
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 503
Introduction to Computer Science for Non-Majors

Day 33
Asymptotic Notation

mailto:epmikida@buffalo.edu

Recap

● Two different sorting algorithms: SelectionSort and MergeSort
○ SelectionSort on list of size N requires N2 steps
○ MergeSort on a list of size N requires N log(N) steps
○ As we try larger and larger inputs, N2 grows much faster than N log(N)

Recap

● Two different sorting algorithms: SelectionSort and MergeSort
○ SelectionSort on list of size N requires N2 steps
○ MergeSort on a list of size N requires N log(N) steps
○ As we try larger and larger inputs, N2 grows much faster than N log(N)

How much faster is this really (in practice)?

Can we formalize this notion of "complexity"?

Sorting Comparison in Python

Tim Sort

The sorting algorithm used by Python is Tim Sort

It is a hybrid sorting algorithm: it uses a slower sorting algorithm
(insertion sort) for small inputs, and a fast algorithm (merge sort) for large
inputs

It requires N log(N) steps just like MergeSort, but has lower overheads

It is very fast…

Tim Sort

The sorting algorithm used by Python is Tim Sort

It is a hybrid sorting algorithm: it uses a slower sorting algorithm
(insertion sort) for small inputs, and a fast algorithm (merge sort) for large
inputs

It requires N log(N) steps just like MergeSort, but has lower overheads

It is very fast…so in your own programs, just use .sort()

Sorting Custom Data

What if we want to sort a list that isn't numbers or strings?

Sorting Custom Data

The sort function can take an extra argument for determining how to sort
the items of the list.

It is a function that takes a list item as input, and returns a key that can be
sorted as output.

Sorting Custom Data

students = [
 { "fname": "Sally", "lname":"Smith", "pn":"342083", "age":"23" },
 { "fname": "Barb", "lname":"Woods", "pn":"934850", "age":"21" },
 { "fname": "Bo", "lname":"Meele", "pn":"393847", "age":"22" },
 { "fname": "Amy", "lname":"Fable", "pn":"705834", "age":"21" }
]

def byFirstName(V): return V["fname"]
def byFirstNameLength(V): return len(V["fname"])

students.sort(key = byFirstName)
students.sort(key = byFirstNameLength)

Formalizing Complexity

Tactical Programming

Go from point A to point B
1. Move up 100 feet
2. Turn right, move forward 200 feet
3. Move north 10 feet then turn left
4. Move forward 20 feet
5. Move south 50 feet
6. Move west 150 feet, then turn left
7. Move forward 60 feet

We can optimize each individual step
● For example, taking a bike will

speed up step 2 compared to
walking

Strategic Programming

Look at the big picture

Design (not just implement) an
algorithm

Focus on "complexity"

Strategic Programming

Look at the big picture

Design (not just implement) an
algorithm

Focus on "complexity"

A B

Strategic Programming

Look at the big picture

Design (not just implement) an
algorithm

Focus on "complexity"

A B

Why not just move east 30 feet…

Complexity

We don't want to spend time optimizing details of an algorithm that is
more complex than it needs to be!

First and foremost, we want to choose the right algorithm. Then we can
start optimizing the details later.

Big-O Notation

Let f(n), g(n) be non-negative, non-decreasing functions

f is said to be O(g) if there exist constants c and k such that:

f(n) ≤ c g(n) for all n ≥ k

Big-Ω Notation

Let f(n), g(n) be non-negative, non-decreasing functions

f is said to be Ω(g) if there exist constants c and k such that:

c g(n) ≤ f(n) for all n ≥ k

Big-𝚯 Notation

Let f(n), g(n) be non-negative, non-decreasing functions

f is said to be 𝚯(g) if there exist constants c1, c2 and k such that:

c1 g(n) ≤ f(n) ≤ c2 g(n) for all n ≥ k

Example

Consider the following two functions:

Example

Example

After this point,
these functions
behave the same
(they stay about
100x apart)

Example

Therefore:

Example

Therefore:

Example

Therefore:

What does this mean/why does it matter?

Computer science can be used to solve HUGE problems:
● Simulating spread of disease across huge populations
● Rendering millions of points in 3D animation
● Simulating all the celestial bodies in the galaxy

…and plenty more

What does this mean/why does it matter?

Computer science can be used to solve HUGE problems:
● Simulating spread of disease across huge populations
● Rendering millions of points in 3D animation
● Simulating all the celestial bodies in the galaxy

…and plenty more

We need to know how our algorithms will perform on large inputs!

Complexity Classes

10 20 50 100 1000
0.43 ns 0.52 ns 0.62 ns 0.68 ns 0.82 ns

0.83 ns 1.01 ns 1.41 ns 1.66 ns 2.49 ns

2.5 ns 5 ns 12.5 ns 25 ns 0.25 µs

8.3 ns 22 ns 71 ns 0.17 µs 2.49 µs

25 ns 0.1 µs 0.63 µs 2.5 µs 0.25 ms

25 µs 0.8 ms 78 ms 2.5 s 2.9 days
0.25 µs 0.26 ms 3.26 days 1013 years 10284 years
0.91 ms 19 years 1047 years 10141 years 🤯

Complexity Classes

 SelectionSort vs MergeSort

SelectionSort requires roughly N2
steps to sort a list of size N

N2 grows pretty fast…

SelectionSort is 𝚯(n2)

MergeSort requires roughly N
log(N) steps to sort a list of size
N

N log(N) grows much slower

MergeSort is 𝚯(n log(n))

 SelectionSort vs MergeSort

SelectionSort requires roughly N2
steps to sort a list of size N

N2 grows pretty fast…

SelectionSort is 𝚯(n2)

MergeSort requires roughly N
log(N) steps to sort a list of size
N

N log(N) grows much slower

MergeSort is 𝚯(n log(n))

This is the fastest we can sort!

 SelectionSort vs MergeSort

SelectionSort requires roughly N2
steps to sort a list of size N

N2 grows pretty fast…

SelectionSort is 𝚯(n2)

MergeSort requires roughly N
log(N) steps to sort a list of size
N

N log(N) grows much slower

MergeSort is 𝚯(n log(n))

This is the fastest we can sort!

Tim Sort is also 𝚯(n log(n))

