
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 503
Introduction to Computer Science for Non-Majors

Day 32
MergeSort and Recursion

mailto:epmikida@buffalo.edu

Announcements

● Autolab for Lab #5 is not up yet but I will try to have it up by tonight

Recap

● Two different search algorithms: LinearSearch and BinarySearch
○ LinearSearch on list of size N requires N comparisons in the worst case
○ BinarySearch on a sorted list of size N requires log(N) comparisons in

the worst case
○ As we try larger and larger inputs, N grows much faster than log(N)

● SelectionSort is the first sorting algorithm we've seen
○ Select the smallest item from input and add it to the end of output
○ Requires (roughly) N2 steps to sort a list of size N

Recursion

Factorial

factorial(n) = n * (n-1) * (n-2) * … * 2 * 1

Factorial

factorial(n) = n * (n-1) * (n-2) * … * 2 * 1

factorial(n-1)

Factorial

factorial(n) = n * (n-1) * (n-2) * … * 2 * 1

factorial(n-1)

factorial(n-2)

Factorial

factorial(n) = n * (n-1) * (n-2) * … * 2 * 1

factorial(n-1)

factorial(n-2)

factorial(2)

Factorial

factorial(n) = n * (n-1) * (n-2) * … * 2 * 1

factorial(n-1)

factorial(n-2)

factorial(2)

factorial(1)

Fibonacci

fib(n) = 1, 1, 2, 3, 5, 8, 13, 21, 34, …

Fibonacci

fib(n) = 1, 1, 2, 3, 5, 8, 13, 21, 34, …
+

Fibonacci

fib(n) = 1, 1, 2, 3, 5, 8, 13, 21, 34, …
+

Fibonacci

fib(n) = 1, 1, 2, 3, 5, 8, 13, 21, 34, …
+

Fibonacci

fib(n) = 1, 1, 2, 3, 5, 8, 13, 21, 34, …

Fibonacci

fib(n) = 1, 1, 2, 3, 5, 8, 13, 21, 34, …

fib(n) = fib(n-1) + fib(n-2)

Towers of Hanoi

Live Demo!

Recursion

Recursion (in CS) is the when we define a function using itself

Recursion

Recursion (in CS) is the when we define a function using itself

There is a base case, where the result can be directly computed
● ie: factorial(1) = 1, fib(1) = 1, fib(2) = 1, the smallest nesting doll,

Towers of Hanoi with one disc

Recursion

Recursion (in CS) is the when we define a function using itself

There is a base case, where the result can be directly computed
● ie: factorial(1) = 1, fib(1) = 1, fib(2) = 1, the smallest nesting doll,

Towers of Hanoi with one disc

There is a recursive case, where the result is computed by running the
function on a smaller input/problem
● ie: factorial(10) = 10 * factorial(9), fib(26) = fib(25) + fib(24), etc

MergeSort

MergeSort is a recursive sorting algorithm.

It is an example of a Divide and Conquer approach to solving a problem:

MergeSort

MergeSort is a recursive sorting algorithm.

It is an example of a Divide and Conquer approach to solving a problem:
1. Divide the problem into smaller pieces

MergeSort

MergeSort is a recursive sorting algorithm.

It is an example of a Divide and Conquer approach to solving a problem:
1. Divide the problem into smaller pieces
2. Conquer (solve) the smaller problems

MergeSort

MergeSort is a recursive sorting algorithm.

It is an example of a Divide and Conquer approach to solving a problem:
1. Divide the problem into smaller pieces
2. Conquer (solve) the smaller problems
3. Combine the smaller solutions into a larger solution

MergeSort

Input: An array with elements in an unknown order.

Output: An array with elements in sorted order.

MergeSort - Questions

Divide (break the list into smaller lists)
What's the smallest list we could try to sort?

MergeSort - Questions

Divide (break the list into smaller lists)
What's the smallest list we could try to sort? N = 1

MergeSort - Questions

Divide (break the list into smaller lists)
What's the smallest list we could try to sort? N = 1

Conquer (sort the smaller lists)
How do we sort it?

