
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 503
Introduction to Computer Science for Non-Majors

Day 25
AJAX (Part 2)

mailto:epmikida@buffalo.edu

Recap

● Last time we started making our own chat server…

End Goal

Chat Server
Continuously running

Serves client requests for the main web page
Serves client requests for the chat logs

Updates the chat logs as clients send messages

Client

Client
Client Client

Chat Server Design

What do we need:

1. A front end web page (with interactive components)
2. Front end JavaScript allowing users to interact with the page
3. Web server code to run the server and handle requests
4. A place to store messages that persists even when server stops
5. A way for the front end and back end to communicate even after the

page is initially loaded

Note this is just one possible design!

Chat Server Design

What do we need:

✓ A front end web page (with interactive components)
✓ Front end JavaScript allowing users to interact with the page
✓ Web server code to run the server and handle requests
4. A place to store messages that persists even when server stops
5. A way for the front end and back end to communicate even after the

page is initially loaded

Storing Chat Logs (chat.txt)

Now we can create a place on the server to store the chat logs…

In this case we can just store them in a text file (let's call it chat.txt)

Storing Chat Logs (chat.txt)

Now we can create a place on the server to store the chat logs…

In this case we can just store them in a text file (let's call it chat.txt)

Reading and Writing Chat Logs (chat.py)

Now that we have a place to store our chat, we need to be able to read
and write from the chat logs.

We'll write this in chat.py to keep it separate from server code.

Reading and Writing Chat Logs (chat.py)

filename = "chat.txt"

def get_chat():
 full_chat = []
 with open(filename) as file:
 for line in file:
 full_chat.append({"message": line.rstrip("\n")})
 return full_chat

def add_message(message):
 with open(filename, "a") as file:
 file.write(message + "\n")

Reading and Writing Chat Logs (chat.py)

filename = "chat.txt"

def get_chat():
 full_chat = []
 with open(filename) as file:
 for line in file:
 full_chat.append({"message": line.rstrip("\n")})
 return full_chat

def add_message(message):
 with open(filename, "a") as file:
 file.write(message + "\n")

Create a variable with the filename so we can refer to it
throughout the rest of the code

Reading and Writing Chat Logs (chat.py)

filename = "chat.txt"

def get_chat():
 full_chat = []
 with open(filename) as file:
 for line in file:
 full_chat.append({"message": line.rstrip("\n")})
 return full_chat

def add_message(message):
 with open(filename, "a") as file:
 file.write(message + "\n")

Read from the chat file, and return a list of
messages. We've put the messages in a
dictionary…more on that later.

Reading and Writing Chat Logs (chat.py)

filename = "chat.txt"

def get_chat():
 full_chat = []
 with open(filename) as file:
 for line in file:
 full_chat.append({"message": line.rstrip("\n")})
 return full_chat

def add_message(message):
 with open(filename, "a") as file:
 file.write(message + "\n")

Write a function to add a new
message to the chat file. Note the file
mode: "a". This means append.

Reading and Writing Chat Logs (chat.py)

Note that chat.py does not have any server code…it just reads and
writes files, and we can test it just like any other Python code.

When building applications from smaller pieces, make sure to test the
pieces individually, let's do that know with chat.py.

Reading and Writing Chat Logs (chat.py)

Note that chat.py does not have any server code…it just reads and
writes files, and we can test it just like any other Python code.

When building applications from smaller pieces, make sure to test the
pieces individually, let's do that now with chat.py.

Chat Server Design

What do we need:

✓ A front end web page (with interactive components)
✓ Front end JavaScript allowing users to interact with the page
✓ Web server code to run the server and handle requests
4. A place to store messages that persists even when server stops
5. A way for the front end and back end to communicate even after the

page is initially loaded

Chat Server Design

What do we need:

✓ A front end web page (with interactive components)
✓ Front end JavaScript allowing users to interact with the page
✓ Web server code to run the server and handle requests
✓ A place to store messages that persists even when server stops
5. A way for the front end and back end to communicate even after the

page is initially loaded

Communication Between Client and Server

Now we can set up our communication…

How can our JavaScript client and Python web server communicate?

JSON!

Communication Between Client and Server

Now we can set up our communication…

How can our JavaScript client and Python web server communicate?

JSON!

