
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 503
Introduction to Computer Science for Non-Majors

Day 31
Algorithms: Searching and Sorting

mailto:epmikida@buffalo.edu


Algorithms

An algorithm is

"a set of rules for solving a problem
in a finite number of steps"

https://www.dictionary.com/browse/algorithm 

https://www.dictionary.com/browse/algorithm


Algorithms

Two common problems we might want to solve:

Searching (Finding a particular element in a collection)

Sorting (Rearranging a collection in a specific order)



Searching

How would we search for a particular item in a list (in Python)?



Linear Search

def linearSearch(list, item):

  for x in list:

    if x == item:

      return True

  return False



Linear Search

def linearSearch(list, item):

  for x in list:

    if x == item:

      return True

  return False

5 8 14 15 23 56 59 64 72 73 88

Is 2 == 64?

2 3 89 97



Linear Search

def linearSearch(list, item):

  for x in list:

    if x == item:

      return True

  return False

5 8 14 15 23 56 59 64 72 73 88

Is 3 == 64?

2 3 89 97



Linear Search

def linearSearch(list, item):

  for x in list:

    if x == item:

      return True

  return False

5 8 14 15 23 56 59 64 72 73 88

Is 5 == 64?

2 3 89 97



Linear Search

def linearSearch(list, item):

  for x in list:

    if x == item:

      return True

  return False

5 8 14 15 23 56 59 64 72 73 88

Is 8 == 64?

2 3 89 97



Linear Search

def linearSearch(list, item):

  for x in list:

    if x == item:

      return True

  return False

5 8 14 15 23 56 59 64 72 73 88

Is 14 == 64?

2 3 89 97



Linear Search

def linearSearch(list, item):

  for x in list:

    if x == item:

      return True

  return False

5 8 14 15 23 56 59 64 72 73 88

Is 15 == 64?

2 3 89 97



Linear Search

def linearSearch(list, item):

  for x in list:

    if x == item:

      return True

  return False

5 8 14 15 23 56 59 64 72 73 88

Is 23 == 64?

2 3 89 97



Linear Search

def linearSearch(list, item):

  for x in list:

    if x == item:

      return True

  return False

5 8 14 15 23 56 59 64 72 73 88

Is 56 == 64?

2 3 89 97



Linear Search

def linearSearch(list, item):

  for x in list:

    if x == item:

      return True

  return False

5 8 14 15 23 56 59 64 72 73 88

Is 59 == 64?

2 3 89 97



Linear Search

def linearSearch(list, item):

  for x in list:

    if x == item:

      return True

  return False

5 8 14 15 23 56 59 64 72 73 88

Is 64 == 64?

2 3 89 97



Linear Search

def linearSearch(list, item):

  for x in list:

    if x == item:

      return True

  return False

5 8 14 15 23 56 59 64 72 73 88

Is 64 == 64?

2 3 89 97

Return True!



Searching

What if we knew our list was sorted?

(how would you find a page in a book?)



BinarySearch

def binarySearch(list, item):
    left = 0
    right = len(list)
    while (right - left) > 0:
        mid = (left + right)//2
        if item < list[mid]:
            right = mid
        elif item > list[mid]:
            left = mid+1
        else:
            return True
    return False



BinarySearch

def binarySearch(list, item):
    left = 0
    right = len(list)
    while (right - left) > 0:
        mid = (left + right)//2
        if item < list[mid]:
            right = mid
        elif item > list[mid]:
            left = mid+1
        else:
            return True
    return False

5 8 14 15 23 56 59 64 72 73 882 3 89 97

left = 0
right = 15

mid = 7



BinarySearch

def binarySearch(list, item):
    left = 0
    right = len(list)
    while (right - left) > 0:
        mid = (left + right)//2
        if item < list[mid]:
            right = mid
        elif item > list[mid]:
            left = mid+1
        else:
            return True
    return False

5 8 14 15 23 56 59 64 72 73 88

Is 64 < 56?

2 3 89 97

left = 0
right = 15

mid = 7



BinarySearch

def binarySearch(list, item):
    left = 0
    right = len(list)
    while (right - left) > 0:
        mid = (left + right)//2
        if item < list[mid]:
            right = mid
        elif item > list[mid]:
            left = mid+1
        else:
            return True
    return False

5 8 14 15 23 56 59 64 72 73 88

Is 64 > 56?

2 3 89 97

left = 0
right = 15

mid = 7



BinarySearch

def binarySearch(list, item):
    left = 0
    right = len(list)
    while (right - left) > 0:
        mid = (left + right)//2
        if item < list[mid]:
            right = mid
        elif item > list[mid]:
            left = mid+1
        else:
            return True
    return False

5 8 14 15 23 56 59 64 72 73 88

Is 64 > 56?