MergeSort - Questions

Divide (break the list into smaller lists)
What's the smallest list we could try to sort? N = 1

Conquer (sort the smaller lists)
How do we sort it? If N = 1, it's already sorted!!!

MergeSort - Questions

Divide (break the list into smaller lists)
What's the smallest list we could try to sort? N = 1

Conquer (sort the smaller lists)
How do we sort it? If N = 1, it's already sorted!!!

Combine (combine the sorted lists into a bigger sorted list)
How can we do this, and how long does it take?

MergeSort - Questions

Divide (break the list into smaller lists)
What's the smallest list we could try to sort? N = 1

Conquer (sort the smaller lists)
How do we sort it? If N = 1, it's already sorted!!!

Combine (combine the sorted lists into a bigger sorted list)
How can we do this, and how long does it take? Merge…

How do we Merge Two Sorted Arrays?

15 31 55 61 88

24 37 62 73 95

How do we Merge Two Sorted Arrays?

31 55 61 88

24 37 62 73 95

15

How do we Merge Two Sorted Arrays?

31 55 61 88

37 62 73 95

2415

How do we Merge Two Sorted Arrays?

55 61 88

37 62 73 95

2415 31

How do we Merge Two Sorted Arrays?

55 61 88

62 73 95

24 3715 31

How do we Merge Two Sorted Arrays?

88

62 73 95

24 3715 31 55

61

How do we Merge Two Sorted Arrays?

88

73 95

24 37 6115 31 55

62

How do we Merge Two Sorted Arrays?

88

73 95

24 37 6115 31 55 62

How do we Merge Two Sorted Arrays?

88

95

24 37 6115 31 55 62 73

How do we Merge Two Sorted Arrays?

95

24 37 61 8815 31 55 62 73

How do we Merge Two Sorted Arrays?

24 37 61 8815 31 55 62 73 95

How do we Merge Two Sorted Arrays?

24 37 61 8815 31 55 62 73 95

How many comparisons does this require?

How do we Merge Two Sorted Arrays?

24 37 61 8815 31 55 62 73 95

How many comparisons does this require?

For N total items, we need N comparisons

How do we Merge Two Sorted Arrays?

24 37 61 8815 31 55 62 73 95

How many comparisons does this require?

For N total items, we need N comparisons
(because we only ever need to compare the first element of each list)

Divide

● We know how to combine sorted arrays
● We know that the base case of N = 1 is already sorted
● How do we divide our problem to get there?

Divide

● We know how to combine sorted arrays
● We know that the base case of N = 1 is already sorted
● How do we divide our problem to get there?

Let's divide our array in half (recursively)!

Visualization - Divide

Visualization - Divide

Divide the input in half

Visualization - Divide

Divide each half in half

Visualization - Divide

Divide each half in
half again…

Visualization - Conquer

Divide each half in
half again…

We can't divide in half anymore (base case)

Visualization - Combine

Visualization - Combine

Each single item list is
sorted…merge each

pair into a bigger
sorted list

Visualization - Combine

Merge each pair of 2
into sorted lists of

size 4

Visualization - Combine

One more merge gets our
original list fully sorted

mergeSort and mergeSortHelper

def mergeSort(X):

 mergeSortHelper(X, 0, len(X))

 return X

def mergeSortHelper(X, left, right):

 if (right - left) > 1:

 mid = (left + right) // 2

 mergeSortHelper(X, left, mid)

 mergeSortHelper(X, mid, right)

 merge(X, left, mid, right)

mergeSort and mergeSortHelper

def mergeSort(X):

 mergeSortHelper(X, 0, len(X))

 return X

def mergeSortHelper(X, left, right):

 if (right - left) > 1:

 mid = (left + right) // 2

 mergeSortHelper(X, left, mid)

 mergeSortHelper(X, mid, right)

 merge(X, left, mid, right)

The mergeSortHelper function
performs merge sort on a region
of the list.

