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Project Checklist

Front-End Requirements:
✓ HTML
✓ AJAX
✓ Callback functions

Back-End Requirements:
✓ Bottle routes
✓ Data retrieval (HTTP 

requests)
✓ Data cleaning and processing
● Local data caching
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We can locally cache data using text or CSV files…today we 
will learn how to do it with databases



Storing Data

In Memory/CPU

● Transient (exists while program is running)
● Limited size

On Disk

● Persistent
● Larger capacity
● Text files, csv files, databases, etc
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Storing Data

Text Files: Streams of characters

CSV Files: Comma separated values

Databases: Tables of data supporting highly efficient operations

(CSE 560 Data Models and Query Languages; CSE 562 Database Systems)



SQLite

SQLite is an in-process library that implements a self-contained, serverless, 
zero-configuration, transactional SQL database engine. The code for SQLite is in 

the public domain and is thus free for use for any purpose, commercial or 
private. SQLite is the most widely deployed database in the world with more 

applications than we can count, including several high-profile projects.

https://www.sqlite.org/about.html 
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SQLite - Creating and Storing a DB

import sqlite3

conn = sqlite3.connect('test.db')

cur = conn.cursor()

# do things to database

conn.commit()

conn.close()

1. Import the SQLite library
2. Open a connection to a DB 

(creates the DB if necessary)
3. Create a cursor object        

(this is how we interact with the DB)
4. Do stuff…
5. Commit our changes and 

close the DB                    
(without commit, changes are lost)



So…what can we do with it?

● We can execute commands on our DB using the cursors execute 
function and passing the command we want to execute

● We will go over some basic commands today, but more details can be 
found on the SQLite tutorial website: https://www.sqlitetutorial.net/ 

https://www.sqlitetutorial.net/
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table - the name of the table to insert into
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String values must be inside "", number values are just numbers
(note how we use single quotes to define the overall string)
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Command: SELECT * FROM table

table - the name of the table to get the data from

Example: 'SELECT * FROM movies'

Execute with cursor (Python code):
results = cur.execute('SELECT * FROM movies')

results is a sequence…



Commands: Get rows from table

Command: SELECT * FROM table

table - the name of the table to get the data from

Example: 'SELECT * FROM movies'

Execute with cursor (Python code):
results = cur.execute('SELECT * FROM movies')

for entry in results:

  print(entry)
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