
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 503
Introduction to Computer Science for Non-Majors

Day 18
Read from CSV Files

mailto:epmikida@buffalo.edu


Announcements

● Lab #2 due tonight at 11:59PM
● Lab #3 will be released today
● Project will be released today (probably)



Recap

● Opening and reading from text files in Python…



Opening Files in Python

The open(...) function is usually used with a with…as statement:

with open("test1.txt","r") as f:

    # do something with the file…

f is a variable. It refers to a file object.

The with…as statement ensures that the file is automatically closed at 
the end of the suite of statements, no matter what happens.

https://docs.python.org/3/reference/compound_stmts.html#with
https://docs.python.org/3/glossary.html#term-file-object


File Objects and Iteration

File objects support iteration so we can use a for loop to iterate over each 
line in a file:

with open("test1.txt","r") as f:

    for line in f:

        # do something with each line…
        print(line)



Exercise

Define a function that takes a filename as an argument, and returns a 
dictionary of character counts for the file.

For example, if the file contains the character "a" 12 times, and "e" 17 
times, the returned dictionary would have "a":12 and "e":17, in addition 
to the counts of the other characters in the file.



Break It Down

We want to count all of the characters in a text file. We know that we 
process files line by line, so:



Break It Down

We want to count all of the characters in a text file. We know that we 
process files line by line, so:

We want to count the characters on every line of the file…



Break It Down

We want to count all of the characters in a text file. We know that we 
process files line by line, so:

We want to count the characters on every line of the file…

To do that we must be able to count all the characters from a single line



Single Line Sub-Problem

def countCharsInLine(line):

  dict = {}

  for c in line:

    dict[c] = dict.get(c, 0) + 1 

  return dict



Putting It Together

def charCount(filename):

  d = {}

  with open(filename, "r") as f:

    for line in f:

      line = line.rstrip("\n").lower()

      result = countCharsInLine(line)

      # What do we do with the result?

  return d



Putting It Together

def charCount(filename):

  d = {}

  with open(filename, "r") as f:

    for line in f:

      line = line.rstrip("\n").lower()

      result = countCharsInLine(line)

      # What do we do with the result?

  return d

We want to "add" the result from our 
subproblem to our overall result



Putting It Together

def charCount(filename):

  d = {}

  with open(filename, "r") as f:

    for line in f:

      line = line.rstrip("\n").lower()

      result = countCharsInLine(line)

      # What do we do with the result?

  return d

We want to "add" the result from our 
subproblem to our overall result

One option would be to write a function to add two 
dictionaries…see Lab #3



Putting It Together

def charCount(filename):

  d = {}

  with open(filename, "r") as f:

    for line in f:

      line = line.rstrip("\n").lower()

      result = countCharsInLine(line)

      # What do we do with the result?

  return d

We want to "add" the result from our 
subproblem to our overall result

One option would be to write a function to add two 
dictionaries…see Lab #3

Option 2: What if we don't start counting from scratch 
for each new line?



Single Line Sub-Problem

def countCharsInLine(line):

  dict = {}

  for c in line:

    dict[c] = dict.get(c, 0) + 1 

  return dict

This means we'll start counting from scratch for 
each line…



Single Line Sub-Problem

def countCharsInLine(line, dict = {}):

  for c in line:

    dict[c] = dict.get(c, 0) + 1 

  return dict
Now we can pass a dictionary in as a starting 
point, and if none is passed in, we'll just start 
from scratch with {}



Single Line Sub-Problem

def countCharsInLine(line, dict = {}):

  for c in line:

    dict[c] = dict.get(c, 0) + 1 

  return dict
Now we can pass a dictionary in as a starting 
point, and if none is passed in, we'll just start 
from scratch with {}

Does anything in this function constrain us to characters in a string? What 
if instead we passed in a list of numbers instead?



