
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 503
Introduction to Computer Science for Non-Majors

Day 13
Dictionaries

mailto:epmikida@buffalo.edu

Recap

● Mistakes will happen and things will go wrong
● How do we fix it? First we need to figure out what is going wrong.

○ We can use output (print or console.log) to give more information about
what is happening during execution.

○ Checking that the output matches with our expectations can help reveal
where things have gone wrong.

○ Asserts can also be used to automate the checking, and error messages
can give more details on why a failure occurs.

DNA Frequency Exercise from Last Time

Write a function called dnaFrequency that takes a single DNA string, and
returns a list of 4 lists, one for each base and its count.

For example:

dnaFrequency("ACAGCCTAAG") must return
[["A", 4],["C", 3], ["G",2],["T",1]]

dnaFrequency("TCAGCCTAAG") must return
[["A", 3],["C", 3], ["G",2],["T",2]]

DNA Frequency

1. def dnaFrequency(string):

2. bases = "ACGT"

3. l = []

4. for b in bases:

5. l.append([b, dnaCount(string, b)])

6.

7. return l

Was there anything…odd about our solution?

●

Was there anything…odd about our solution?

● What order do we put the lists in? Why?
○ Now we have to remember this order…

Was there anything…odd about our solution?

● What order do we put the lists in? Why?
○ Now we have to remember this order…

● How would we access the count for "A", for example?
○ f = dnaFrequency("AACTACGGCT")
○ f[0][1]
○ That is awkward. What ties that to "A"?
○ What if the order changes?

Was there anything…odd about our solution?

● What order do we put the lists in? Why?
○ Now we have to remember this order…

● How would we access the count for "A", for example?
○ f = dnaFrequency("AACTACGGCT")
○ f[0][1]
○ That is awkward. What ties that to "A"?
○ What if the order changes?

● How would we prefer to access the data?

Ordered vs Associative

● So far the collections we've seen (lists and arrays) have been ordered
○ They store a collection of values in a specific order
○ We access elements by their position in the list

■ ie a[0], a[3], a[147]
● Associative collections are different type of collection we can use in

both Python and JavaScript
○ These collections associate a key with a value (called a <key, value> pair)
○ We access elements by their key

Key-Value Pairs in Real Life

<"First Name":"Eric"> <"Occupation":"Lecturer">

<"Siblings":3>

<"UBIT":"epmikida">

<"Last Name":"Mikida">

<"Favorite Number":2>

Key-Value Pairs in DNA Example

<"A": 17>

<"C": 4>

<"T": 9>

<"G": 14>

Python: Dictionary

● In Python, a key-value mapping is called a Dictionary
○ Dictionaries are indexed by key (instead of by a position)
○ A dictionary consists of a collection of key:value pairs, with the

requirement that keys are unique
○ Strings can be keys, but so can any other value

Python Dictionary

The delimiters used to specific dictionaries are curly braces { }

An empty dictionary can be created with a set of braces:

d1 = {}

A dictionary can be given initial key:value pairs by giving it a comma
separated list of key:value pairs inside the braces. This is also how
dictionaries are printed as output.

d2 = {'A':6, 'C':3, 'G':1, 'T':2}

Python Dictionary

The delimiters used to specific dictionaries are curly braces { }

An empty dictionary can be created with a set of braces:

d1 = {}

A dictionary can be given initial key:value pairs by giving it a comma
separated list of key:value pairs inside the braces. This is also how
dictionaries are printed as output.

d2 = {'A':6, 'C':3, 'G':1, 'T':2}

Python Dictionary: Creation

The delimiters used to specific dictionaries are curly braces { }

An empty dictionary can be created with a set of braces:

d1 = {}

A dictionary can be given initial key:value pairs by giving it a comma
separated list of key:value pairs inside the braces. This is also how
dictionaries are printed as output.

d2 = {'A':6, 'C':3, 'G':1, 'T':2}

Python Dictionary: Element Access

Square brackets can be used to add/update/access individual items:
d = {"name":"Eric"}

d["age"] = 32 # Brackets can add a key:value pair

d["age"] = 29 # They can also update an existing pair

print(d["age"]) # ...or just to access a value

Python Dictionary: Element Access

Square brackets can be used to add/update/access individual items:
d = {"name":"Eric"}

d["age"] = 32 # Brackets can add a key:value pair

d["age"] = 29 # They can also update an existing pair

print(d["age"]) # ...or just to access a value

The update function can be used to add/update from another dictionary
d.update({"age":50, "job":"Lecturer"})

Python Dictionary: Element Access

The get function provides a different way to access values
Behave the same if the key exists

print(d["name"]) # Prints "Eric"

print(d.get("name")) # Prints "Eric"

Python Dictionary: Element Access

The get function provides a different way to access values
Behave the same if the key exists

print(d["name"]) # Prints "Eric"

print(d.get("name")) # Prints "Eric"

Behave different when the key does not exist

print(d["salary"]) # Error! Key not in dictionary

print(d.get("salary")) # No error, no return value

print(d.get("salary", False)) # Returns false

Python Dictionary: Removal

Items can be removed with the del keyword, or pop function
del d["age"] # Removes "age", returns nothing
d.pop("job") # Removes "job", returns its value
print(d) # Now d is just {"name":"Eric"}

Membership can be tested with in and not in
"name" in d # Would evaluate to True
"age" in d # Would evaluate to False (age was just removed)
"job" not in d # Would evaluate to True

Python Dictionary: Keys, Values, Items

Dictionaries provide access to sequences for keys, values, and pairs
d = {"Manager":"Sally", "Cashier":"Bob", "Security":"Joel"}
for k in d.keys(): # Will print out "Manager", "Cashier", etc...
 print(k)

for v in d.values(): # Will print out "Sally", "Bob", "Joel"
 print(v)

for x in d.items(): # Will print out ("Manager", "Sally"), etc...
 print(x)

DNA Frequency Revisited

Write a function called dnaFrequency that takes a single DNA string, and
returns a dictionary containing the frequency of each base.

For example:

dnaFrequency("ACAGCCTAAG") must return
{"A":4,"C":3,"G":2,"T":1}

How does this compare to the list version?

