CSE 503

Introduction to Computer Science for Non-Majors

Dr. Eric Mikida epmikida@buffalo.edu
208 Capen Hall

Day 32
MergeSort and Recursion

Announcements

- Autolab for Lab \#5 is not up yet but I will try to have it up by tonight

Recap

- Two different search algorithms: LinearSearch and BinarySearch
- LinearSearch on list of size \mathbf{N} requires \mathbf{N} comparisons in the worst case
- BinarySearch on a sorted list of size \mathbf{N} requires $\log (N)$ comparisons in the worst case
- As we try larger and larger inputs, \mathbf{N} grows much faster than $\log (\mathbf{N})$
- SelectionSort is the first sorting algorithm we've seen
- Select the smallest item from input and add it to the end of output
- Requires (roughly) \boldsymbol{N}^{2} steps to sort a list of size \boldsymbol{N}

Recursion

Factorial

factorial(n) $=n$ * $(n-1)$ * ($n-2)$ * ... * 2 * 1

Factorial

factorial(n) $=\mathrm{n}$ * $(\mathrm{n}-1)$ * $(\mathrm{n}-2)$ * ... * 2 * 1
factorial(n-1)

Factorial

factorial(n) $=\mathrm{n}$ * $(\mathrm{n}-1)$ * $(\mathrm{n}-2)$ * ... * 2 * 1

factorial(n-1)

Factorial

factorial(n) $=n$ * $(n-1)$ * ($n-2)$ * ... * 2 * 1

factorial(n-1)

Factorial

factorial(1)
factorial(n) $=\mathrm{n}$ * $(\mathrm{n}-1)$ * $(\mathrm{n}-2)$ * ... * 2 * 1

factorial(n-1)

Fibonacci

fib(n) $=1,1$

Fibonacci

$\mathrm{fib}(\mathrm{n})=1,1,2$

Fibonacci

Fibonacci

fib(n) $=1,1,2,3,5$

Fibonacci

fib(n) $=1,1,2,3,5,8,13,21,34, \ldots$

Fibonacci

fib(n) $=1,1,2,3,5,8,13,21,34, \ldots$
$\mathrm{fib}(\mathrm{n})=\mathrm{fib}(\mathrm{n}-1)+\mathrm{fib}(\mathrm{n}-2)$

Towers of Hanoi

Live Demo!

Recursion

Recursion (in CS) is the when we define a function using itself

Recursion

Recursion (in CS) is the when we define a function using itself
There is a base case, where the result can be directly computed

- ie: factorial $(1)=1, f i b(1)=1, f i b(2)=1$, the smallest nesting doll, Towers of Hanoi with one disc

Recursion

Recursion (in CS) is the when we define a function using itself
There is a base case, where the result can be directly computed

- ie: factorial $(1)=1, f i b(1)=1, f i b(2)=1$, the smallest nesting doll, Towers of Hanoi with one disc

There is a recursive case, where the result is computed by running the function on a smaller input/problem

- ie: factorial(10) $=10$ * factorial(9), fib(26) $=\mathrm{fib}(25)+\mathrm{fib}(24)$, etc

MergeSort

MergeSort is a recursive sorting algorithm.
It is an example of a Divide and Conquer approach to solving a problem:

MergeSort

MergeSort is a recursive sorting algorithm.
It is an example of a Divide and Conquer approach to solving a problem:

1. Divide the problem into smaller pieces

MergeSort

MergeSort is a recursive sorting algorithm.
It is an example of a Divide and Conquer approach to solving a problem:

1. Divide the problem into smaller pieces
2. Conquer (solve) the smaller problems

MergeSort

MergeSort is a recursive sorting algorithm.
It is an example of a Divide and Conquer approach to solving a problem:

1. Divide the problem into smaller pieces
2. Conquer (solve) the smaller problems
3. Combine the smaller solutions into a larger solution

MergeSort

Input: An array with elements in an unknown order.
Output: An array with elements in sorted order.

MergeSort - Questions

Divide (break the list into smaller lists) What's the smallest list we could try to sort?

