
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 503
Introduction to Computer Science for Non-Majors

Day 27
Databases

mailto:epmikida@buffalo.edu

Project Checklist

Front-End Requirements:
✓ HTML
✓ AJAX
✓ Callback functions

Back-End Requirements:
✓ Bottle routes
✓ Data retrieval (HTTP

requests)
✓ Data cleaning and processing
● Local data caching

Project Checklist

Front-End Requirements:
✓ HTML
✓ AJAX
✓ Callback functions

Back-End Requirements:
✓ Bottle routes
✓ Data retrieval (HTTP

requests)
✓ Data cleaning and processing
● Local data caching

We can locally cache data using text or CSV files…today we
will learn how to do it with databases

Storing Data

In Memory/CPU

● Transient (exists while program is running)
● Limited size

On Disk

● Persistent
● Larger capacity
● Text files, csv files, databases, etc

Central
Processing

Unit

CPU

Random
Access
Memory

RAM

Storing Data

Text Files: Streams of characters

CSV Files: Comma separated values

Databases: Tables of data supporting highly efficient operations

(CSE 560 Data Models and Query Languages; CSE 562 Database Systems)

SQLite

SQLite is an in-process library that implements a self-contained, serverless,
zero-configuration, transactional SQL database engine. The code for SQLite is in

the public domain and is thus free for use for any purpose, commercial or
private. SQLite is the most widely deployed database in the world with more

applications than we can count, including several high-profile projects.

https://www.sqlite.org/about.html

https://www.sqlite.org/about.html

SQLite

SQLite is an in-process library that implements a self-contained, serverless,
zero-configuration, transactional SQL database engine. The code for SQLite is in

the public domain and is thus free for use for any purpose, commercial or
private. SQLite is the most widely deployed database in the world with more

applications than we can count, including several high-profile projects.

https://www.sqlite.org/about.html

https://www.sqlite.org/about.html

SQLite - Creating and Storing a DB

import sqlite3

conn = sqlite3.connect('test.db')

cur = conn.cursor()

do things to database

conn.commit()

conn.close()

SQLite - Creating and Storing a DB

import sqlite3

conn = sqlite3.connect('test.db')

cur = conn.cursor()

do things to database

conn.commit()

conn.close()

1. Import the SQLite library

SQLite - Creating and Storing a DB

import sqlite3

conn = sqlite3.connect('test.db')

cur = conn.cursor()

do things to database

conn.commit()

conn.close()

1. Import the SQLite library
2. Open a connection to a DB

(creates the DB if necessary)

Note: This file is not human readable

SQLite - Creating and Storing a DB

import sqlite3

conn = sqlite3.connect('test.db')

cur = conn.cursor()

do things to database

conn.commit()

conn.close()

1. Import the SQLite library
2. Open a connection to a DB

(creates the DB if necessary)
3. Create a cursor object

(this is how we interact with the DB)

SQLite - Creating and Storing a DB

import sqlite3

conn = sqlite3.connect('test.db')

cur = conn.cursor()

do things to database

conn.commit()

conn.close()

1. Import the SQLite library
2. Open a connection to a DB

(creates the DB if necessary)
3. Create a cursor object

(this is how we interact with the DB)
4. Do stuff…

SQLite - Creating and Storing a DB

import sqlite3

conn = sqlite3.connect('test.db')

cur = conn.cursor()

do things to database

conn.commit()

conn.close()

1. Import the SQLite library
2. Open a connection to a DB

(creates the DB if necessary)
3. Create a cursor object

(this is how we interact with the DB)
4. Do stuff…
5. Commit our changes and

close the DB
(without commit, changes are lost)

So…what can we do with it?

