
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 503
Introduction to Computer Science for Non-Majors

Day 15
Problem Decomposition

mailto:epmikida@buffalo.edu

Announcements

● Lab 2 AutoLab will be open for submissions by tonight — Please make
sure to submit sooner rather than later

Recap

…we've covered a lot of stuff so far

Recap

…we've covered a lot of stuff so far

How do we know when to use it?

Storing Values

How do we store values in our programs?
● We can use variables to store a single value
● We can use ordered collections (lists/arrays) to store multiple values
● We can use associative collections (dictionaries/objects) to store

multiple key-value pairs

Why do we store values in our programs?
● So we can use them later (like making a note or reminder for yourself)
● To give a value a name/meaning (ie: pi = 3.14159)

Storing Values

How do we store values in our programs?
● We can use variables to store a single value
● We can use ordered collections (lists/arrays) to store multiple values
● We can use associative collections (dictionaries/objects) to store

multiple key-value pairs

Why do we store values in our programs?
● So we can use them later (like making a note or reminder for yourself)
● To give a value a name/meaning (ie: pi = 3.14159)

How would we store the following?

Storing Values

Someone's name

A grocery list

The name and price of an item

A stock market quote

A receipt

The population of a country

Words in a book

A students name, major, and year

A class roster with names and
grades

How would we store the following?

Storing Values

Someone's name

A grocery list

The name and price of an item

A stock market quote

A receipt

The population of a country

Words in a book

A students name, major, and year

A class roster with names and
grades

Variables

How would we store the following?

Storing Values

Someone's name

A grocery list

The name and price of an item

A stock market quote

A receipt

The population of a country

Words in a book

A students name, major, and year

A class roster with names and
grades

Lists

How would we store the following?

Storing Values

Someone's name

A grocery list

The name and price of an item

A stock market quote

A receipt

The population of a country

Words in a book

A students name, major, and year

A class roster with names and
grades

Dictionaries

How would we store the following?

Storing Values

Someone's name

A grocery list

The name and price of an item

A stock market quote

A receipt

The population of a country

Words in a book

A students name, major, and year

A class roster with names and
grades

A list of
dictionaries

Defining Tasks

A function allow you a define a task

Functions have inputs and an output
1. Do something with the inputs
2. Potentially have other effects, ie printing something
3. Produce an output

Defining Tasks

1. eat("Cereal")

2. driveTo("Work")

3. work(["CSE487", "CSE503"])

4. eat("Pizza")

5. work(["Make slides", "TA meeting", "CSE250"])

6. driveTo("Home")

7. eat("Spaghetti")

Defining Tasks

1. eat("Cereal")

2. driveTo("Work")

3. work(["CSE487", "CSE503"])

4. eat("Pizza")

5. work(["Make slides", "TA meeting", "CSE250"])

6. driveTo("Home")

7. eat("Spaghetti")

The same function can be called with
different inputs

Making Decisions

If statements are used to make decisions…
You can choose to do something conditionally:
● I will only wear a jacket if it is cold
● If it is a weekday, I will go to work

You can choose between multiple options:
● I will order strawberry if they have it, otherwise I will order vanilla
● If you have above a 90, you will get an A. If instead you have above and 80, you will

get a B…

Language to look for:
○ if, check, when, instead, otherwise, choose, select, which

Making Decisions

If statements are used to make decisions…
You can choose to do something conditionally:
● I will only wear a jacket if it is cold
● If it is a weekday, I will go to work

You can choose between multiple options:
● I will order strawberry if they have it, otherwise I will order vanilla
● If you have above a 90, you will get an A. If instead you have above and 80, you will

get a B…

Language to look for:
○ if, check, when, instead, otherwise, choose, select, which

Making Decisions

If statements are used to make decisions…
You can choose to do something conditionally:
● I will only wear a jacket if it is cold
● If it is a weekday, I will go to work

You can choose between multiple options:
● I will order strawberry if they have it, otherwise I will order vanilla
● If you have above a 90, you will get an A. If instead you have above and 80, you will

get a B…

Language to look for:
○ if, check, when, instead, otherwise, choose, select, which