JSON in JavaScript and Python

In Python:
import json

json.loads(json_string)

json.dumps(python_data)

In JavaScript:
JSON.parse(jsonString)

JSON.stringify(jsData)

JSON in JavaScript and Python

In Python:
import json ← Loads the JSON library
json.loads(json_string)

json.dumps(python_data)

In JavaScript:
JSON.parse(jsonString)

JSON.stringify(jsData)

JSON in JavaScript and Python

In Python:
import json ← Loads the JSON library
json.loads(json_string) ← Takes a JSON string and returns Python data
json.dumps(python_data)

In JavaScript:
JSON.parse(jsonString)

JSON.stringify(jsData)

JSON in JavaScript and Python

In Python:
import json ← Loads the JSON library
json.loads(json_string) ← Takes a JSON string and returns Python data
json.dumps(python_data) ← Takes Python data and returns a JSON string

In JavaScript:
JSON.parse(jsonString)

JSON.stringify(jsData)

JSON in JavaScript and Python

In Python:
import json ← Loads the JSON library
json.loads(json_string) ← Takes a JSON string and returns Python data
json.dumps(python_data) ← Takes Python data and returns a JSON string

In JavaScript:
JSON.parse(jsonString) ← Takes a JSON string and returns JavaScript data
JSON.stringify(jsData)

JSON in JavaScript and Python

In Python:
import json ← Loads the JSON library
json.loads(json_string) ← Takes a JSON string and returns Python data
json.dumps(python_data) ← Takes Python data and returns a JSON string

In JavaScript:
JSON.parse(jsonString) ← Takes a JSON string and returns JavaScript data
JSON.stringify(jsData) ← Takes JavaScript data and returns a JSON string

Server-Side Communication

Let's start by setting up the communication coming from the server:

1. The server will send the chat to the client
2. The server will accept messages from the client (and send chat)

Importing the Necessary Pieces

import bottle

import json

import chat

In main.py:
● Import the json library and the code we wrote in chat.py

In main.py:
● Add a route to handle requests for the chat logs
● Respond with the chat, converted to a JSON string by json.dumps()

Adding Some New Routes

@bottle.route('/chat')

def get_chat():

 return json.dumps(chat.get_chat())

In main.py:
● Add a route to handle requests for the chat logs
● Respond with the chat, converted to a JSON string by json.dumps()

Adding Some New Routes

@bottle.route('/chat')

def get_chat():

 return json.dumps(chat.get_chat())

We wrote this function earlier…

Adding Some New Routes

In main.py:
● Add a bottle.post annotation for when a client sends a message

○ Decode the message (turn it into the JSON string and convert to Python)
○ Call our add_message function to add the message to the chat logs
○ Respond to the client with the full chat

@bottle.post('/send')

def do_chat():

 content = bottle.request.body.read().decode()

 content = json.loads(content)

 chat.add_message(content['message'])

 return json.dumps(chat.get_chat())

Adding Some New Routes

In main.py:
● Add a bottle.post annotation for when a client sends a message

○ Decode the message (turn it into the JSON string and convert to Python)
○ Call our add_message function to add the message to the chat logs
○ Respond to the client with the full chat

@bottle.post('/send')

def do_chat():

 content = bottle.request.body.read().decode()

 content = json.loads(content)

 chat.add_message(content['message'])

 return json.dumps(chat.get_chat())

The bottle.post annotation lets us handle a POST
request (as compared to GET)

Adding Some New Routes

In main.py:
● Add a bottle.post annotation for when a client sends a message

○ Decode the message (turn it into the JSON string and convert to Python)
○ Call our add_message function to add the message to the chat logs
○ Respond to the client with the full chat

@bottle.post('/send')

def do_chat():

 content = bottle.request.body.read().decode()

 content = json.loads(content)

 chat.add_message(content['message'])

 return json.dumps(chat.get_chat())

bottle.request.body contains the information sent in the request

Adding Some New Routes

In main.py:
● Add a bottle.post annotation for when a client sends a message

○ Decode the message (turn it into the JSON string and convert to Python)
○ Call our add_message function to add the message to the chat logs
○ Respond to the client with the full chat

@bottle.post('/send')

def do_chat():

 content = bottle.request.body.read().decode()

 content = json.loads(content)

 chat.add_message(content['message'])

 return json.dumps(chat.get_chat())

These are the functions we wrote earlier

JavaScript and AJAX

Now we need our JavaScript code to communicate with our Python code

We'll do this with AJAX (Asynchronous JavaScript and XML)

● Allows us to make requests after the page has been loaded
● Can make HTTP GET requests (to get content from a server)
● Can make HTTP POST requests (to send content to a server)

AJAX GET Request

function ajaxGetRequest(path, callback) {

 let request = new XMLHttpRequest();

 request.onreadystatechange = function() {

 if (this.readyState === 4 && this.status === 200) {

 callback(this.response);

 }

 };

 request.open("GET", path);

 request.send();

}

AJAX GET Request

function ajaxGetRequest(path, callback) {

 let request = new XMLHttpRequest();

 request.onreadystatechange = function() {

 if (this.readyState === 4 && this.status === 200) {

 callback(this.response);

 }

 };

 request.open("GET", path);

 request.send();

}

Don't worry too much about the details of this function…
feel free to use it as is.

