
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 503
Introduction to Computer Science for Non-Majors

Day 23
Web Servers (Part 2)

mailto:epmikida@buffalo.edu

Announcements

● Lab #3 due tonight @ Midnight
○ Make sure you've submitted JS and PY versions

● Lab #4 will be released by tonight
○ Lab #4 and 5 are a two part sequence, 5 will build on 4
○ Lab #4 deals with reading and writing data with CSV files

Recap

● Last time we used urllib to make HTTP requests in Python
○ Sometimes we requested HTML
○ Sometimes we made requests to a Web API that returns JSON

● JavaScript Object Notation (JSON) is a way to turn JavaScript objects
into strings that can be communicated across the internet
○ Any other programming language can deal with strings
○ This will allow our JS front-end to communicate with Python back-end

Web Server

Web Server

Software runs
continuously, waiting for
requests from clients.

Responds to requests.

Client
Sends requests to

the server

Client
Sends requests to

the server

Client
Sends requests to

the server

Web Server

Web Server

Software runs
continuously, waiting for
requests from clients.

Responds to requests.

Client
Sends requests to

the server

Client
Sends requests to

the server

Client
Sends requests to

the server

Last time we wrote Python code that could make requests

Web Server

Web Server

Software runs
continuously, waiting for
requests from clients.

Responds to requests.

Client
Sends requests to

the server

Client
Sends requests to

the server

Client
Sends requests to

the server

Today we will focus on how to write a web server in Python

Web Server

● Don't run all the code in the users browser
○ Some code runs on the Web Server instead

● Users make HTTP requests to get content from the server
● Users don't have access to the code/data on the server (hopefully)

Web Server - Bottle

● To create a Web Server, you will commonly use an existing web
framework library

● In this course we will use bottle: https://bottlepy.org/docs/dev/
○ Other options include Django and Flask

● Bottle does not come with Python
○ We must install it in our REPLs on repl.it in order to use it

https://bottlepy.org/docs/dev/

Installing Bottle

● Create a Python REPL on
repl.it as normal

● On the left sidebar, click the
Packager tab (third from the
top, looks like a box)

● Search for bottle and click the
+ icon to install it

Our First Web Server

import bottle

@bottle.route("/")

def any_name():

 response = "<html><body><p>"

 response = response + "Hello from the server!"

 response = response + "</p></body></html>"

 return response

bottle.run(host="0.0.0.0", port=8080, debug=True)

Our First Web Server

import bottle

@bottle.route("/")

def any_name():

 response = "<html><body><p>"

 response = response + "Hello from the server!"

 response = response + "</p></body></html>"

 return response

bottle.run(host="0.0.0.0", port=8080, debug=True)

Import the bottle library

Our First Web Server

import bottle

@bottle.route("/")

def any_name():

 response = "<html><body><p>"

 response = response + "Hello from the server!"

 response = response + "</p></body></html>"

 return response

bottle.run(host="0.0.0.0", port=8080, debug=True)

This is called an annotation, it adds meta-information to
a function…more on this later

Our First Web Server

import bottle

@bottle.route("/")

def any_name():

 response = "<html><body><p>"

 response = response + "Hello from the server!"

 response = response + "</p></body></html>"

 return response

bottle.run(host="0.0.0.0", port=8080, debug=True)

We've defined a function that returns an html
string. Because of the annotation, bottle will
call this function to respond to certain
requests…

Our First Web Server

import bottle

@bottle.route("/")

def any_name():

 response = "<html><body><p>"

 response = response + "Hello from the server!"

 response = response + "</p></body></html>"

 return response

bottle.run(host="0.0.0.0", port=8080, debug=True)

bottle.run() starts our
server

Our First Web Server

Before we go over the details, lets try running our server on repl.it

Once I start the server, you should be able to connect to it by going to:

lec23.epmikida.repl.co

http://lec23.epmikida.repl.co

Bottle Annotations

Annotations in Python start with @, and can be used to annotate functions
with meta-information.

In this case, it allows us to tell bottle which functions to call to handle
certain HTTP requests.

@bottle.route("/") tells bottle that the annotated function should be
called to respond to requests to the servers root ("/")
We can use different strings to respond to requests for different paths, ie
@bottle.route("/foo") would handle requests to path "/foo"

Bottle Annotations

Annotations in Python start with @, and can be used to annotate functions
with meta-information.

In this case, it allows us to tell bottle which functions to call to handle
certain HTTP requests.

@bottle.route("/") tells bottle that the annotated function should be
called to respond to requests to the servers root ("/")
We can use different strings to respond to requests for different paths, ie
@bottle.route("/foo") would handle requests to path "/foo"

Bottle Annotations

Annotations in Python start with @, and can be used to annotate functions
with meta-information.