● We can execute commands on our DB using the cursors execute
function and passing the command we want to execute

● We will go over some basic commands today, but more details can be
found on the SQLite tutorial website: https://www.sqlitetutorial.net/

https://www.sqlitetutorial.net/

Commands: Creating a table

Command: CREATE TABLE IF NOT EXISTS name columnNames

Commands: Creating a table

Command: CREATE TABLE IF NOT EXISTS name columnNames

name - the name of the table you want to create

columnNames - a list of names for the columns in the table

Commands: Creating a table

Command: CREATE TABLE IF NOT EXISTS name columnNames

name - the name of the table you want to create

columnNames - a list of names for the columns in the table

Example: 'CREATE TABLE IF NOT EXISTS movies (title, director, year)'

Commands: Creating a table

Command: CREATE TABLE IF NOT EXISTS name columnNames

name - the name of the table you want to create

columnNames - a list of names for the columns in the table

Example: 'CREATE TABLE IF NOT EXISTS movies (title, director, year)'

Execute with cursor (Python code):
cur.execute('CREATE TABLE IF NOT EXISTS movies (title, director, year)')

Commands: Inserting rows

Command: INSERT INTO table VALUES (x, y, …z)

Commands: Inserting rows

Command: INSERT INTO table VALUES (x, y, …z)

table - the name of the table to insert into

x, y, …z - the values for each column

Commands: Inserting rows

Command: INSERT INTO table VALUES (x, y, …z)

table - the name of the table to insert into

x, y, …z - the values for each column

Example: 'INSERT INTO movies VALUES ("Jaws", "Spielberg", 1975)'

Commands: Inserting rows

Command: INSERT INTO table VALUES (x, y, …z)

table - the name of the table to insert into

x, y, …z - the values for each column

Example: 'INSERT INTO movies VALUES ("Jaws", "Spielberg", 1975)'

String values must be inside "", number values are just numbers
(note how we use single quotes to define the overall string)

Commands: Inserting rows

Command: INSERT INTO table VALUES (x, y, …z)

table - the name of the table to insert into

x, y, …z - the values for each column

Example: 'INSERT INTO movies VALUES ("Jaws", "Spielberg", 1975)'

Execute with cursor (Python code):
cur.execute('INSERT INTO movies VALUES ("Jaws", "Spielberg", 1975)')

Commands: Get rows from table

Command: SELECT * FROM table

Commands: Get rows from table

Command: SELECT * FROM table

table - the name of the table to get the data from

Commands: Get rows from table

Command: SELECT * FROM table

table - the name of the table to get the data from

Example: 'SELECT * FROM movies'

Commands: Get rows from table

Command: SELECT * FROM table

table - the name of the table to get the data from

Example: 'SELECT * FROM movies'

Execute with cursor (Python code):
results = cur.execute('SELECT * FROM movies')

Commands: Get rows from table

Command: SELECT * FROM table

table - the name of the table to get the data from

Example: 'SELECT * FROM movies'

Execute with cursor (Python code):
results = cur.execute('SELECT * FROM movies')

results is a sequence…

Commands: Get rows from table

Command: SELECT * FROM table

table - the name of the table to get the data from

Example: 'SELECT * FROM movies'

Execute with cursor (Python code):
results = cur.execute('SELECT * FROM movies')

for entry in results:

 print(entry)

Commands: Get matching rows from table

Command: SELECT * FROM table WHERE constraint

Commands: Get matching rows from table

Command: SELECT * FROM table WHERE constraint

table - the name of the table to get the data from

constraint - constraint used to match specific rows

Commands: Get matching rows from table

Command: SELECT * FROM table WHERE constraint

table - the name of the table to get the data from

constraint - constraint used to match specific rows

Example: 'SELECT * FROM movies WHERE year = 1975'

Commands: Get matching rows from table

Command: SELECT * FROM table WHERE constraint

table - the name of the table to get the data from

constraint - constraint used to match specific rows

Example: 'SELECT * FROM movies WHERE year = 1975'

Execute with cursor (Python code):
results = cur.execute('SELECT * FROM movies WHERE year = 1975')

