CSE 503
Introduction to Computer Science for Non-Majors

Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

Day 32
MergeSort and Recursion
Announcements

- Autolab for Lab #5 is not up yet but I will try to have it up by tonight
Recap

- Two different search algorithms: **LinearSearch** and **BinarySearch**
 - **LinearSearch** on a list of size N requires N comparisons in the worst case.
 - **BinarySearch** on a sorted list of size N requires $\log(N)$ comparisons in the worst case.
 - As we try larger and larger inputs, N grows much faster than $\log(N)$.

- **SelectionSort** is the first sorting algorithm we've seen.
 - Select the smallest item from input and add it to the end of output.
 - Requires (roughly) N^2 steps to sort a list of size N.
Recursion
factorial(n) = n * (n-1) * (n-2) * ... * 2 * 1
Factorial

\[\text{factorial}(n) = n \times (n-1) \times (n-2) \times \ldots \times 2 \times 1 \]
Factorial

\[\text{factorial}(n) = n \times (n-1) \times (n-2) \times \ldots \times 2 \times 1 \]
factorial(n) = n * (n-1) * (n-2) * … * 2 * 1
Factorial

$$\text{factorial}(n) = n \times (n-1) \times (n-2) \times \ldots \times 2 \times 1$$
Fibonacci

\[\text{fib}(n) = 1, 1 \]
Fibonacci

\[\text{fib}(n) = 1, 1, 2 \]

Diagram showing the Fibonacci sequence with \[+ \] operations.
Fibonacci

\[\text{fib}(n) = 1, 1, 2, 3 + \]
Fibonacci

\[\text{fib}(n) = 1, 1, 2, 3, 5, 8, 13, 21, 34, \ldots \]
Fibonacci

\[\text{fib}(n) = 1, 1, 2, 3, 5, 8, 13, 21, 34, \ldots \]
Fibonacci

\[\text{fib}(n) = 1, 1, 2, 3, 5, 8, 13, 21, 34, \ldots \]

\[\text{fib}(n) = \text{fib}(n-1) + \text{fib}(n-2) \]
Towers of Hanoi

Live Demo!
Recursion (in CS) is the when we define a function using itself
Recursion (in CS) is the when we define a function using itself.

There is a base case, where the result can be directly computed:
- \(\text{factorial}(1) = 1 \), \(\text{fib}(1) = 1 \), \(\text{fib}(2) = 1 \), the smallest nesting doll,
 - Towers of Hanoi with one disc
Recursion (in CS) is the when we define a function using itself

There is a base case, where the result can be directly computed

- *ie:* factorial(1) = 1, fib(1) = 1, fib(2) = 1, the smallest nesting doll, Towers of Hanoi with one disc

There is a recursive case, where the result is computed by running the function on a smaller input/problem

- *ie:* factorial(10) = 10 * factorial(9), fib(26) = fib(25) + fib(24), etc
MergeSort is a recursive sorting algorithm.

It is an example of a Divide and Conquer approach to solving a problem:
MergeSort is a recursive sorting algorithm. It is an example of a **Divide and Conquer** approach to solving a problem:

1. **Divide** the problem into smaller pieces
MergeSort is a recursive sorting algorithm.

It is an example of a **Divide and Conquer** approach to solving a problem:
1. **Divide** the problem into smaller pieces
2. **Conquer (solve)** the smaller problems
MergeSort is a recursive sorting algorithm.

It is an example of a **Divide and Conquer** approach to solving a problem:

1. **Divide** the problem into smaller pieces
2. **Conquer (solve)** the smaller problems
3. **Combine** the smaller solutions into a larger solution
MergeSort

Input: An array with elements in an unknown order.

Output: An array with elements in sorted order.
Divide (break the list into smaller lists)
What's the smallest list we could try to sort?
MergeSort - Questions

Divide (break the list into smaller lists)

What's the smallest list we could try to sort? $N = 1$
MergeSort - Questions

Divide (break the list into smaller lists)
What's the smallest list we could try to sort? $N = 1$

Conquer (sort the smaller lists)
How do we sort it?
MergeSort - Questions

Divide (break the list into smaller lists)
What's the smallest list we could try to sort? \(N = 1 \)

Conquer (sort the smaller lists)
How do we sort it? If \(N = 1 \), it's already sorted!!!
MergeSort - Questions

Divide (break the list into smaller lists)
What's the smallest list we could try to sort? $N = 1$

Conquer (sort the smaller lists)
How do we sort it? If $N = 1$, it's already sorted!!!