2 3 89 97

left = 8
right = 15

mid = 7



BinarySearch

def binarySearch(list, item):
    left = 0
    right = len(list)
    while (right - left) > 0:
        mid = (left + right)//2
        if item < list[mid]:
            right = mid
        elif item > list[mid]:
            left = mid+1
        else:
            return True
    return False

5 8 14 15 23 56 59 64 72 73 882 3 89 97

left = 8
right = 15

mid = 12



BinarySearch

def binarySearch(list, item):
    left = 0
    right = len(list)
    while (right - left) > 0:
        mid = (left + right)//2
        if item < list[mid]:
            right = mid
        elif item > list[mid]:
            left = mid+1
        else:
            return True
    return False

5 8 14 15 23 56 59 64 72 73 882 3 89 97

left = 8
right = 15

mid = 12

Is 64 < 88?



BinarySearch

def binarySearch(list, item):
    left = 0
    right = len(list)
    while (right - left) > 0:
        mid = (left + right)//2
        if item < list[mid]:
            right = mid
        elif item > list[mid]:
            left = mid+1
        else:
            return True
    return False

5 8 14 15 23 56 59 64 72 73 882 3 89 97

left = 8
right = 12

mid = 12

Is 64 < 88?



BinarySearch

def binarySearch(list, item):
    left = 0
    right = len(list)
    while (right - left) > 0:
        mid = (left + right)//2
        if item < list[mid]:
            right = mid
        elif item > list[mid]:
            left = mid+1
        else:
            return True
    return False

5 8 14 15 23 56 59 64 72 73 882 3 89 97

left = 8
right = 12

mid = 10



BinarySearch

def binarySearch(list, item):
    left = 0
    right = len(list)
    while (right - left) > 0:
        mid = (left + right)//2
        if item < list[mid]:
            right = mid
        elif item > list[mid]:
            left = mid+1
        else:
            return True
    return False

5 8 14 15 23 56 59 64 72 73 882 3 89 97

left = 8
right = 12

mid = 10

Is 64 < 72?



BinarySearch

def binarySearch(list, item):
    left = 0
    right = len(list)
    while (right - left) > 0:
        mid = (left + right)//2
        if item < list[mid]:
            right = mid
        elif item > list[mid]:
            left = mid+1
        else:
            return True
    return False

5 8 14 15 23 56 59 64 72 73 882 3 89 97

left = 8
right = 10

mid = 10

Is 64 < 72?



BinarySearch

def binarySearch(list, item):
    left = 0
    right = len(list)
    while (right - left) > 0:
        mid = (left + right)//2
        if item < list[mid]:
            right = mid
        elif item > list[mid]:
            left = mid+1
        else:
            return True
    return False

5 8 14 15 23 56 59 64 72 73 882 3 89 97

left = 8
right = 10

mid = 9



BinarySearch

def binarySearch(list, item):
    left = 0
    right = len(list)
    while (right - left) > 0:
        mid = (left + right)//2
        if item < list[mid]:
            right = mid
        elif item > list[mid]:
            left = mid+1
        else:
            return True
    return False

5 8 14 15 23 56 59 64 72 73 882 3 89 97

left = 8
right = 10

mid = 9

Is 64 < 64?



BinarySearch

def binarySearch(list, item):
    left = 0
    right = len(list)
    while (right - left) > 0:
        mid = (left + right)//2
        if item < list[mid]:
            right = mid
        elif item > list[mid]:
            left = mid+1
        else:
            return True
    return False

5 8 14 15 23 56 59 64 72 73 882 3 89 97

left = 8
right = 10

mid = 9

Is 64 > 64?



BinarySearch

def binarySearch(list, item):
    left = 0
    right = len(list)
    while (right - left) > 0:
        mid = (left + right)//2
        if item < list[mid]:
            right = mid
        elif item > list[mid]:
            left = mid+1
        else:
            return True
    return False

5 8 14 15 23 56 59 64 72 73 882 3 89 97

left = 8
right = 10

mid = 9

Is 64 > 64?
Return True!



Linear Search vs Binary Search

Checking if x == y eliminates one 
element from consideration



Linear Search vs Binary Search

Checking if x == y eliminates one 
element from consideration

If our input list has N elements, 
then we may have to do up to N 
comparisons in the worst case



Linear Search vs Binary Search

Checking if x == y eliminates one 
element from consideration

If our input list has N elements, 
then we may have to do up to N 
comparisons in the worst case

Checking if x < y, x > y eliminates 
half of the list from consideration



Linear Search vs Binary Search

Checking if x == y eliminates one 
element from consideration

If our input list has N elements, 
then we may have to do up to N 
comparisons in the worst case

Checking if x < y, x > y eliminates 
half of the list from consideration

If our input list has N elements, 
how many comparisons would 
we need in the worst case?