MergeSort - Questions

Divide (break the list into smaller lists)
What's the smallest list we could try to sort? $\mathbf{N}=\mathbf{1}$

MergeSort - Questions

Divide (break the list into smaller lists)
What's the smallest list we could try to sort? $\mathbf{N}=\mathbf{1}$
Conquer (sort the smaller lists)
How do we sort it?

MergeSort - Questions

Divide (break the list into smaller lists)
What's the smallest list we could try to sort? $\mathbf{N}=\mathbf{1}$
Conquer (sort the smaller lists)
How do we sort it? If $\boldsymbol{N}=\mathbf{1}$, it's already sorted!!!

MergeSort - Questions

Divide (break the list into smaller lists)
What's the smallest list we could try to sort? $\mathbf{N}=\mathbf{1}$
Conquer (sort the smaller lists)
How do we sort it? If $\boldsymbol{N}=\mathbf{1}$, it's already sorted!!!
Combine (combine the sorted lists into a bigger sorted list) How can we do this, and how long does it take?

MergeSort - Questions

Divide (break the list into smaller lists)
What's the smallest list we could try to sort? $\mathbf{N}=\mathbf{1}$
Conquer (sort the smaller lists)
How do we sort it? If $\boldsymbol{N}=\mathbf{1}$, it's already sorted!!!
Combine (combine the sorted lists into a bigger sorted list) How can we do this, and how long does it take? Merge...

How do we Merge Two Sorted Arrays？

图回回圆

How do we Merge Two Sorted Arrays?

24	37	62	73	95
	31	55	61	88

How do we Merge Two Sorted Arrays?

37	62	73	95
31	55	61	88

How do we Merge Two Sorted Arrays?

How do we Merge Two Sorted Arrays?

How do we Merge Two Sorted Arrays?

How do we Merge Two Sorted Arrays?

\section*{| 62 | 73 | 95 |
| :--- | :--- | :--- |}

How do we Merge Two Sorted Arrays?

How do we Merge Two Sorted Arrays?

95

88

How do we Merge Two Sorted Arrays?

How do we Merge Two Sorted Arrays?

How do we Merge Two Sorted Arrays?

How many comparisons does this require?

How do we Merge Two Sorted Arrays?

How many comparisons does this require?
For \boldsymbol{N} total items, we need \boldsymbol{N} comparisons

How do we Merge Two Sorted Arrays?

How many comparisons does this require?
For \boldsymbol{N} total items, we need \boldsymbol{N} comparisons
(because we only ever need to compare the first element of each list)

Divide

- We know how to combine sorted arrays
- We know that the base case of $\mathbf{N}=\mathbf{1}$ is already sorted
- How do we divide our problem to get there?

Divide

- We know how to combine sorted arrays
- We know that the base case of $\mathbf{N}=\mathbf{1}$ is already sorted
- How do we divide our problem to get there?

Let's divide our array in half (recursively)!

Visualization - Divide

Visualization - Divide

Visualization - Divide

Visualization - Divide

Visualization - Conquer

Visualization - Combine

Visualization - Combine

Each single item list is sorted...merge each pair into a bigger sorted list

Visualization - Combine

Merge each pair of 2 into sorted lists of size 4

Visualization - Combine

mergeSort and mergeSortHelper

```
def mergeSort(X):
    mergeSortHelper(X, 0, len(X))
    return X
def mergeSortHelper(X, left, right):
    if (right - left) > 1:
        mid = (left + right) // 2
        mergeSortHelper(X, left, mid)
        mergeSortHelper(X, mid, right)
        merge(X, left, mid, right)
```


mergeSort and mergeSortHelper

```
def mergeSort(X):
    mergeSortHelper(X, 0, len(X))
    return X
def mergeSortHelper(X, left, right):
    if (right - left) > 1:
        mid = (left + right) // 2
        mergeSortHelper(X, left, mid)
        mergeSortHelper(X, mid, right)
        merge(X, left, mid, right)
```

The mergeSortHelper function performs merge sort on a region of the list.