Making Decisions

If statements are used to make decisions…
You can choose to do something conditionally:
● I will only wear a jacket if it is cold
● If it is a weekday, I will go to work

You can choose between multiple options:
● I will order strawberry if they have it, otherwise I will order vanilla
● If you have above a 90, you will get an A. If instead you have above and 80, you will

get a B…

Language to look for:
● if, check, when, instead, otherwise, choose, select, which

Repeating Tasks

To repeat a task multiple times, we use a loop…

Often used with collections (ordered and associative)
● Do something with every item in a collection
● Search for something specific in a collection
● Accumulate some value (sum, product, count, etc)

Language to look for:
● all, for each, each, every, times, find, total

Repeating Tasks

To repeat a task multiple times, we use a loop…

Often used with collections (ordered and associative)
● Do something with every item in a collection
● Search for something specific in a collection
● Accumulate some value (sum, product, count, etc)

Language to look for:
● all, for each, each, every, times, find, total

Repeating Tasks

To repeat a task multiple times, we use a loop…

Often used with collections (ordered and associative)
● Do something with every item in a collection
● Search for something specific in a collection
● Accumulate some value (sum, product, count, etc)

Language to look for:
● all, for each, each, every, times, find, total

Repeating Tasks

● Print "hello" 10 times
● Calculate the total price of every item in your shopping cart
● Email every student in class
● Put away all your books
● Find the longest book on the shelf
● Check the expiration date of each item in the fridge

Big Exercise

A shopping cart dictionary pairs customer names with lists of items they
plan to buy. For example:

shoppingCarts = {
 'joe' : ['milk', 'cookies', 'spinach'],
 'amy' : ['carrots', 'flour', 'sugar', 'milk', 'cereal'] }

A price list dictionary pairs product names with the prices. For example:

priceList = { 'milk':1.49, 'cookies':2.00, 'spinach':0.49, 'carrots':1.00,
 'flour' : 2.49, 'sugar' : 2.29, 'cereal' : 1.79 }

Big Exercise

Define a function named cartTotals that takes a shopping cart
dictionary and a price list dictionary, and returns a new dictionary of
customer names and the total amount they owe for their purchases.

Big Exercise

Define a function named cartTotals that takes a shopping cart
dictionary and a price list dictionary, and returns a new dictionary of
customer names and the total amount they owe for their purchases.

…there's a lot going on…

Big Exercise

Define a function named cartTotals that takes a shopping cart
dictionary and a price list dictionary, and returns a new dictionary of
customer names and the total amount they owe for their purchases.

…there's a lot going on…

…this is bigger than problems we've solved before…

Big Exercise

Define a function named cartTotals that takes a shopping cart
dictionary and a price list dictionary, and returns a new dictionary of
customer names and the total amount they owe for their purchases.

…there's a lot going on…

…this is bigger than problems we've solved before…

Where do we even begin!?

Problem Decomposition

Take a deep breath…

Problem Decomposition

Take a deep breath…

We have all of the knowledge we need.

Problem Decomposition

Take a deep breath…

We have all of the knowledge we need.

To approach bigger problems, we just need to break them down into
smaller sub-problems.

Problem Decomposition

Take a deep breath…

We have all of the knowledge we need.

To approach bigger problems, we just need to break them down into
smaller sub-problems.

What are possible sub-problems for this exercise?

Problem Decomposition

What are possible sub-problems for this exercise?

Define a function named cartTotals that takes a shopping cart
dictionary and a price list dictionary, and returns a new dictionary of
customer names and the total amount they owe for their purchases.

Problem Decomposition

What are possible sub-problems for this exercise?

For each customer, we have to compute their total cost

Problem Decomposition

What are possible sub-problems for this exercise?

For each customer, we have to compute their total cost

To do that we have to be able to compute the total cost for one customer

Problem Decomposition

What are possible sub-problems for this exercise?

For each customer, we have to compute their total cost

To do that we have to be able to compute the total cost for one customer

To do that we have to be able to compute the total cost of a cart

Problem Decomposition

What are possible sub-problems for this exercise?