Combine (combine the sorted lists into a bigger sorted list)
How can we do this, and how long does it take?
MergeSort - Questions

Divide (break the list into smaller lists)
What's the smallest list we could try to sort? \(N = 1 \)

Conquer (sort the smaller lists)
How do we sort it? If \(N = 1 \), it's already sorted!!!

Combine (combine the sorted lists into a bigger sorted list)
How can we do this, and how long does it take? Merge...
How do we Merge Two Sorted Arrays?

15 24 31 37 55

62 73 95

61 88
How do we Merge Two Sorted Arrays?

How many comparisons does this require?

15 24 31 37 55 61 62 73 88 95
How do we Merge Two Sorted Arrays?

How many comparisons does this require?

For \(N \) total items, we need \(N \) comparisons
How do we Merge Two Sorted Arrays?

How many comparisons does this require?

For N total items, we need N comparisons
(because we only ever need to compare the first element of each list)
Divide

- We know how to combine sorted arrays
- We know that the base case of $N = 1$ is already sorted
- How do we divide our problem to get there?
We know how to combine sorted arrays
We know that the base case of $N = 1$ is already sorted
How do we divide our problem to get there?

Let's divide our array in half (recursively)!
Visualization - Divide
Visualization - Divide

Divide the input in half
Visualization - Divide

Divide each half in half
Visualization - Divide

Divide each half in half again...
Visualization - Conquer

Divide each half in half again...

We can't divide in half anymore (base case)
Visualization - Combine
Visualization - Combine

Each single item list is sorted...merge each pair into a bigger sorted list
Visualization - Combine

Merge each pair of 2 into sorted lists of size 4
Visualization - Combine

One more merge gets our original list fully sorted
mergeSort and mergeSortHelper

```python
def mergeSort(X):
    mergeSortHelper(X, 0, len(X))
    return X

def mergeSortHelper(X, left, right):
    if (right - left) > 1:
        mid = (left + right) // 2
        mergeSortHelper(X, left, mid)
        mergeSortHelper(X, mid, right)
        merge(X, left, mid, right)
```
mergeSort and mergeSortHelper

```python
def mergeSort(X):
    mergeSortHelper(X, 0, len(X))
    return X

def mergeSortHelper(X, left, right):
    if (right - left) > 1:
        mid = (left + right) // 2
        mergeSortHelper(X, left, mid)
        mergeSortHelper(X, mid, right)
        merge(X, left, mid, right)
```

The `mergeSortHelper` function performs merge sort on a region of the list.

In this case, the whole list.
mergeSort and mergeSortHelper

```python
def mergeSort(X):
    mergeSortHelper(X, 0, len(X))
    return X

def mergeSortHelper(X, left, right):
    if (right - left) > 1:
        mid = (left + right) // 2
        mergeSortHelper(X, left, mid)
        mergeSortHelper(X, mid, right)
        merge(X, left, mid, right)
```

mergeSortHelper is a recursive function...it will call itself on a smaller input.
mergeSort and mergeSortHelper

```python
def mergeSort(X):
    mergeSortHelper(X, 0, len(X))
    return X

def mergeSortHelper(X, left, right):
    if (right - left) > 1:
        mid = (left + right) // 2
        mergeSortHelper(X, left, mid)
        mergeSortHelper(X, mid, right)
        merge(X, left, mid, right)
```

We only do something if the region passed has more than one element.

With just one element (the base case), our list is already sorted so do nothing.
mergeSort and mergeSortHelper

def mergeSort(X):
 mergeSortHelper(X, 0, len(X))
 return X

def mergeSortHelper(X, left, right):
 if (right - left) > 1:
 mid = (left + right) // 2
 mergeSortHelper(X, left, mid)
 mergeSortHelper(X, mid, right)
 merge(X, left, mid, right)

If there is more than one element in our region, then compute the midpoint of the region.
mergeSort and mergeSortHelper

```python
def mergeSort(X):
    mergeSortHelper(X, 0, len(X))
    return X

def mergeSortHelper(X, left, right):
    if (right - left) > 1:
        mid = (left + right) // 2
        mergeSortHelper(X, left, mid)
        mergeSortHelper(X, mid, right)
        merge(X, left, mid, right)
```

If there is more than one element in our region, then compute the midpoint of the region.

Then call `mergeSortHelper` on the left and right halves.
If there is more than one element in our region, then compute the midpoint of the region.

Then call `mergeSortHelper` on the left and right halves.