Linear Search vs Binary Search

Checking if x == y eliminates one 
element from consideration

If our input list has N elements, 
then we may have to do up to N 
comparisons in the worst case

Checking if x < y, x > y eliminates 
half of the list from consideration

If our input list has N elements, 
how many comparisons would 
we need in the worst case?

log2(N)



Linear Search vs Binary Search

What if we want to search a list of twice the size?



Linear Search vs Binary Search

If N' = 2N, how many 
comparisons will we need to 

Linear Search a list of size N'?

What if we want to search a list of twice the size?



Linear Search vs Binary Search

If N' = 2N, how many 
comparisons will we need to 

Linear Search a list of size N'?

N' = 2N (twice as many…)

What if we want to search a list of twice the size?



Linear Search vs Binary Search

If N' = 2N, how many 
comparisons will we need to 

Linear Search a list of size N'?

N' = 2N (twice as many…)

If N' = 2N, how many 
comparisons will we need to 

Binary Search a list of size N'?

What if we want to search a list of twice the size?



Linear Search vs Binary Search

If N' = 2N, how many 
comparisons will we need to 

Linear Search a list of size N'?

N' = 2N (twice as many…)

If N' = 2N, how many 
comparisons will we need to 

Binary Search a list of size N'?

log2(N') = log2(2N) = log(N) + 1

(just one more comparison…)

What if we want to search a list of twice the size?



Sorting

Binary Search only works if our list is sorted…

So how do we sort a list?



Sorting

Goal: Given a sequence of values that can be ordered (list in Python, array 
in JS), rearrange the sequence so that the values go from smallest to 
larger (or largest to smallest).

Example:

[12, 56, 4, 8, 19, 16, 37, 23] → [4, 8, 12, 16, 19, 23, 37, 56]



Sorting in Python and JavaScript

Both Python and JavaScript have built-in sorting functions.

If a is a sequence:

a = [12, 56, 4, 8, 19, 16, 37, 23]

then a.sort() (in both Python and JavaScript) will sort a

a = [4, 8, 12, 16, 19, 23, 37, 56]



Sorting

How might we go about implementing sort?

(when you need to sort, just call sort…but it is useful to know how it might work)



Selection Sort

Selection Sort involves selecting the smallest element from the list, and 
appending it to your sorted list:

Input List: [12, 56, 4, 8, 19, 16, 37, 23]

Output List: []



Selection Sort

Selection Sort involves selecting the smallest element from the list, and 
appending it to your sorted list:

Input List: [12, 56, 4, 8, 19, 16, 37, 23]

Find the smallest element (4)

Output List: []



Selection Sort

Selection Sort involves selecting the smallest element from the list, and 
appending it to your sorted list:

Input List: [12, 56, 8, 19, 16, 37, 23]

Remove it from the input…

Output List: []



Selection Sort

Selection Sort involves selecting the smallest element from the list, and 
appending it to your sorted list:

Input List: [12, 56, 8, 19, 16, 37, 23]

Append it to the output

Output List: [4]



Selection Sort

Selection Sort involves selecting the smallest element from the list, and 
appending it to your sorted list:

Input List: [12, 56, 8, 19, 16, 37, 23]

Find the smallest element (8)

Output List: [4]



Selection Sort

Selection Sort involves selecting the smallest element from the list, and 
appending it to your sorted list:

Input List: [12, 56, 19, 16, 37, 23]

Remove it from the input

Output List: [4]



Selection Sort

Selection Sort involves selecting the smallest element from the list, and 
appending it to your sorted list:

Input List: [12, 56, 19, 16, 37, 23]

Append it to the output

Output List: [4, 8]



Selection Sort

Selection Sort involves selecting the smallest element from the list, and 
appending it to your sorted list:

Input List: [12, 56, 19, 16, 37, 23]

Repeat until sorted…

Output List: [4, 8]



Selection Sort

Selection Sort involves selecting the smallest element from the list, and 
appending it to your sorted list:

Input List: [12, 56, 19, 16, 37, 23]

Repeat until sorted…

Output List: [4, 8]



Selection Sort

Selection Sort involves selecting the smallest element from the list, and 
appending it to your sorted list:

Input List: [56, 19, 16, 37, 23]

Repeat until sorted…

Output List: [4, 8, 12]



Selection Sort

Selection Sort involves selecting the smallest element from the list, and 
appending it to your sorted list:

Input List: [56, 19, 16, 37, 23]

Repeat until sorted…

Output List: [4, 8, 12]



Selection Sort

Selection Sort involves selecting the smallest element from the list, and 
appending it to your sorted list:

Input List: [56, 19, 37, 23]

Repeat until sorted…

Output List: [4, 8, 12, 16]



