
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 503
Introduction to Computer Science for Non-Majors

Day 02
Expressions

mailto:epmikida@buffalo.edu

Announcements

Important links now on UBLearns

Recap

Let’s talk about data!

What data is meaningful to you?

Any questions that came up?

A few examples of my own

Cleaning lists for fantasy football Custom card generation

● Each suit goes from 1-16
● 16 different suits
● 256 cards in total

hours to do by hand…

…python script takes minutes

01. Allen, Josh, QB, 17
02. Singeltary, Devin, RB, 26
03. Diggs, Stefon, WR, 14
04. Davis, Gabriel, WR, 13

…

QB
Josh Allen
Justin Herbert

…

RB
Devin Singeltary
Dalvin Cook

…

WR
Stefon Diggs
Gabriel Davis
Cooper Kupp

…

Turn this…

…into these

Agenda

Basic principles for this course

Expressions

Demo: Expressions in Python

Basic Principles

Always keep in mind…change is inevitable (especially in tech)

Programming languages come and go

Core concepts remain

Programmers adapt and learn

Basic Principles

We aim to learn fundamental concepts common to all (or at least most)
programming languages

Specific details differ across languages

I will try to differentiate between fundamental concepts and language specifics

When in doubt, ask!

Many topics will be revisited/expanded upon

Skills develop with practice

Expressions, what are they?

An expression is a part of a program that has a value

Expressions, what are they?

An expression is a part of a program that has a value

for example…

4 3 + 7

Expressions, what are they?

An expression is a part of a program that has a value

for example…

4 3 + 7
Simple Expression Compound Expression

Expressions, what are they?

An expression is a part of a program that has a value

for example…

4 3 + 7
Simple Expression Compound Expression

Made up of multiple
simple expressions…

Expressions, what are they?

An expression is a part of a program that has a value

for example…

4 3 + 7
Simple Expression Compound Expression

3 + 7
Can be expressed as a tree

(this will be useful later)

Simple vs Compound

Simple Expressions

Atomic (cannot be decomposed)

Examples

12

2

Compound Expressions

Composed of multiple sub-expressions

Examples

2+7

-10 * 4 - 6

Simple Expressions (more than just numbers)

Types of simple expressions

● Numeric literals
○ int (ie: 2, 10, 465)
○ float (ie: 3.14, 17.999)

● Boolean literals
○ bool (True or False)

● Text literals (strings)
○ str (ie “Hello” or ‘goodbye’)

Simple Expressions (more than just numbers)

Types of simple expressions

● Numeric literals
○ int (ie: 2, 10, 465)
○ float (ie: 3.14, 17.999)

● Boolean literals
○ bool (True or False)

● Text literals (strings)
○ str (ie “Hello” or ‘goodbye’)

This syntax is specific to python

Compound Expressions

Compound expressions are made up of:
one or more expressions AND one operator

-17
[unary negation operator (-) with a simple expression (17)]

43 - 5
[binary subtraction operator (-), two simple expressions (43 and 5)]

What about more than one operator?

3 + 4 * 5, is it a valid expression?

What about more than one operator?

3 + 4 * 5, is it a valid expression?

Let’s break it down:

What about more than one operator?

3 + 4 * 5, is it a valid expression?

Let’s break it down:

expression expression

operator

What about more than one operator?

3 + 4 * 5, is it a valid expression?

Let’s break it down:

3 expression

+

What about more than one operator?

3 + 4 * 5, is it a valid expression?

Let’s break it down:

3 4 * 5

+

What about more than one operator?

3 + 4 * 5, is it a valid expression?

Let’s break it down:

3 *

+

4 5

What about more than one operator?

3 + 4 * 5, is it a valid expression?

Let’s break it down:

+ 5

*

3 4

Order of Operations

Follow rules from math:

Parenthesis first
Then multiplication/division
Then addition/subtraction

6 - 3 + (1 + 4 * 5) evaluates to 24

most programming languages follow this convention

Binary Operators (in Python)

Addition (+)

Subtraction (-)

Multiplication (*)

Division (/ or //)

Modulo (%)

Comparisons (<,<=,>,>=,==,!=)

Binary Operators (in Python)

Addition (+)

Subtraction (-)

Multiplication (*)

Division (/ or //)

Modulo (%)

Comparisons (<,<=,>,>=,==,!=)

/ and // give fractional and integer
results respectively.

% calculates the remainder.

10 / 3 evaluates to 3.333333

10 // 3 evaluates to 3

10 % 3 evaluates to 1

String Expressions

Expressions are evaluated to produce their values

The expression “hello” has value “hello”

The expression “hello “ + “world” is “hello world”

Note the space in “hello “

String Expressions

Expressions are evaluated to produce their values

The expression “hello” has value “hello”

The expression “hello “ + “world” is “hello world”

Note the space in “hello “

Here (+) is the string concatenation operator…context matters!

we also saw this with unary (-) vs binary (-)

Demo in Replit