Finally, merge the partial results.
def merge(X, left, mid, right):
 temp = []
 left_idx = left
 right_idx = mid
 while left_idx < mid and right_idx < right:
 if X[left_idx] < X[right_idx]:
 temp.append(X[left_idx])
 left_idx = left_idx + 1
 else:
 temp.append(X[right_idx])
 right_idx = right_idx + 1
 while left_idx < mid:
 temp.append(X[left_idx])
 left_idx = left_idx + 1
 while right_idx < right:
 temp.append(X[right_idx])
 right_idx = right_idx + 1
 for i in range(left, right):
 X[i] = temp[i-left]
def merge(X, left, mid, right):
 temp = []
 left_idx = left
 right_idx = mid
 while left_idx < mid and right_idx < right:
 if X[left_idx] < X[right_idx]:
 temp.append(X[left_idx])
 left_idx = left_idx + 1
 else:
 temp.append(X[right_idx])
 right_idx = right_idx + 1
 while left_idx < mid:
 temp.append(X[left_idx])
 left_idx = left_idx + 1
 while right_idx < right:
 temp.append(X[right_idx])
 right_idx = right_idx + 1
 for i in range(left, right):
 X[i] = temp[i-left]
def merge(X, left, mid, right):
 temp = []
 left_idx = left
 right_idx = mid
 while left_idx < mid and right_idx < right:
 if X[left_idx] < X[right_idx]:
 temp.append(X[left_idx])
 left_idx = left_idx + 1
 else:
 temp.append(X[right_idx])
 right_idx = right_idx + 1
 while left_idx < mid:
 temp.append(X[left_idx])
 left_idx = left_idx + 1
 while right_idx < right:
 temp.append(X[right_idx])
 right_idx = right_idx + 1
 for i in range(left, right):
 X[i] = temp[i-left]
merge

If the front of the left half is smaller than the front of the right half, add it to our result and update the value of left_idx.
def merge(X, left, mid, right):
 temp = []
 left_idx = left
 right_idx = mid
 while left_idx < mid and right_idx < right:
 if X[left_idx] < X[right_idx]:
 temp.append(X[left_idx])
 left_idx = left_idx + 1
 else:
 temp.append(X[right_idx])
 right_idx = right_idx + 1
 while left_idx < mid:
 temp.append(X[left_idx])
 left_idx = left_idx + 1
 while right_idx < right:
 temp.append(X[right_idx])
 right_idx = right_idx + 1
 for i in range(left, right):
 X[i] = temp[i-left]
def merge(X, left, mid, right):
 temp = []
 left_idx = left
 right_idx = mid
 while left_idx < mid and right_idx < right:
 if X[left_idx] < X[right_idx]:
 temp.append(X[left_idx])
 left_idx = left_idx + 1
 else:
 temp.append(X[right_idx])
 right_idx = right_idx + 1
 while left_idx < mid:
 temp.append(X[left_idx])
 left_idx = left_idx + 1
 while right_idx < right:
 temp.append(X[right_idx])
 right_idx = right_idx + 1
 for i in range(left, right):
 X[i] = temp[i-left]
def merge(X, left, mid, right):
 temp = []
 left_idx = left
 right_idx = mid
 while left_idx < mid and right_idx < right:
 if X[left_idx] < X[right_idx]:
 temp.append(X[left_idx])
 left_idx = left_idx + 1
 else:
 temp.append(X[right_idx])
 right_idx = right_idx + 1
 while left_idx < mid:
 temp.append(X[left_idx])
 left_idx = left_idx + 1
 while right_idx < right:
 temp.append(X[right_idx])
 right_idx = right_idx + 1
 for i in range(left, right):
 X[i] = temp[i-left]
How many steps does it take to sort a list with N items?
How many steps does it take to sort a list with N items?

How many steps does it take to merge the N items?
How many steps does it take to sort a list with N items?

How many steps does it take to merge the N items? N steps
How many steps does it take to sort a list with N items?

How many steps does it take to merge the N items? N steps

How many times do we have to merge?
How many steps does it take to sort a list with \(N \) items?

How many steps does it take to merge the \(N \) items? \(N \) steps

How many times do we have to merge? \(\log(N) \)
How many steps does it take to sort a list with N items?

How many steps does it take to merge the N items? N steps

How many times do we have to merge? $\log(N)$

Total number of steps: $N \log(N)$
SelectionSort vs MergeSort

SelectionSort requires roughly N^2 steps to sort a list of size N

N^2 grows pretty fast...

*If we **double** the size of our list we **quadruple** the number of steps*
SelectionSort vs MergeSort

SelectionSort requires roughly N^2 steps to sort a list of size N.

N^2 grows pretty fast...

*If we **double** the size of our list, we **quadruple** the number of steps.*

MergeSort requires roughly $N \log(N)$ steps to sort a list of size N.

$N \log(N)$ grows much slower.

*If we **double** the size of our list, we only increase the number of steps by a **little more than double**.*