In this case, the whole list.

mergeSort and mergeSortHelper

def mergeSort(X):

 mergeSortHelper(X, 0, len(X))

 return X

def mergeSortHelper(X, left, right):

 if (right - left) > 1:

 mid = (left + right) // 2

 mergeSortHelper(X, left, mid)

 mergeSortHelper(X, mid, right)

 merge(X, left, mid, right)

mergeSortHelper is a recursive
function…it will call itself on a
smaller input.

mergeSort and mergeSortHelper

def mergeSort(X):

 mergeSortHelper(X, 0, len(X))

 return X

def mergeSortHelper(X, left, right):

 if (right - left) > 1:

 mid = (left + right) // 2

 mergeSortHelper(X, left, mid)

 mergeSortHelper(X, mid, right)

 merge(X, left, mid, right)

We only do something if the
region passed has more than one
element.

With just one element (the base
case), our list is already sorted so
do nothing.

mergeSort and mergeSortHelper

def mergeSort(X):

 mergeSortHelper(X, 0, len(X))

 return X

def mergeSortHelper(X, left, right):

 if (right - left) > 1:

 mid = (left + right) // 2

 mergeSortHelper(X, left, mid)

 mergeSortHelper(X, mid, right)

 merge(X, left, mid, right)

If there is more than one element
in our region, then compute the
midpoint of the region.

mergeSort and mergeSortHelper

def mergeSort(X):

 mergeSortHelper(X, 0, len(X))

 return X

def mergeSortHelper(X, left, right):

 if (right - left) > 1:

 mid = (left + right) // 2

 mergeSortHelper(X, left, mid)

 mergeSortHelper(X, mid, right)

 merge(X, left, mid, right)

If there is more than one element
in our region, then compute the
midpoint of the region.

Then call mergeSortHelper on
the left and right halves.

mergeSort and mergeSortHelper

def mergeSort(X):

 mergeSortHelper(X, 0, len(X))

 return X

def mergeSortHelper(X, left, right):

 if (right - left) > 1:

 mid = (left + right) // 2

 mergeSortHelper(X, left, mid)

 mergeSortHelper(X, mid, right)

 merge(X, left, mid, right)

If there is more than one element
in our region, then compute the
midpoint of the region.

Then call mergeSortHelper on
the left and right halves.

Finally, merge the partial results.

merge

def merge(X, left, mid, right):

 temp = []

 left_idx = left

 right_idx = mid

 while left_idx < mid and right_idx < right:

 if X[left_idx] < X[right_idx]:

 temp.append(X[left_idx])

 left_idx = left_idx + 1

 else:

 temp.append(X[right_idx])

 right_idx = right_idx + 1

 while left_idx < mid:

 temp.append(X[left_idx])

 left_idx = left_idx + 1

 while right_idx < right:

 temp.append(X[right_idx])

 right_idx = right_idx + 1

 for i in range(left, right):

 X[i] = temp[i-left]

merge
Set the left_idx to the first
index of the left half, and
the right_idx to the first
index of the right half.

def merge(X, left, mid, right):

 temp = []

 left_idx = left

 right_idx = mid

 while left_idx < mid and right_idx < right:

 if X[left_idx] < X[right_idx]:

 temp.append(X[left_idx])

 left_idx = left_idx + 1

 else:

 temp.append(X[right_idx])

 right_idx = right_idx + 1

 while left_idx < mid:

 temp.append(X[left_idx])

 left_idx = left_idx + 1

 while right_idx < right:

 temp.append(X[right_idx])

 right_idx = right_idx + 1

 for i in range(left, right):

 X[i] = temp[i-left]

merge
Keep going as long as
there are more elements
we haven't merged in both
halves.

def merge(X, left, mid, right):

 temp = []

 left_idx = left

 right_idx = mid

 while left_idx < mid and right_idx < right:

 if X[left_idx] < X[right_idx]:

 temp.append(X[left_idx])

 left_idx = left_idx + 1

 else:

 temp.append(X[right_idx])

 right_idx = right_idx + 1

 while left_idx < mid:

 temp.append(X[left_idx])

 left_idx = left_idx + 1

 while right_idx < right:

 temp.append(X[right_idx])

 right_idx = right_idx + 1

 for i in range(left, right):

