
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 503
Introduction to Computer Science for Non-Majors

Day 04
Function Definitions and Modules

mailto:epmikida@buffalo.edu

Announcements

Schedule is now up on the course website

Office hours start this week

Labs start next week

Recap

● Two new kinds of expressions: variables and function calls
● Variables are a name that has been assigned a value
● Functions are a group of statements

○ They take arguments as input, do some work, and return a value
● Statements don’t have a value, they have an effect

○ Assignment statement is used to create a variable, by assigning it a value
● Python has a number of useful built-in functions

○ But what if we need more…

Modules

● In addition to built-in functions, python also has a number of libraries
○ These libraries define their own functions
○ If you import these libraries, you can use their functions
○ Modules may also define variables

Math module in python

import math

x = 12
y = math.sin(x)
z = math.cos(x)

r = 42
area = math.pi * r * r

Math module in python

import math

x = 12
y = math.sin(x)
z = math.cos(x)

r = 42
area = math.pi * r * r

The import statement
tells python to load a

particular library

Math module in python

import math

x = 12
y = math.sin(x)
z = math.cos(x)

r = 42
area = math.pi * r * r

The import statement
tells python to load a

particular library

Once you’ve imported a
library, you can call its
functions…

…and use it’s variables

Function Definitions

Function definitions have a header and a body

The general form of a function definition looks like:

def <name>(<parameter list>):
<statement 1>
<statement 2>
…

Function Definitions

Function definitions have a header and a body

The general form of a function definition looks like:

def <name>(<parameter list>):
<statement 1>
<statement 2>
…

This is the header

It defines the name of the
function and the parameters
(inputs) it takes

Essentially, it defines how
the function is called

Function Definitions

Function definitions have a header and a body

The general form of a function definition looks like:

def <name>(<parameter list>):
<statement 1>
<statement 2>
…

This is the header

It defines the name of the
function and the parameters
(inputs) it takes

Essentially, it defines how
the function is called

This is the body

It is a sequence of
statements

Essentially, it defines
what the function does

Function Definitions

Function definitions have a header and a body

The general form of a function definition looks like:

def <name>(<parameter list>):
<statement 1>
<statement 2>
…

This is the header

It defines the name of the
function and the parameters
(inputs) it takes

Essentially, it defines how
the function is called

This is the body

It is a sequence of
statements

Essentially, it defines
what the function does

Notice: The body is indented one level to the right of the header. This is required!

Now an Example

def averageOfThree(x, y, z):
average = (x + y + z) / 3
return average

Now an Example

def averageOfThree(x, y, z):
average = (x + y + z) / 3
return average

def is a keyword

Keywords are words
reserved by python for

specific uses. You cannot
use them as a name.

A full list is here

https://docs.python.org/3/reference/lexical_analysis.html#keywords

Now an Example

def averageOfThree(x, y, z):
average = (x + y + z) / 3
return average

def is a keyword

Keywords are words
reserved by python for

specific uses. You cannot
use them as a name.

A full list is here

averageOfThree is the name we have
given this function. Function names

follow the same rules as variable names.

https://docs.python.org/3/reference/lexical_analysis.html#keywords

Now an Example

def averageOfThree(x, y, z):
average = (x + y + z) / 3
return average

def is a keyword

Keywords are words
reserved by python for

specific uses. You cannot
use them as a name.

A full list is here

averageOfThree is the name we have
given this function. Function names

follow the same rules as variable names.

x, y, and z are the three
parameters for this
function.

They are variables that
can be used in the
function body, and get
their values from the
arguments given when
the function is called.

https://docs.python.org/3/reference/lexical_analysis.html#keywords

Now an Example

def averageOfThree(x, y, z):
average = (x + y + z) / 3
return average

def is a keyword

Keywords are words
reserved by python for

specific uses. You cannot
use them as a name.

A full list is here

averageOfThree is the name we have
given this function. Function names

follow the same rules as variable names.

x, y, and z are the three
parameters for this
function.

They are variables that
can be used in the
function body, and get
their values from the
arguments given when
the function is called.

The commas, parenthesis, and
colon are delimiters.

https://docs.python.org/3/reference/lexical_analysis.html#keywords

Now an Example

def averageOfThree(x, y, z):
average = (x + y + z) / 3
return average

Now an Example

def averageOfThree(x, y, z):
average = (x + y + z) / 3
return average The parameters

can be used in the
function body.

