
chatserver.epmikida.repl.co

http://chatserver.epmikida.repl.co

Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 503
Introduction to Computer Science for Non-Majors

Day 24
AJAX (Part 1)

mailto:epmikida@buffalo.edu

Recap

● We learned how to run our own Python web server with bottle

Recap

● We learned how to run our own Python web server with bottle
○ @bottle.route() → Tell bottle how to respond to requests

Recap

● We learned how to run our own Python web server with bottle
○ @bottle.route() → Tell bottle how to respond to requests
○ bottle.run() → Run our server

Recap

● We learned how to run our own Python web server with bottle
○ @bottle.route() → Tell bottle how to respond to requests
○ bottle.run() → Run our server
○ bottle.static_file() → Respond to a request with an html file

Recap

● We learned how to run our own Python web server with bottle
○ @bottle.route() → Tell bottle how to respond to requests
○ bottle.run() → Run our server
○ bottle.static_file() → Respond to a request with an html file
○ bottle.template() → Respond with a templated html file

Recap

● We learned how to run our own Python web server with bottle
○ @bottle.route() → Tell bottle how to respond to requests
○ bottle.run() → Run our server
○ bottle.static_file() → Respond to a request with an html file
○ bottle.template() → Respond with a templated html file
○ bottle.request.query → Dictionary for the requests query string

Bottle Web Servers so far…

We are now able to write a web server which responds to HTTP requests

On the client side…how can we get user input?

How can we get information from the server without reloading the entire
web page each time?

Chat Server

Over the next two lectures we will build up a working chat server

End Goal: chatserver.epmikida.repl.co

Much of the code will be using concepts we've already learned

We'll be adding something called AJAX (probably next lecture)

http://chatserver.epmikida.repl.co

Chat Server Design

Before we code: Let's figure out the different parts of our web app and set
up our file structure

(when working on larger projects, laying out a basic structure and
understanding how pieces interact keeps you organized)

End Goal

Chat Server

Client

Client
Client Client

End Goal

Chat Server
Continuously running

Serves client requests for the main web page
Serves client requests for the chat logs

Updates the chat logs as clients send messages

Client

Client
Client Client

Chat Server Design

What do we need:

Chat Server Design

What do we need:

1. A front end web page (with interactive components)

Chat Server Design

What do we need:

1. A front end web page (with interactive components)
2. Front end JavaScript allowing users to interact with the page

Chat Server Design

What do we need:

1. A front end web page (with interactive components)
2. Front end JavaScript allowing users to interact with the page
3. Web server code to run the server and handle requests

Chat Server Design

What do we need:

1. A front end web page (with interactive components)
2. Front end JavaScript allowing users to interact with the page
3. Web server code to run the server and handle requests
4. A place to store messages that persists even when server stops

Chat Server Design

What do we need:

1. A front end web page (with interactive components)
2. Front end JavaScript allowing users to interact with the page
3. Web server code to run the server and handle requests
4. A place to store messages that persists even when server stops
5. A way for the front end and back end to communicate even after the

page is initially loaded

Chat Server Design

What do we need:

1. A front end web page (with interactive components)
2. Front end JavaScript allowing users to interact with the page
3. Web server code to run the server and handle requests
4. A place to store messages that persists even when server stops
5. A way for the front end and back end to communicate even after the

page is initially loaded

Note this is just one possible design!

Chat Server Design - File Structure

For now let's setup the following (in a Python REPL with bottle):

● main.py: Our Python server code
● index.html: Our web page
● chat.js: JavaScript for interacting with the web page
● chat.txt: A file to store the chat logs
● chat.py: Python code for reading and writing our logs

Back End Web Server

To start, let's set up a basic web server to serve our HTML file…

Back End Web Server (main.py)

import bottle

@bottle.route('/')

def index():

 return bottle.static_file("index.html", root="")

bottle.run(host="0.0.0.0", port=8080, debug=True)

Back End Web Server (main.py)

import bottle

@bottle.route('/')

def index():

 return bottle.static_file("index.html", root="")

bottle.run(host="0.0.0.0", port=8080, debug=True)

Import the bottle library
(don't forget to install it)

Back End Web Server (main.py)

import bottle

@bottle.route('/')

def index():

 return bottle.static_file("index.html", root="")

bottle.run(host="0.0.0.0", port=8080, debug=True)

Import the bottle library
(don't forget to install it)

Setup a function that gets
called when someone sends a
request to root ("/")

This function will return index.html as a static file

Back End Web Server (main.py)

import bottle

@bottle.route('/')

def index():

 return bottle.static_file("index.html", root="")

bottle.run(host="0.0.0.0", port=8080, debug=True)

Import the bottle library
(don't forget to install it)

Setup a function that gets
called when someone sends a
request to root ("/")

This function will return index.html as a static file

Lastly, run the server

Front End Web Page (index.html)

Now we can write the HTML for the web page…

It will include some new things we have not seen yet

Front End Web Page (index.html)