 X[i] = temp[i-left]

merge
If the front of the left half
is smaller than the front
of the right half, add it to
our result and update the
value of left_idx

def merge(X, left, mid, right):

 temp = []

 left_idx = left

 right_idx = mid

 while left_idx < mid and right_idx < right:

 if X[left_idx] < X[right_idx]:

 temp.append(X[left_idx])

 left_idx = left_idx + 1

 else:

 temp.append(X[right_idx])

 right_idx = right_idx + 1

 while left_idx < mid:

 temp.append(X[left_idx])

 left_idx = left_idx + 1

 while right_idx < right:

 temp.append(X[right_idx])

 right_idx = right_idx + 1

 for i in range(left, right):

 X[i] = temp[i-left]

merge
Do the opposite if the
front of the right half was
the smaller of the two

def merge(X, left, mid, right):

 temp = []

 left_idx = left

 right_idx = mid

 while left_idx < mid and right_idx < right:

 if X[left_idx] < X[right_idx]:

 temp.append(X[left_idx])

 left_idx = left_idx + 1

 else:

 temp.append(X[right_idx])

 right_idx = right_idx + 1

 while left_idx < mid:

 temp.append(X[left_idx])

 left_idx = left_idx + 1

 while right_idx < right:

 temp.append(X[right_idx])

 right_idx = right_idx + 1

 for i in range(left, right):

 X[i] = temp[i-left]

merge
After one of the halves
runs out, make sure to
just append the rest of the
half that still has leftover
elements

def merge(X, left, mid, right):

 temp = []

 left_idx = left

 right_idx = mid

 while left_idx < mid and right_idx < right:

 if X[left_idx] < X[right_idx]:

 temp.append(X[left_idx])

 left_idx = left_idx + 1

 else:

 temp.append(X[right_idx])

 right_idx = right_idx + 1

 while left_idx < mid:

 temp.append(X[left_idx])

 left_idx = left_idx + 1

 while right_idx < right:

 temp.append(X[right_idx])

 right_idx = right_idx + 1

 for i in range(left, right):

 X[i] = temp[i-left]

merge
Copy the result back into
the original list

def merge(X, left, mid, right):

 temp = []

 left_idx = left

 right_idx = mid

 while left_idx < mid and right_idx < right:

 if X[left_idx] < X[right_idx]:

 temp.append(X[left_idx])

 left_idx = left_idx + 1

 else:

 temp.append(X[right_idx])

 right_idx = right_idx + 1

 while left_idx < mid:

 temp.append(X[left_idx])

 left_idx = left_idx + 1

 while right_idx < right:

 temp.append(X[right_idx])

 right_idx = right_idx + 1

 for i in range(left, right):

 X[i] = temp[i-left]

Runtime

How many steps does it take to sort a list with N items?

Runtime

How many steps does it take to sort a list with N items?

How many steps does it take to merge the N items? N steps

Runtime

How many steps does it take to sort a list with N items?

How many steps does it take to merge the N items? N steps

Runtime

How many steps does it take to sort a list with N items?

How many steps does it take to merge the N items? N steps

How many times do we have to merge? log(N)

Runtime

How many steps does it take to sort a list with N items?

How many steps does it take to merge the N items? N steps

How many times do we have to merge? log(N)

Runtime

How many steps does it take to sort a list with N items?

How many steps does it take to merge the N items? N steps

How many times do we have to merge? log(N)

Total number of steps: N log(N)

 SelectionSort vs MergeSort

SelectionSort requires roughly N2
steps to sort a list of size N

N2 grows pretty fast…

If we double the size of our list we
quadruple the number of steps

 SelectionSort vs MergeSort

SelectionSort requires roughly N2
steps to sort a list of size N

N2 grows pretty fast…

If we double the size of our list we
quadruple the number of steps

MergeSort requires roughly N
log(N) steps to sort a list of size
N

N log(N) grows much slower

If we double the size of our list, we
only increase the number of steps
by a little more than double