In this case, the whole list.

mergeSort and mergeSortHelper

```
def mergeSort(X):
    mergeSortHelper(X, 0, len(X))
    return X
def mergeSortHelper(X, left, right):
    if (right - left) > 1:
        mid = (left + right) // 2
        mergeSortHelper(X, left, mid)
        mergeSortHelper(X, mid, right)
        merge(X, left, mid, right)
```

mergeSortHelper is a recursive function...it will call itself on a smaller input.

mergeSort and mergeSortHelper

```
def mergeSort(X):
    mergeSortHelper(X, 0, len(X))
    return X
def mergeSortHelper(X, left, right):
    if (right - left) > 1:
        mid = (left + right) // 2
        mergeSortHelper(X, left, mid)
        mergeSortHelper(X, mid, right)
        merge(X, left, mid, right)
```

We only do something if the region passed has more than one element.

With just one element (the base case), our list is already sorted so do nothing.

mergeSort and mergeSortHelper

```
def mergeSort(X):
    mergeSortHelper(X, 0, len(X))
    return X
def mergeSortHelper(X, left, right):
    if (right - left) > 1:
        mid = (left + right) // 2
        mergeSortHelper(X, left, mid)
        mergeSortHelper(X, mid, right)
        merge(X, left, mid, right)
```

If there is more than one element in our region, then compute the midpoint of the region.

mergeSort and mergeSortHelper

```
def mergeSort(X):
    mergeSortHelper(X, 0, len(X))
    return X
def mergeSortHelper(X, left, right):
    if (right - left) > 1:
        mid = (left + right) // 2
        mergeSortHelper(X, left, mid)
        mergeSortHelper(X, mid, right)
        merge(X, left, mid, right)
```

If there is more than one element in our region, then compute the midpoint of the region.

Then call mergeSortHelper on the left and right halves.

mergeSort and mergeSortHelper

```
def mergeSort(X):
    mergeSortHelper(X, 0, len(X))
    return X
def mergeSortHelper(X, left, right):
    if (right - left) > 1:
        mid = (left + right) // 2
        mergeSortHelper(X, left, mid)
        mergeSortHelper(X, mid, right)
        merge(X, left, mid, right)
```

If there is more than one element in our region, then compute the midpoint of the region.

Then call mergeSortHelper on the left and right halves.

Finally, merge the partial results.

```
def merge(X, left, mid, right):
    temp = []
    left_idx = left
    right_idx = mid
    while left_idx < mid and right_idx < right:
    if X[left_idx] < X[right_idx]:
        temp.append(X[left_idx])
        left_idx = left_idx + 1
    else:
        temp.append(X[right_idx])
        right_idx = right_idx + 1
while left_idx < mid:
    temp.append(X[left_idx])
    left_idx = left_idx + 1
while right_idx < right:
    temp.append(X[right_idx])
    right_idx = right_idx + 1
for i in range(left, right):
    X[i] = temp[i-left]
```


merge

Set the left_idx to the first index of the left half, and the right_idx to the first index of the right half.

```
def merge(X, left, mid, right):
    temp = []
    left_idx = left
    right_idx = mid
    while left_idx < mid and right_idx < right:
    if X[left_idx] < X[right_idx]:
        temp.append(X[left_idx])
        left_idx = left_idx + 1
    else:
        temp.append(X[right_idx])
        right_idx = right_idx + 1
while left_idx < mid:
    temp.append(X[left_idx])
    left_idx = left_idx + 1
while right_idx < right:
    temp.append(X[right_idx])
    right_idx = right_idx + 1
for i in range(left, right):
    X[i] = temp[i-left]
```


merge

Keep going as long as

 there are more elements we haven't merged in both halves.
merge

If the front of the left half is smaller than the front of the right half, add it to our result and update the value of left_idx

```
def merge(X, left, mid, right):
    temp = []
    left_idx = left
    right_idx = mid
    while left_idx < mid and right_idx < right:
        if X[left_idx] < X[right_idx]:
        temp.append(X[left_idx])
        left_idx = left_idx + 1
        else:
            temp.append(X[right_idx])
            right_idx = right_idx + 1
while left_idx < mid:
        temp.append(X[left_idx])
        left_idx = left_idx + 1
    while right_idx < right:
        temp.append(X[right_idx])
        right_idx = right_idx + 1
    for i in range(left, right):
    X[i] = temp[i-left]
```