In this case, it allows us to tell bottle which functions to call to handle
certain HTTP requests.

@bottle.route("/") tells bottle that the annotated function should be
called to respond to requests to the servers root ("/")
We can use different strings to respond to requests for different paths, ie
@bottle.route("/foo") would handle requests to path "/foo"

Bottle Annotation

The function we annotate can have any name we want, and execute any
code we want.

Whatever the function returns, will be the response sent to the client.

def any_name():

 response = "<html><body><p>"

 response = response + "Hello from the server!"

 response = response + "</p></body></html>"

 return response

Bottle Annotation

The function we annotate can have any name we want, and execute any
code we want.

Whatever the function returns, will be the response sent to the client.

def any_name():

 response = "<html><body><p>"

 response = response + "Hello from the server!"

 response = response + "</p></body></html>"

 return response

In this case we return an HTML string for the requesting browser to display

Our First Web Server

● Our server is a program that runs continuously waiting for HTTP
requests (in this case on localhost address 0.0.0.0, port 8080)

● If you change the code, the server must be restarted for the changes
to take effect

● If the server stops running you will no longer have access to the server

Serving Static HTML Files

Creating HTML strings in Python for every request would be very tedious

Serving Static HTML Files

Creating HTML strings in Python for every request would be very tedious

The bottle.static_file() function can be used to return an HTML file:
@bottle.route("/")

def any_name():

 return bottle.static_file("index.html",root="")

Serving Static HTML Files

Creating HTML strings in Python for every request would be very tedious

The bottle.static_file() function can be used to return an HTML file:
@bottle.route("/")

def any_name():

 return bottle.static_file("index.html",root="")

Root specifies where the file is located with respect to the server,
empty string means it is in the same directory

Using Templates to Modify the HTML

We can also use HTML files as a template, and have our Python code fill in
some of the details.

Using Templates to Modify the HTML

We can also use HTML files as a template, and have our Python code fill in
some of the details.

In the HTML file you want to serve, use {{key_name}} to specify where
bottle can fill in values:

<p>Hello {{name}}!</p>

Using Templates to Modify the HTML

We can also use HTML files as a template, and have our Python code fill in
some of the details.

In the HTML file you want to serve, use {{key_name}} to specify where
bottle can fill in values:

<p>Hello {{name}}!</p>

Our Python code will be able to replace {{name}} with a new value. Our
HTML file can have as many template placeholders as we want.

Using Templates to Modify the HTML

In our Python code, we can call the bottle.template() function to serve
up a specific HTML file, and specify a dictionary that determines how the
template placeholders are filled in:

@bottle.route("/")

def any_name():

 return bottle.template("hello.html", {"name": "World"})

Using Templates to Modify the HTML

In our Python code, we can call the bottle.template() function to serve
up a specific HTML file, and specify a dictionary that determines how the
template placeholders are filled in:

@bottle.route("/")

def any_name():

 return bottle.template("hello.html", {"name": "World"})

Return the hello.html file, but replace {{name}} with World

Utilizing Query Strings

Last lecture, we saw how query strings could be used to pass extra
information in an HTTP request…so how can we get that information?

bottle.request.query is a dictionary containing the key value pairs
passed in the query string:

@bottle.route("/hello")
def serveHello():
 replacements = {}
 replacements["name"] = bottle.request.query.get("name","World")
 return bottle.template("hello.html",replacements)

Utilizing Query Strings

Last lecture, we saw how query strings could be used to pass extra
information in an HTTP request…so how can we get that information?

bottle.request.query is a dictionary containing the key value pairs
passed in the query string:

@bottle.route("/hello")
def any_name():
 replacements = {}
 replacements["name"] = bottle.request.query.get("name","World")
 return bottle.template("hello.html",replacements)

Utilizing Query Strings

Last lecture, we saw how query strings could be used to pass extra
information in an HTTP request…so how can we get that information?

bottle.request.query is a dictionary containing the key value pairs
passed in the query string:

@bottle.route("/hello")
def any_name():
 replacements = {}
 replacements["name"] = bottle.request.query.get("name","World")
 return bottle.template("hello.html",replacements)

We can use bottle.request.query just
like any other dictionary we've used

Utilizing Query Strings

Last lecture, we saw how query strings could be used to pass extra
information in an HTTP request…so how can we get that information?

bottle.request.query is a dictionary containing the key value pairs
passed in the query string:

@bottle.route("/hello")
def any_name():
 replacements = {}
 replacements["name"] = bottle.request.query.get("name","World")
 return bottle.template("hello.html",replacements)

We can use bottle.request.query just
like any other dictionary we've used

We fill in template placeholders with our replacements dictionary, which
we've filled in based on the query string

