
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 503
Introduction to Computer Science for Non-Majors

Day 14
Associative Collections in JavaScript

mailto:epmikida@buffalo.edu

Announcements

● Slight office hours change for Wednesdays
● Monday — Come prepared with questions/examples!

Recap

Dictionaries are a type of associative collection in Python

They are a collection of key:value pairs:
dict = {"name":"Eric", "job":"Lecturer"}

Values can be accessed, added, and updated via a key using square brackets []:
dict["age"] = 32

We can remove keys using del or pop:
del d["age"]

We can test if a key exists in a dictionary using in or not in:
"name" in d

DNA Frequency Example

Write a function called dnaFrequency that takes a single DNA string, and
returns a dictionary containing the frequency of each base.

For example:

dnaFrequency("ACAGCCTAAG") must return
{"A":4,"C":3,"G":2,"T":1}

How does this compare to the list version?

Associative Collections in JavaScript

● JavaScript also has associative collections for storing key:value pairs
● They come in two varieties: Objects and Maps

○ Objects: Simpler, but more restrictive. Direct JSON support.
○ Maps: More complex, richer operations. No JSON support.

● For now, our focus will be on Objects

Object: Operations

Creation:
let x = {};

let y = {'a':1, 'b':2, 'c':3, 'd':4};

Object: Operations

Creation:
let x = {};

let y = {'a':1, 'b':2, 'c':3, 'd':4};

Update/Add/Access:
y['c'] = 12; // Can use an expression...

y.b = 7; // ...or a literal as the key

y['z'] = 3;

console.log(y['c'])

console.log(y.c)

Object: Operations

Creation:
let x = {};

let y = {'a':1, 'b':2, 'c':3, 'd':4};

Update/Add/Access:
y['c'] = 12; // Can use an expression...

y.b = 7; // ...or a literal as the key

y['z'] = 3;

console.log(y['c'])

console.log(y.c)

Updating existing values

Object: Operations

Creation:
let x = {};

let y = {'a':1, 'b':2, 'c':3, 'd':4};

Update/Add/Access:
y['c'] = 12; // Can use an expression...

y.b = 7; // ...or a literal as the key

y['z'] = 3;

console.log(y['c'])

console.log(y.c)

Adding a new key:value pair

Object: Operations

Creation:
let x = {};

let y = {'a':1, 'b':2, 'c':3, 'd':4};

Update/Add/Access:
y['c'] = 12; // Can use an expression...

y.b = 7; // ...or a literal as the key

y['z'] = 3;

console.log(y['c'])

console.log(y.c)

Accessing (and printing) the value of
existing key:value pairs

Object: Operations

Removal:
delete y['c']

delete y.c

Object: Operations

Removal:
delete y['c']

delete y.c

Membership Test:
'c' in x

!('c' in x)

Object: Components

Direct Access to All Keys, Values, and Pairs:
Object.keys(y);

Object.values(y);

Object.entries(y);

Exercise #1

Write a function, valueCount, that given a dictionary and a value, counts
the number of times that the value shows up in the dictionary.

Examples:
valueCount({}, 32) # Should return 0

valueCount({"Eric":32,"Alicia":30,"Cory":30},30) # Should return 2

Exercise #2

Write a function getKeysFor that takes a dictionary and a value, and
returns a list of all the keys in the dictionary that have that value.

Examples:
getKeysFor({"Eric":32,"Alicia":30,"Cory":30},30)

Should return ["Alicia", "Cory"]

getKeysFor({"Eric":32,"Alicia":30,"Cory":30},29)

Should return []