The main thing to know is that it takes a path and a
callback as input, and makes a GET request to that path

AJAX POST Request

function ajaxPostRequest(path, data, callback) {

 let request = new XMLHttpRequest();

 request.onreadystatechange = function() {

 if (this.readyState === 4 && this.status === 200) {

 callback(this.response);

 }

 };

 request.open("POST", path);

 request.send(data);

}

AJAX POST Request

function ajaxPostRequest(path, data, callback) {

 let request = new XMLHttpRequest();

 request.onreadystatechange = function() {

 if (this.readyState === 4 && this.status === 200) {

 callback(this.response);

 }

 };

 request.open("POST", path);

 request.send(data);

}

Don't worry too much about the details of this function…
feel free to use it as is.

It works the same as the previous, but also requires data
as input, and makes a POST request to the path

Using Our New Functions

function loadChat() {

 ajaxGetRequest("/chat", displayChat);

}

function displayChat(response) {

 let chat = "";

 for(let data of JSON.parse(response)){

 chat = chat + data.message + "</br>";

 }

 document.getElementById("chat").innerHTML = chat;

}

Using Our New Functions

function loadChat() {

 ajaxGetRequest("/chat", displayChat);

}

function displayChat(response) {

 let chat = "";

 for(let data of JSON.parse(response)){

 chat = chat + data.message + "</br>";

 }

 document.getElementById("chat").innerHTML = chat;

}

To load the chat, we make a GET request
to "/chat", which will call displayChat

with the response

Using Our New Functions

function loadChat() {

 ajaxGetRequest("/chat", displayChat);

}

function displayChat(response) {

 let chat = "";

 for(let data of JSON.parse(response)){

 chat = chat + data.message + "</br>";

 }

 document.getElementById("chat").innerHTML = chat;

}

To display the chat, we simply iterate all over
all of the messages and add them to a string

(remember </br> is a newline in HTML)

Using Our New Functions

function loadChat() {

 ajaxGetRequest("/chat", displayChat);

}

function displayChat(response) {

 let chat = "";

 for(let data of JSON.parse(response)){

 chat = chat + data.message + "</br>";

 }

 document.getElementById("chat").innerHTML = chat;

}

Finally, set the content of our
"chat" div in the HTML file

Using Our New Functions

function sendMessage(){

 let messageElement = document.getElementById("message");

 let message = messageElement.value;

 messageElement.value = "";

 let toSend = JSON.stringify({"message": message});

 ajaxPostRequest("/send", toSend, displayChat);

}

Using Our New Functions

function sendMessage(){

 let messageElement = document.getElementById("message");

 let message = messageElement.value;

 messageElement.value = "";

 let toSend = JSON.stringify({"message": message});

 ajaxPostRequest("/send", toSend, displayChat);

}

First, get our textbox element

Using Our New Functions

function sendMessage(){

 let messageElement = document.getElementById("message");

 let message = messageElement.value;

 messageElement.value = "";

 let toSend = JSON.stringify({"message": message});

 ajaxPostRequest("/send", toSend, displayChat);

}

Then get the text and clear it

Using Our New Functions

function sendMessage(){

 let messageElement = document.getElementById("message");

 let message = messageElement.value;

 messageElement.value = "";

 let toSend = JSON.stringify({"message": message});

 ajaxPostRequest("/send", toSend, displayChat);

}

Finally, convert it to JSON and
send it in a POST request

Extending Our Example

What if we wanted to include our name with each message?

What would we need to add/change in our code?

Extending Our Example

What if we wanted to include our name with each message?

What would we need to add/change in our code?

1. We must have a way to input our name (in index.html)

Extending Our Example

What if we wanted to include our name with each message?

What would we need to add/change in our code?

1. We must have a way to input our name (in index.html)
2. We must send the name and message to the server (in chat.js)

Extending Our Example

What if we wanted to include our name with each message?

What would we need to add/change in our code?

1. We must have a way to input our name (in index.html)
2. We must send the name and message to the server (in chat.js)
3. The server must store the name and message (in chat.py)

Extending Our Example

What if we wanted to include our name with each message?

What would we need to add/change in our code?

1. We must have a way to input our name (in index.html)
2. We must send the name and message to the server (in chat.js)
3. The server must store the name and message (in chat.py)
4. The server must send the names and messages (in main.py)

Extending Our Example

What if we wanted to include our name with each message?

What would we need to add/change in our code?

1. We must have a way to input our name (in index.html)
2. We must send the name and message to the server (in chat.js)
3. The server must store the name and message (in chat.py)
4. The server must send the names and messages (in main.py)
5. We must display the names and messages (in chat.js)

Extending Our Example

What if we wanted to include our name with each message?

What would we need to add/change in our code?

1. We must have a way to input our name (in index.html)
2. We must send the name and message to the server (in chat.js)
3. The server must store the name and message (in chat.py)
4. The server must send the names and messages (in main.py)
5. We must display the names and messages (in chat.js)