Single Line Sub-Problem

def countCharsInLine(line, dict = {}):

  for c in line:

    dict[c] = dict.get(c, 0) + 1 

  return dict
Now we can pass a dictionary in as a starting 
point, and if none is passed in, we'll just start 
from scratch with {}

Does anything in this function constrain us to characters in a string? What 
if instead we passed in a list of numbers instead?
Let's change the naming to make it more general



Single Line Sub-Problem

def countSequence(seq, dict = {}):

  for x in seq:

    dict[x] = dict.get(x, 0) + 1 

  return dict

Does anything in this function constrain us to characters in a string? What 
if instead we passed in a list of numbers instead?
Let's change the naming to make it more general



The Full Solution

def countSequence(seq, dict = {}):
  for x in seq:
    dict[x] = dict.get(x, 0) + 1 
  return dict

def charCount(filename):
  d = {}
  with open(filename, "r") as f:
    for line in f:
      line = line.rstrip("\n").lower()
      d = countSequence(line, d)
  return d



Exercise V2 (words)

What if instead we want to count words instead of characters? What do 
we have to do?



Exercise V2 (words)

What if instead we want to count words instead of characters? What do 
we have to do?

We first need to convert a line from a string (sequence of characters) to a 
list of words.



Exercise V2 (words)

What if instead we want to count words instead of characters? What do 
we have to do?

We first need to convert a line from a string (sequence of characters) to a 
list of words (...and define what a "word" is).



Exercise V2 (words)

What if instead we want to count words instead of characters? What do 
we have to do?

We first need to convert a line from a string (sequence of characters) to a 
list of words (...and define what a "word" is).

Python has many functions for manipulating strings, many of which are 
defined in the Regular Expression library: re.



Basic Strategy

def wordCount(filename):

  d = {}

  with open(filename, "r") as f:

    for line in f:

      line = line.rstrip("\n").lower()

      # Convert line to list of words?

      # Count words

  return d



Basic Strategy

def wordCount(filename):

  d = {}

  with open(filename, "r") as f:

    for line in f:

      line = line.rstrip("\n").lower()

      # Convert line to list of words?

      # Count words

  return d

How do we do this?



Regular Expressions

How do we define a word? What are the words in the following sentence?

Sally's new puppy is named Rover.  Rover's tail was wagging.  Rover was happy!



Regular Expressions

How do we define a word? What are the words in the following sentence?

Sally's new puppy is named Rover.  Rover's tail was wagging.  Rover was happy!

(One possible) definition of a word is a sequence of characters that are:
a-z, A-Z, or '



Regular Expressions

How do we define a word? What are the words in the following sentence?

Sally's new puppy is named Rover.  Rover's tail was wagging.  Rover was happy!

(One possible) definition of a word is a sequence of characters that are:
a-z, A-Z, or '

As a regular expression:
"[a-zA-Z']+"

Any characters between the [], repeated one or more times (+), 



Basic Strategy

def wordCount(filename):

  d = {}

  with open(filename, "r") as f:

    for line in f:

      line = line.rstrip("\n").lower()

      # Convert line to list of words?

      # Count words

  return d



Basic Strategy

import re

def wordCount(filename):

  d = {}

  with open(filename, "r") as f:

    for line in f:

      line = line.rstrip("\n").lower()

      words = re.split("[^a-zA-Z']+", line)

      # Count words

  return d

Import the regular expression library

Call split, which breaks up the line by removing 
anything that matches the pattern

Our pattern adds ^, which negates the set 
we have given it 



Basic Strategy

import re

def wordCount(filename):

  d = {}

  with open(filename, "r") as f:

    for line in f:

      line = line.rstrip("\n").lower()

      words = re.split("[^a-zA-Z']+", line)

      # Count words

  return d We already have a solution for this!



Basic Strategy

import re

def wordCount(filename):

  d = {}

  with open(filename, "r") as f:

    for line in f:

      line = line.rstrip("\n").lower()

      words = re.split("[^a-zA-Z']+", line)

      d = countSequence(words, d)

  return d



Full Solution

def countSequence(seq, dict = {}):
  for x in seq:
    dict[x] = dict.get(x, 0) + 1 
  return dict

def wordCount(filename):
  d = {}
  with open(filename, "r") as f:
    for line in f:
      line = line.rstrip("\n").lower()
      words = re.split("[^a-zA-Z']+", line)
      d = countSequence(words, d)
  return d



CSV Files

Comma-separated values

In computing, a comma-separated values (CSV) file is a delimited 
text file that uses a comma to separate values. A CSV file stores 
tabular data (numbers and text) in plain text. Each line of the file 
is a data record. Each record consists of one or more fields, 
separated by commas. The use of the comma as a field separator 
is the source of the name for this file format.