Now an Example

def averageOfThree(x, y, z):
average = (x + y + z) / 3
return average The parameters

can be used in the
function body.

This is a return statement.

It is a statement that occurs
to signify the end of a

function, and the value that
the function returns.

Now an Example

def averageOfThree(x, y, z):
average = (x + y + z) / 3
return average The parameters

can be used in the
function body.

This is a return statement.

It is a statement that occurs
to signify the end of a

function, and the value that
the function returns.

return is a keyword
It is followed by any expression.
The value of the expression becomes
the value of the function call!

Demo in Replit

In depth execution example

What actually happens when we execute:

answer = averageOfThree(5+7, 8, 2)

In depth execution example

answer = averageOfThree(5+7, 8, 2) def averageOfThree(x, y, z):

average = (x + y + z) / 3

return average

In depth execution example

answer = averageOfThree(5+7, 8, 2)

To execute this statement, we first
evaluate the expression on the
right-hand side to get a value.

def averageOfThree(x, y, z):

average = (x + y + z) / 3

return average

In depth execution example

answer = averageOfThree(5+7, 8, 2)

12 8 2

The expression on the right-hand
side is a function call.

To evaluate the function call, we
must first get values for each
argument.

def averageOfThree(x, y, z):

average = (x + y + z) / 3

return average

In depth execution example

answer = averageOfThree(5+7, 8, 2)

12 8 2

The arguments (values) are then
stored in the functions parameters
(variables).

These variables are stored in a table,
or environment.

def averageOfThree(x, y, z):

average = (x + y + z) / 3

return average

Name Value

x 12

y 8

z 2

In depth execution example

answer = averageOfThree(5+7, 8, 2)

We then start executing the function
body, using values from the current
environment when evaluating
variables, and adding to the
environment as needed.

def averageOfThree(x, y, z):

average = (x + y + z) / 3

return average

Name Value

x 12

y 8

z 2

In depth execution example

answer = averageOfThree(5+7, 8, 2)

We then start executing the function
body, using values from the current
environment when evaluating
variables, and adding to the
environment as needed.

def averageOfThree(x, y, z):

average = (x + y + z) / 3

return average
Using values of x, y,
and z, this
expression
evaluates to 7.3333

Name Value

x 12

y 8

z 2

In depth execution example

answer = averageOfThree(5+7, 8, 2)

We then start executing the function
body, using values from the current
environment when evaluating
variables, and adding to the
environment as needed.

def averageOfThree(x, y, z):

average = (x + y + z) / 3

return average

Name Value

x 12

y 8

z 2

average 7.3333

Using values of x, y,
and z, this
expression
evaluates to 7.3333

The value is assigned to the
variable average, which we add

to the current environment.

In depth execution example

answer = averageOfThree(5+7, 8, 2)

When we hit a return statement we
evaluate the expression (based on
the current environment).

That value becomes the value of our
function call.

def averageOfThree(x, y, z):

average = (x + y + z) / 3

return average

Name Value

x 12

y 8

z 2

average 7.3333

In depth execution example

answer = averageOfThree(5+7, 8, 2)

When we hit a return statement we
evaluate the expression (based on
the current environment).

That value becomes the value of our
function call.

def averageOfThree(x, y, z):

average = (x + y + z) / 3

return average

Name Value

x 12

y 8

z 2

average 7.3333

average evaluates
to 7.3333

In depth execution example

answer = averageOfThree(5+7, 8, 2)

When we hit a return statement we
evaluate the expression (based on
the current environment).

That value becomes the value of our
function call.

def averageOfThree(x, y, z):

average = (x + y + z) / 3

return average

Name Value

x 12

y 8

z 2

average 7.3333

average evaluates
to 7.3333

Therefore, our function call evaluates to 7.3333

In depth execution example

answer = averageOfThree(5+7, 8, 2)

We can then finish executing our
original assignment statement,
which stores the value 7.3333 in the
variable named answer.

def averageOfThree(x, y, z):

average = (x + y + z) / 3

return average

Name Value

answer 7.3333

In depth execution example

answer = averageOfThree(5+7, 8, 2)

We can then finish executing our
original assignment statement,
which stores the value 7.3333 in the
variable named answer.

def averageOfThree(x, y, z):

average = (x + y + z) / 3

return average

Name Value

answer 7.3333 Notice: Once the function execution ends, anything in the environment
that was part of the function is removed!