For each customer, we have to compute their total cost

To do that we have to be able to compute the total cost for one customer

To do that we have to be able to compute the total cost of a cart

Start with the simplest problem

Sub-Problem #1

Define a function named cartTotal that takes a cart (a list of items), and
a price dictionary (a dictionary mapping item name to price), and compute
the total cost of that cart.

Sub-Problem #1

Define a function named cartTotal that takes a cart (a list of items), and
a price dictionary (a dictionary mapping item name to price), and compute
the total cost of that cart.

1. def cartTotal(cart, priceDict):

2. total = 0

3. # for each item in the cart…
4. # add its price to the total…
5. return total

Sub-Problem #1

Define a function named cartTotal that takes a cart (a list of items), and
a price dictionary (a dictionary mapping item name to price), and compute
the total cost of that cart.

1. def cartTotal(cart, priceDict):

2. total = 0

3. for item in cart: # for each item in the cart…
4. # add its price to the total…
5. return total

Sub-Problem #1

Define a function named cartTotal that takes a cart (a list of items), and
a price dictionary (a dictionary mapping item name to price), and compute
the total cost of that cart.

1. def cartTotal(cart, priceDict):

2. total = 0

3. for item in cart: # for each item in the cart…
4. total = total + priceDict[item] # add its price to the total…
5. return total

Sub-Problem #2

Define a function named customerCartTotal that takes a customer
name, a shopping cart dictionary, and a price list dictionary. The function
should return the total cost of the customers cart.

Sub-Problem #2

Define a function named customerCartTotal that takes a customer
name, a shopping cart dictionary, and a price list dictionary. The function
should return the total cost of the customers cart.

def customerTotal(customer, carts, prices):

 # Get the customer's cart...

 # Compute the total cost of the cart

Sub-Problem #2

Define a function named customerCartTotal that takes a customer
name, a shopping cart dictionary, and a price list dictionary. The function
should return the total cost of the customers cart.

def customerTotal(customer, carts, prices):

 cart = carts[customer] # Get the customer's cart...

 # Compute the total cost of the cart

Sub-Problem #2

Define a function named customerCartTotal that takes a customer
name, a shopping cart dictionary, and a price list dictionary. The function
should return the total cost of the customers cart.

def customerTotal(customer, carts, prices):

 cart = carts[customer] # Get the customer's cart...

 # Compute the total cost of the cart

We just solved this problem!!

Sub-Problem #2

Define a function named customerCartTotal that takes a customer
name, a shopping cart dictionary, and a price list dictionary. The function
should return the total cost of the customers cart.

def customerTotal(customer, carts, prices):

 cart = carts[customer] # Get the customer's cart...

 return cartTotal(cart, prices) # Compute the total cost of the cart

The Original Problem

Define a function named cartTotals that takes a shopping cart
dictionary and a price list dictionary, and returns a new dictionary of
customer names and the total amount they owe for their purchases.

The Original Problem

Define a function named cartTotals that takes a shopping cart
dictionary and a price list dictionary, and returns a new dictionary of
customer names and the total amount they owe for their purchases.

1. def cartTotals(carts, prices):

2. result = {}

3. # For each customer…
4. # Compute their total cost and add it to the result

5. return result

The Original Problem

Define a function named cartTotals that takes a shopping cart
dictionary and a price list dictionary, and returns a new dictionary of
customer names and the total amount they owe for their purchases.

1. def cartTotals(carts, prices):

2. result = {}

3. for customer in carts.keys(): # For each customer…
4. # Compute their total cost and add it to the result

5. return result

We just solved this problem!!

The Original Problem

Define a function named cartTotals that takes a shopping cart
dictionary and a price list dictionary, and returns a new dictionary of
customer names and the total amount they owe for their purchases.

1. def cartTotals(carts, prices):

2. result = {}

3. for customer in carts.keys(): # For each customer…
4. # Compute their total cost and add it to the result

5. result[customer] = customerTotal(customer, carts, prices)

6. return result