Excerpt from https://en.wikipedia.org/wiki/Comma-separated_values



CSV Files

Example
Month,Budget,Actual
January,200,190
February,200,210
March,150,185
April,100,110
May,50,40
June,50,15
July,50,12
August,50,14
September,50,35
October,100,78
November,150,125
December,200,167



CSV Files

Month,Budget,Actual
January,200,190
February,200,210
March,150,185
April,100,110
May,50,40
June,50,15
July,50,12
August,50,14
September,50,35
October,100,78
November,150,125
December,200,167

Can be imported/exported with spreadsheet 
programs like excel/numbers/Google sheets



Reading CSV Files

Let's write a program to read the data in our csv file into a dictionary.  We'll use the 
month as a key, and put the rest of the data into a list.

For example:

{ 'Month': ['Budget', 'Actual'],
  'January': ['200', '190'],  'February': ['200', '210'],
  'March': ['150', '185'],    'April': ['100', '110'],
  'May': ['50', '40'],        'June': ['50', '15'],
  'July': ['50', '12'],       'August': ['50', '14'],
  'September': ['50', '35'],  'October': ['100', '78'],
  'November': ['150', '125'], 'December': ['200', '167'] }



Reading CSV Files

import csv

def readBudget(filename):
    budget = {}
    # Read data from file...
    # …
    # …
    # …
    # …
    # …
    return budget



Reading CSV Files

import csv

def readBudget(filename):
    budget = {}
    # Read data from file...
    # …
    # …
    # …
    # …
    # …
    return budget

Import library for reading csv files



Reading CSV Files

import csv

def readBudget(filename):
    budget = {}
    with open(filename, newline='') as f:
        reader = csv.reader(f)
        for line in reader:
            key = line[0]              # The month will be our key
            value = [line[1], line[2]] # [budget,actual] will be our value
            budget[key] = value…  
    return budget



Reading CSV Files

import csv

def readBudget(filename):
    budget = {}
    with open(filename, newline='') as f:
        reader = csv.reader(f)
        for line in reader:
            key = line[0]              # The month will be our key
            value = [line[1], line[2]] # [budget,actual] will be our value
            budget[key] = value…  
    return budget

Open the file mostly the same as before (newline is 
required for CSV file reading)



Reading CSV Files

import csv

def readBudget(filename):
    budget = {}
    with open(filename, newline='') as f:
        reader = csv.reader(f)
        for line in reader:
            key = line[0]              # The month will be our key
            value = [line[1], line[2]] # [budget,actual] will be our value
            budget[key] = value…  
    return budget

Create a csv.reader object from our file



Reading CSV Files

import csv

def readBudget(filename):
    budget = {}
    with open(filename, newline='') as f:
        reader = csv.reader(f)
        for line in reader:
            # Do something with each line
            value = [line[1], line[2]] # [budget,actual] will be our value
            budget[key] = value…  
    return budget

We can iterate over the lines in the file just 
like we did with textfiles.

But now, instead of a line of text, line is a 
list of values



Reading CSV Files

import csv

def readBudget(filename):
    budget = {}
    with open(filename, newline='') as f:
        reader = csv.reader(f)
        for line in reader:
            key = line[0]              # The month will be our key
            value = [line[1], line[2]] # [budget,actual] will be our value
            budget[key] = value  
    return budget



Reading CSV Files

import csv

def readBudget(filename):
    budget = {}
    with open(filename, newline='') as f:
        reader = csv.reader(f)
        next(reader) # skip the first line
        for line in reader:
            key = line[0] # The month will be our key
            # [budget,actual] will be our value (convert values to ints)
            value = [int(line[1]), int(line[2])]
            budget[key] = value  
    return budget

Skip over the header line

Convert values to integers



Exercises

1. Define a function, overspent, which takes a dictionary like that produced by 
the readBudget function, and returns a dictionary of the months in which 
expenditures were over budget, along with the difference (as a negative value).

2. Define a function, underspent, which takes a dictionary like that produced by 
the readBudget function, and returns a dictionary of the months in which 
expenditures were under budget, along with the difference (as a positive value).