Selection Sort

Selection Sort involves selecting the smallest element from the list, and 
appending it to your sorted list:

Input List: [56, 19, 37, 23]

Repeat until sorted…

Output List: [4, 8, 12, 16]



Selection Sort

Selection Sort involves selecting the smallest element from the list, and 
appending it to your sorted list:

Input List: [56, 37, 23]

Repeat until sorted…

Output List: [4, 8, 12, 16, 19]



Selection Sort

Selection Sort involves selecting the smallest element from the list, and 
appending it to your sorted list:

Input List: [56, 37, 23]

Repeat until sorted…

Output List: [4, 8, 12, 16, 19]



Selection Sort

Selection Sort involves selecting the smallest element from the list, and 
appending it to your sorted list:

Input List: [56, 37]

Repeat until sorted…

Output List: [4, 8, 12, 16, 19, 23]



Selection Sort

Selection Sort involves selecting the smallest element from the list, and 
appending it to your sorted list:

Input List: [56, 37]

Repeat until sorted…

Output List: [4, 8, 12, 16, 19, 23]



Selection Sort

Selection Sort involves selecting the smallest element from the list, and 
appending it to your sorted list:

Input List: [56]

Repeat until sorted…

Output List: [4, 8, 12, 16, 19, 23, 37]



Selection Sort

Selection Sort involves selecting the smallest element from the list, and 
appending it to your sorted list:

Input List: [56]

Repeat until sorted…

Output List: [4, 8, 12, 16, 19, 23, 37]



Selection Sort

Selection Sort involves selecting the smallest element from the list, and 
appending it to your sorted list:

Input List: []

Repeat until sorted…

Output List: [4, 8, 12, 16, 19, 23, 37, 56]



Selection Sort

Selection Sort involves selecting the smallest element from the list, and 
appending it to your sorted list:

Input List: []

Output List: [4, 8, 12, 16, 19, 23, 37, 56]



Selection Sort

def selectionSort(unsorted):

  sorted = []

  while len(unsorted) > 0:

    x = removeSmallest(unsorted)

    sorted.append(x)

  return sorted

def removeSmallest(aList):

  smallest = aList[0]

  for value in aList:

    if value < smallest:

      smallest = value

  aList.remove(smallest)

  return smallest



Selection Sort

def selectionSort(unsorted):

  sorted = []

  while len(unsorted) > 0:

    x = removeSmallest(unsorted)

    sorted.append(x)

  return sorted

As long as our unsorted list still has 
elements, remove the smallest and appent 
it to our sorted list

def removeSmallest(aList):

  smallest = aList[0]

  for value in aList:

    if value < smallest:

      smallest = value

  aList.remove(smallest)

  return smallest



Selection Sort

def selectionSort(unsorted):

  sorted = []

  while len(unsorted) > 0:

    x = removeSmallest(unsorted)

    sorted.append(x)

  return sorted

As long as our unsorted list still has 
elements, remove the smallest and appent 
it to our sorted list

def removeSmallest(aList):

  smallest = aList[0]

  for value in aList:

    if value < smallest:

      smallest = value

  aList.remove(smallest)

  return smallest

Look through each value (linearly) in the 
list to find the smallest, then remove it



Selection Sort Analysis

How many steps does our selection sort take with a list of size N?



Selection Sort Analysis

How many steps does our selection sort take with a list of size N?

Finding the smallest item uses a linear search



Selection Sort Analysis

How many steps does our selection sort take with a list of size N?

Finding the smallest item uses a linear search: N steps



Selection Sort Analysis

How many steps does our selection sort take with a list of size N?

Finding the smallest item uses a linear search: N steps

How many times do we have to find the smallest item?



Selection Sort Analysis

How many steps does our selection sort take with a list of size N?

Finding the smallest item uses a linear search: N steps

How many times do we have to find the smallest item?

N times (once for each item in the list)



Selection Sort Analysis

How many steps does our selection sort take with a list of size N?

Finding the smallest item uses a linear search: N steps

How many times do we have to find the smallest item?

N times (once for each item in the list)

Total number of steps: N x N = N2



Selection Sort Analysis

How many steps does our selection sort take with a list of size N?

Finding the smallest item uses a linear search: N steps

How many times do we have to find the smallest item?

N times (once for each item in the list)

Total number of steps: N x N = N2

This isn't…100% accurate, but intuitively it gets the point across
In reality, finding the smallest takes N steps, then N-1 steps, then N-2 steps…

But N + (N-1) + (N-2) + … + 2 + 1 = N2



Sorting

N2 grows pretty fast…

If our list doubles in size, the sort will take 4 times as long!

Can we do better?



Sorting

N2 grows pretty fast…

If our list doubles in size, the sort will take 4 times as long!

Can we do better? YES!