<html>

<head>

 <script src="chat.js"></script>

</head>

<body onload="loadChat();">

 <div id="chat"></div>

 Message: <input type="text" id="message">

 <button onClick="sendMessage();">Send</button>

</body>

</html>

Front End Web Page (index.html)

<html>

<head>

 <script src="chat.js"></script>

</head>

<body onload="loadChat();">

 <div id="chat"></div>

 Message: <input type="text" id="message">

 <button onClick="sendMessage();">Send</button>

</body>

</html>

Load our JavaScript file in
head so it is available for us
to use

Front End Web Page (index.html)

<html>

<head>

 <script src="chat.js"></script>

</head>

<body onload="loadChat();">

 <div id="chat"></div>

 Message: <input type="text" id="message">

 <button onClick="sendMessage();">Send</button>

</body>

</html>

Use the onload attribute of
our body element to call the
loadChat() function from
our JavaScript file.

Front End Web Page (index.html)

<html>

<head>

 <script src="chat.js"></script>

</head>

<body onload="loadChat();">

 <div id="chat"></div>

 Message: <input type="text" id="message">

 <button onClick="sendMessage();">Send</button>

</body>

</html>

Create a div element and
set its id so we have
somewhere for our
JavaScript file to put the
chat messages

Front End Web Page (index.html)

<html>

<head>

 <script src="chat.js"></script>

</head>

<body onload="loadChat();">

 <div id="chat"></div>

 Message: <input type="text" id="message">

 <button onClick="sendMessage();">Send</button>

</body>

</html>

We can create an input
element with type set to
"text" to create a text box.

By giving it an id we can
access it from our
JavaScript code.

Front End Web Page (index.html)

<html>

<head>

 <script src="chat.js"></script>

</head>

<body onload="loadChat();">

 <div id="chat"></div>

 Message: <input type="text" id="message">

 <button onClick="sendMessage();">Send</button>

</body>

</html>

The button element is used to
create a clickable button.

The onClick attribute allows
us to set a function to be
called when it is clicked (we'll
define it in our JS)

The text between the open and
close tag shows up on the
button.

Front End JavaScript (chat.js)

Now that we have the HTML, we need to define the JavaScript code that
it was expecting – chat.js

Front End JavaScript (chat.js)

function loadChat(){

 // Load the chat…
}

function sendMessage(){

 // Send a message

}

Front End JavaScript (chat.js)

function loadChat(){

 // Load the chat…
}

function sendMessage(){

 // Send a message

}

In chat.js we have to define the
functions that our HTML was
relying on: loadChat and
sendMessage

Front End JavaScript (chat.js)

function loadChat(){

 // Load the chat…
}

function sendMessage(){

 // Send a message

}

For now we can just have them
do something simple, we'll create
more complicated versions of
them later.

This lets us set up the structure
and put together the main pieces,
without focusing on complex
details until later…

A Minimal Test

With larger projects, don't expect to get everything working right away!

Let's do a sanity check now, just to see if we can request the web page
from the server and display it…

What Went Wrong?

Why didn't our JavaScript update the web page?

Let's check the web server output…

Our server got a request for chat.js…did we handle that request?

What Went Wrong?

Why didn't our JavaScript update the web page?

Let's check the web server output…

Our server got a request for chat.js…did we handle that request?

What Went Wrong?

Why didn't our JavaScript update the web page?

Let's check the web server output…

Our server got a request for chat.js…did we handle that request?

HTML and HTTP Requests

<html>

<head>

 <script src="chat.js"></script>

</head>

<body onload="loadChat();">

 <div id="chat"></div>

 Message: <input type="text" id="message">

 <button onClick="sendMessage();">Send</button>

</body>

</html>

HTML and HTTP Requests

<html>

<head>

 <script src="chat.js"></script>

</head>

<body onload="loadChat();">

 <div id="chat"></div>

 Message: <input type="text" id="message">

 <button onClick="sendMessage();">Send</button>

</body>

</html>

On this line, we want to load
chat.js…but where is
chat.js located?

HTML and HTTP Requests

<html>

<head>

 <script src="chat.js"></script>

</head>

<body onload="loadChat();">

 <div id="chat"></div>

 Message: <input type="text" id="message">

 <button onClick="sendMessage();">Send</button>

</body>

</html>

On this line, we want to load
chat.js…but where is
chat.js located?

On the server!

HTML and HTTP Requests

<html>

<head>

 <script src="chat.js"></script>

</head>

<body onload="loadChat();">

 <div id="chat"></div>

 Message: <input type="text" id="message">

 <button onClick="sendMessage();">Send</button>

</body>

</html>

On this line, we want to load
chat.js…but where is
chat.js located?

On the server!

