations that define a new data set based on previous ones
2. Actions which kick off a job to execute on a cluster

http://spark.apache.org/docs/latest/programming-guide.html#resilient-distributed-datasets-rdds
http://spark.apache.org/docs/latest/programming-guide.html#resilient-distributed-datasets-rdds


RDD 
Transformations 
and Actions



RDD Transformations and Actions



Resilient Distributed Datasets (RDDs)

A distributed memory abstraction that enables in-memory computations 
on large clusters in a fault-tolerant manner
● Motivation: iterative algorithms, interactive data mining tools 

○ In both cases above keeping data in memory will help enormously for 
performance improvement

● RDDs are parallel data structures allowing coarse grained 
transformations

● It provides fault-tolerance by storing the lineage as opposed to the 
actual data as done in Hadoop



Transformations 
vs 

Actions



RDD Lineage

An RDD can depend on zero or more other RDDs
● ie when x = y.map(...), x will depend on y
● These dependency relationships can be thought of as a graph.

You can call this graph a lineage graph, as it represents the derivation of each RDD
● It is also necessarily a DAG, since a loop is impossible to be present in it.
● Narrow dependencies, where a shuffle is not required (think map and filter) can be 

collapsed into a single stage.
○ A stage is a unit of execution, generated by the scheduler from RDD dependency graph
○ Stages also depend on each other and the scheduler builds and uses this dependency 

graph (which is also necessarily a DAG) to schedule the stages



RDD Lineage



Resilience in HDFS vs Spark

HDFS

Fault-tolerance achieved by 
replicating blocks of data

If a node goes down, the data can 
be found on another node

Spark

Fault-tolerance achieved by 
storing chain of transformations

If data is lost, the chain of 
transformations can be 
recomputed on the original data

Spark will often use HDFS for stable storage of the original data



Representing RDDs

Each RDD is represented through a common interface that exposes 5 pieces of information: 
1. A set of partitions, atomic pieces of datasets
2. Set of dependencies on the parent RDDs
3. Function for computing the RDD from the parents
4. Metadata about partitioning scheme 
5. Data placement

See table 3 in the RDD paper →



Dependencies

Narrow dependencies: each parent RDD partition used by at most one child; ie map()
● allow pipelined execution: example map() and filter() in iterative fashion
● recovery after node failure is more efficient

Wide dependencies: multiple child partitions may depend on a parent RDD; ie join()
● Single failed node in a wide dependency lineage graph may cause loss of partition 

in many ancestral dependencies



Example Transformations

Map: Applying map to an RDD results in a new MappedRDD whose 
partitions and preferred locations are the same as the parent. It's iterator 
method applies the passed in function to the parent partitions.

Union: Called on 2 RDDs and returns an RDD whose partitions are the 
union of the parents partitions. Each child partition is computed from the 
corresponding parent partition.

Join: Joining two RDDs leads to two narrow dependencies if both parents 
are partitioned with the same partitioner), two wide dependencies, or a mix
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Narrow Dependencies

Narrow dependencies: each parent RDD 
partition used by at most one child
● We can pipeline computation of 

multiple narrow dependencies 
(compute map, followed by filter on 
a per element basis for example)



Wide Dependencies

Wide dependencies: multiple child partitions 
may depend on a parent RDD
● All data from all parents must be 

available (may require expensive data 
shuffling)

● Note: Joins may be either narrow or 
wide (or mixed) depending on how 
parents are partitioned



Execution Model

Remember: Transformations are lazily applied; Actions result in actual computation

When a user runs an action on an RDD, the scheduler uses that RDD's 
lineage graph to build a DAG of stages.
● Each stage contains as many pipelined transformations (with narrow 

dependencies) as possible
● Stage boundaries determined by wide dependencies, or already 

computed data



Execution Model

The figure to the right shows RDDs 
A-G, and the transformations used 
to derive them.

Black boxes are partitions that are 
already computed and stored in 
memory.



Execution Model

Stage 1: RDD B is derived from RDD 
A by a groupBy transformation.
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Execution Model

Stage 1: RDD B is derived from RDD 
A by a groupBy transformation.

The groupBy results in wide 
dependencies, and therefore required 
data to be shuffled.

The groupBy therefore is the 
boundary of stage 1.
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Stage 2: RDD F is derived by a union 
on D and E. D is derived by map on C.
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Execution Model

Stage 2: RDD F is derived by a union 
on D and E. D is derived by map on C.

All of these operations involve 
narrow dependencies and can be 
pipelined.

RDD G is the result of join on F and B, 
so this is the boundary of stage 2. 



Execution Model

Stage 3: RDD G is derived from a join 
on RDD B and G. 



Execution Model

Stage 3: RDD G is derived from a join 
on RDD B and G. 

G is NOT COMPUTED until the user 
executes an action on G, ie saving to 
disk, or performing a reduction. 



Execution Model

When the user calls an action on G:

Stage one does not need to be 
executed (it's result is already in 
memory)



Execution Model

When the user calls an action on G:

Stage one does not need to be 
executed (it's result is already in 
memory)

Stage 2 is scheduled for execution, 
followed by stage 3.
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Spark applications separate application logic from optimization logic
This allows developers to focus on correctness and performance 
separately.



Optimizing: Persisting and Partitioning

Spark applications separate application logic from optimization logic
This allows developers to focus on correctness and performance 
separately.

We saw a similar pattern with MapReduce: Correctness was entirely 
determined by Map and Reduce tasks, but then components like 
combiners and partitioners could provide performance benefits without 
changing correctness.



Partitioning

Spark allows us to specify how our data is partitioned

● Careful choice of partitioning can allow for more efficient execution
● For example, if two RDDs have the same partitioning scheme, 

performing a join transformation on them results in narrow 
dependencies (can be pipelined, cheaper fault-tolerance)

● Can also avoid the need for some communication



Persisting

Spark allows us to "persist" an RDD (keep it in memory)

● Spark allows users to call persist() on RDDs to keep them in storage 
(either in memory or on disk, depending on what we ask for)

● By persisting an RDD, we will not have to re-compute it or re-read it 
from disk in the future

● For iterative applications, this can result in huge performance gains 
that are not feasible with something like MapReduce



Example: 
PageRank

PageRank in Spark requires 3 RDDs:

1. The RDD containing the static graph 
links we are working with. Does not 
change across iterations.
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1. The RDD containing the static graph 
links we are working with. Does not 
change across iterations.

2. The RDD containing the ranks of each 
vertex for the current iteration. 
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Example: 
PageRank

Lineage graph for PageRank in Spark
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