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Running Spark

Spark can be installed following instructions here: 
https://spark.apache.org/docs/latest/quick-start.html 

In today's demos we'll be using the Python API, PySpark

https://spark.apache.org/docs/latest/quick-start.html


Running Spark

Once installed, we have two ways to run a Spark program:

Interactively via the Spark Shell (command: pyspark)
● Provides us with a REPL to try commands
● Provides a GUI to show us what our Spark programs are doing

Batch jobs via python or spark-submit
● Let's us specify a python script containing a Spark job we want to run



Word Count in Spark (Python API)

def countWords(sc, file):

  lines = sc.textFile(file)

  counts = lines.flatMap(lambda x: x.split(' ')) \

                .map(lambda x: (x, 1)) \

                .reduceByKey(lambda a,b: a + b)

  return counts

from pyspark.context import SparkContext

sc = SparkContext('local', 'test')

countWords(sc, "frankenstein.txt").saveAsTextFile("output")



Word Count in Spark

What does the RDD DAG generated by the word count program look like?

How many stages does it have?
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Adding Joins…

def countWords(sc, files):

  output = None

  for file in files:

    lines = sc.textFile(file)

    counts = lines.flatMap(lambda x: x.split(' ')) \

                  .map(lambda x: (x, 1)) \

                  .reduceByKey(lambda a,b: a + b)

                                                                                             

    if output == None:

      output = counts

    else:

      output = output.fullOuterJoin(counts)

  return output



Adding Joins…

def countWords(sc, files):

  output = None

  for file in files:

    lines = sc.textFile(file)

    counts = lines.flatMap(lambda x: x.split(' ')) \

                  .map(lambda x: (x, 1)) \

                  .reduceByKey(lambda a,b: a + b)

                                                                                             

    if output == None:

      output = counts

    else:

      output = output.fullOuterJoin(counts)

  return output

Join the counts of many text files



Adding Joins…

Now what does the RDD DAG generated by the word count program look like 
(let's say for 3 text files)?

How many stages does it have?
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Adding Joins
We still have a stage per 
reduceByKey…but what 
about the joins?
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Adding Joins
If the parents have the 
same partitioning 
scheme, the joins are 
narrow and can be in one 
stage!
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Adding Joins
Also note that due to lazy 
evaluation, we can include 
ALL 3 count RDDs in the 
same stage for joins!
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Adding Joins
If the parents do not have 
the same partitioning, the 
joins are wide and must 
be in their own stages.
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PageRank in Spark

def pageRank(sc, file, iters, cache = False):                                                                                
  lines = sc.textFile(file)
  links = lines.map(lambda urls: parseNeighbors(urls)) \
               .groupByKey()
               .cache()                                                                           
  N = links.count() 
  ranks = links.map(lambda u: (u[0], 1.0/N))
                  
  for i in range(iters):                                                                     
    contribs = links.join(ranks) \
                    .flatMap(lambda u: computeContribs(u[1][0], u[1][1]))

    ranks = contribs.reduceByKey(lambda a,b: a+b) \
                    .mapValues(lambda rank: rank * 0.85 + 0.15*(1.0/N))
  return ranks
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PageRank in 
Spark

links

Note: If links and ranks 
are partitioned differently, 
then the joins will need 
their own stages as well!
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