Loading a .js file sends a
request to the server for
that file…

Handling the chat.js Request

import bottle

@bottle.route('/')

def index():

 return bottle.static_file("index.html", root="")

bottle.run(host="0.0.0.0", port=8080, debug=True)

Our server currently only handles requests for "/"

Handling the chat.js Request

import bottle

@bottle.route('/')

def index():

 return bottle.static_file("index.html", root="")

bottle.run(host="0.0.0.0", port=8080, debug=True)

Our server currently only handles requests for "/"
Let's add the option to handle requests for "/chat.js" as well…

Handling the chat.js Request

import bottle

@bottle.route('/')
def index():
 return bottle.static_file("index.html", root="")

@bottle.route('/chat.js')
def chatJS():
 return bottle.static_file("chat.js", root="")

bottle.run(host="0.0.0.0", port=8080, debug=True)

Handling the chat.js Request

import bottle

@bottle.route('/')
def index():
 return bottle.static_file("index.html", root="")

@bottle.route('/chat.js')
def chatJS():
 return bottle.static_file("chat.js", root="")

bottle.run(host="0.0.0.0", port=8080, debug=True)

bottle.static_file() can
be used to send .js files as
well

Chat Server Design

What do we need:

1. A front end web page (with interactive components)
2. Front end JavaScript allowing users to interact with the page
3. Web server code to run the server and handle requests
4. A place to store messages that persists even when server stops
5. A way for the front end and back end to communicate even after the

page is initially loaded

Chat Server Design

What do we need:

✓ A front end web page (with interactive components)
✓ Front end JavaScript allowing users to interact with the page
✓ Web server code to run the server and handle requests
4. A place to store messages that persists even when server stops
5. A way for the front end and back end to communicate even after the

page is initially loaded

Storing Chat Logs (chat.txt)

Now we can create a place on the server to store the chat logs…

In this case we can just store them in a text file (let's call it chat.txt)

Storing Chat Logs (chat.txt)

Now we can create a place on the server to store the chat logs…

In this case we can just store them in a text file (let's call it chat.txt)

Reading and Writing Chat Logs (chat.py)

Now that we have a place to store our chat, we need to be able to read
and write from the chat logs.

We'll write this in chat.py to keep it separate from server code.

Reading and Writing Chat Logs (chat.py)

filename = "chat.txt"

def get_chat():
 full_chat = []
 with open(filename) as file:
 for line in file:
 full_chat.append({"message": line.rstrip("\n")})
 return full_chat

def add_message(message):
 with open(filename, "a") as file:
 file.write(message + "\n")

Reading and Writing Chat Logs (chat.py)

filename = "chat.txt"

def get_chat():
 full_chat = []
 with open(filename) as file:
 for line in file:
 full_chat.append({"message": line.rstrip("\n")})
 return full_chat

def add_message(message):
 with open(filename, "a") as file:
 file.write(message + "\n")

Create a variable with the filename so we can refer to it
throughout the rest of the code

Reading and Writing Chat Logs (chat.py)

filename = "chat.txt"

def get_chat():
 full_chat = []
 with open(filename) as file:
 for line in file:
 full_chat.append({"message": line.rstrip("\n")})
 return full_chat

def add_message(message):
 with open(filename, "a") as file:
 file.write(message + "\n")

Read from the chat file, and return a list of
messages. We've put the messages in a
dictionary…more on that later.

Reading and Writing Chat Logs (chat.py)

filename = "chat.txt"

def get_chat():
 full_chat = []
 with open(filename) as file:
 for line in file:
 full_chat.append({"message": line.rstrip("\n")})
 return full_chat

def add_message(message):
 with open(filename, "a") as file:
 file.write(message + "\n")

Write a function to add a new
message to the chat file. Note the file
mode: "a". This means append.

Reading and Writing Chat Logs (chat.py)

Note that chat.py does not have any server code…it just reads and
writes files, and we can test it just like any other Python code.

When building applications from smaller pieces, make sure to test the
pieces individually, let's do that know with chat.py.

Reading and Writing Chat Logs (chat.py)

Note that chat.py does not have any server code…it just reads and
writes files, and we can test it just like any other Python code.

When building applications from smaller pieces, make sure to test the
pieces individually, let's do that now with chat.py.

Chat Server Design

What do we need:

✓ A front end web page (with interactive components)
✓ Front end JavaScript allowing users to interact with the page
✓ Web server code to run the server and handle requests
4. A place to store messages that persists even when server stops
5. A way for the front end and back end to communicate even after the

page is initially loaded

Chat Server Design

What do we need:

✓ A front end web page (with interactive components)
✓ Front end JavaScript allowing users to interact with the page
✓ Web server code to run the server and handle requests
✓ A place to store messages that persists even when server stops
5. A way for the front end and back end to communicate even after the

page is initially loaded

Chat Server Design

What do we need:

✓ A front end web page (with interactive components)
✓ Front end JavaScript allowing users to interact with the page
✓ Web server code to run the server and handle requests
✓ A place to store messages that persists even when server stops
5. A way for the front end and back end to communicate even after the

page is initially loaded

Next lecture we'll tackle step 5 and bring it all together

