
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 4/587
Data Intensive Computing

Day22
Spark Demo

mailto:epmikida@buffalo.edu

References

● Advanced Analytics with Spark by S. Ryza, U. Laserson, S. Owen and J. Wills

● Apache Spark documentation
○ http://spark.apache.org/
○ https://spark.apache.org/examples.html

● Pyspark Examples
○ https://github.com/apache/spark/tree/master/examples/src/main/python

● Resilient Distributed Dataset: A Fault-tolerant Abstraction for
in-Memory Cluster Computing. M. Zaharia et al.
○ https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf

http://spark.apache.org/
https://spark.apache.org/examples.html
https://github.com/apache/spark/tree/master/examples/src/main/python
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf

Running Spark

Spark can be installed following instructions here:
https://spark.apache.org/docs/latest/quick-start.html

In today's demos we'll be using the Python API, PySpark

https://spark.apache.org/docs/latest/quick-start.html

Running Spark

Once installed, we have two ways to run a Spark program:

Interactively via the Spark Shell (command: pyspark)
● Provides us with a REPL to try commands
● Provides a GUI to show us what our Spark programs are doing

Batch jobs via python or spark-submit
● Let's us specify a python script containing a Spark job we want to run

Word Count in Spark (Python API)

def countWords(sc, file):

 lines = sc.textFile(file)

 counts = lines.flatMap(lambda x: x.split(' ')) \

 .map(lambda x: (x, 1)) \

 .reduceByKey(lambda a,b: a + b)

 return counts

from pyspark.context import SparkContext

sc = SparkContext('local', 'test')

countWords(sc, "frankenstein.txt").saveAsTextFile("output")

Word Count in Spark

What does the RDD DAG generated by the word count program look like?

How many stages does it have?

Word Count
in Spark

lines

counts

flatMap, map

reduceByKey

saveAsTextFile

Word Count
in Spark

Narrow dependencies
(don't require shuffling data)

lines

counts

flatMap, map

reduceByKey

saveAsTextFile

Word Count
in Spark

Narrow dependencies
(don't require shuffling data)

lines

counts

flatMap, map

reduceByKeyWide dependencies
(data must be shuffled)

saveAsTextFile

Word Count
in Spark

lines

counts

flatMap, map

reduceByKey

St
ag

e
0

St
ag

e
1

saveAsTextFile

Adding Joins…

def countWords(sc, files):

 output = None

 for file in files:

 lines = sc.textFile(file)

 counts = lines.flatMap(lambda x: x.split(' ')) \

 .map(lambda x: (x, 1)) \

 .reduceByKey(lambda a,b: a + b)

 if output == None:

 output = counts

 else:

 output = output.fullOuterJoin(counts)

 return output

Adding Joins…

def countWords(sc, files):

 output = None

 for file in files:

 lines = sc.textFile(file)

 counts = lines.flatMap(lambda x: x.split(' ')) \

 .map(lambda x: (x, 1)) \

 .reduceByKey(lambda a,b: a + b)

 if output == None:

 output = counts

 else:

 output = output.fullOuterJoin(counts)

 return output

Join the counts of many text files

Adding Joins…

Now what does the RDD DAG generated by the word count program look like
(let's say for 3 text files)?

How many stages does it have?

Adding Joins

lines[0]

counts[1]How is this DAG broken
into stages?

lines[1]

counts[1]

lines[2]

counts[2]

result

result

flatMap, map

reduceByKey

flatMap, map

reduceByKey

join

join

Adding Joins
We still have a stage per
reduceByKey…but what
about the joins?

lines[0]

counts[1]

lines[1]

counts[1]

lines[2]

counts[2]

result

result

reduceByKey reduceByKey

join

join

Adding Joins
If the parents have the
same partitioning
scheme, the joins are
narrow and can be in one
stage!

lines[0]

counts[1]

lines[1]

counts[1]

lines[2]

counts[2]

result

result

reduceByKey reduceByKey

join

join

Adding Joins
Also note that due to lazy
evaluation, we can include
ALL 3 count RDDs in the
same stage for joins!

lines[0]

counts[1]

lines[1]

counts[1]

lines[2]

counts[2]

result

result

reduceByKey reduceByKey

join

join

Adding Joins
If the parents do not have
the same partitioning, the
joins are wide and must
be in their own stages.

lines[0]

counts[1]

lines[1]

counts[1]

lines[2]

counts[2]

result

result

reduceByKey reduceByKey

join

join

PageRank in Spark

def pageRank(sc, file, iters, cache = False):
 lines = sc.textFile(file)
 links = lines.map(lambda urls: parseNeighbors(urls)) \
 .groupByKey()
 .cache()
 N = links.count()
 ranks = links.map(lambda u: (u[0], 1.0/N))

 for i in range(iters):
 contribs = links.join(ranks) \
 .flatMap(lambda u: computeContribs(u[1][0], u[1][1]))

 ranks = contribs.reduceByKey(lambda a,b: a+b) \
 .mapValues(lambda rank: rank * 0.85 + 0.15*(1.0/N))
 return ranks

PageRank in
Spark

links

Assuming we partition
intelligently, how does this
DAG get broken into
stages?

ranks[0]

contribs[0]

ranks[1]

contribs[1]

ranks[2]

join

reduceByKey

reduceByKey

join

PageRank in
Spark

links ranks[0]

contribs[0]

ranks[1]

contribs[1]

ranks[2]

join

reduceByKey

reduceByKey

join

PageRank in
Spark

links

Note: If links and ranks
are partitioned differently,
then the joins will need
their own stages as well!

ranks[0]

contribs[0]

ranks[1]

contribs[1]

ranks[2]

join

reduceByKey

reduceByKey

join