merge

Do the opposite if the front of the right half was the smaller of the two

```
def merge(X, left, mid, right):
    temp = []
    left_idx = left
    right_idx = mid
    while left_idx < mid and right_idx < right:
        if X[left_idx] < X[right_idx]:
        temp.append(X[left_idx])
        left_idx = left_idx + 1
        else:
        temp.append(X[right_idx])
        right_idx = right_idx + 1
    while left_idx < mid:
        temp.append(X[left_idx])
        left_idx = left_idx + 1
    while right_idx < right:
        temp.append(X[right_idx])
        right_idx = right_idx + 1
    for i in range(left, right):
    X[i] = temp[i-left]
```


merge

After one of the halves runs out, make sure to just append the rest of the half that still has leftover elements

```
def merge(X, left, mid, right):
    temp = []
    left_idx = left
    right_idx = mid
    while left_idx < mid and right_idx < right:
        if X[left_idx] < X[right_idx]:
        temp.append(X[left_idx])
        left_idx = left_idx + 1
        else:
        temp.append(X[right_idx])
        right_idx = right_idx + 1
    while left_idx < mid:
        temp.append(X[left_idx])
        left_idx = left_idx + 1
    while right_idx < right:
        temp.append(X[right_idx])
    right_idx = right_idx + 1
    for i in range(left, right):
    X[i] = temp[i-left]
```


merge

Copy the result back into the original list

```
def merge(X, left, mid, right):
    temp = []
    left_idx = left
    right_idx = mid
    while left_idx < mid and right_idx < right:
    if X[left_idx] < X[right_idx]:
        temp.append(X[left_idx])
        left_idx = left_idx + 1
    else:
        temp.append(X[right_idx])
        right_idx = right_idx + 1
    while left_idx < mid:
    temp.append(X[left_idx])
    left_idx = left_idx + 1
    while right_idx < right:
    temp.append(X[right_idx])
    right_idx = right_idx + 1
for i in range(left, right):
    X[i] = temp[i-left]
```


Runtime

How many steps does it take to sort a list with \mathbf{N} items?

Runtime

How many steps does it take to sort a list with \mathbf{N} items? How many steps does it take to merge the \mathbf{N} items?

Runtime

How many steps does it take to sort a list with \mathbf{N} items?
How many steps does it take to merge the \mathbf{N} items? \mathbf{N} steps

Runtime

How many steps does it take to sort a list with \mathbf{N} items?
How many steps does it take to merge the \mathbf{N} items? \mathbf{N} steps
How many times do we have to merge?

Runtime

How many steps does it take to sort a list with \mathbf{N} items?
How many steps does it take to merge the \mathbf{N} items? \mathbf{N} steps
How many times do we have to merge? $\boldsymbol{\operatorname { l o g } (N)}$

Runtime

How many steps does it take to sort a list with \mathbf{N} items?
How many steps does it take to merge the \mathbf{N} items? \mathbf{N} steps
How many times do we have to merge? $\boldsymbol{\operatorname { l o g } (N)}$
Total number of steps: $N \log (N)$

SelectionSort vs MergeSort

SelectionSort requires roughly $\mathbf{N}^{\mathbf{2}}$ steps to sort a list of size \mathbf{N}
N^{2} grows pretty fast...
If we double the size of our list we quadruple the number of steps

SelectionSort vs MergeSort

SelectionSort requires roughly $\mathbf{N}^{\mathbf{2}}$ steps to sort a list of size \mathbf{N}
N^{2} grows pretty fast...
If we double the size of our list we quadruple the number of steps

MergeSort requires roughly $\log (N)$ steps to sort a list of size N
$N \log (N)$ grows much slower
If we double the size of our list, we only increase the number of steps by a little more than double

