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RUBRIC FOR ALL MULTIPLE ANSWER:
2 points if perfect
1 point if off by one (either added one wrong answer or missed on right answer)

RUBRIC FOR ALL MULTIPLE CHOICE:
2 points if correct, 0 otherwise

Part 1 - Propositional Logic [6 Points]
1. Let p = T, q = F, r = T. [2 points]

Select ALL expressions that evaluate to TRUE:

a) q → ((p ∧ ￢q) ∨ r)

b) (￢r ∨ q) ↔ (￢p ∧ q)

c) ￢q ⊕ r

d) ￢q ∨ r

e) (r ∧ p) → q

2. Let the propositional variables p, q, and r represent the propositions: [2 points]

p: You won the game
q: You scored the most points
r: You had the most fun

Select the logical expression that represents the statement:
"To win the game, it is necessary that you score the most points"

a) p ↔ q

b) q → p

c) r → p

d) p → q

e) p → (q ∧ r)

f) None of the above
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3. From the expressions below, select ALL of the tautologies: [2 points]

a) F → (p ∧ q)

b) (F → (p ∧ q)) → (p ∧ q)

c) r ↔ ￢r

d) (p ⊕ q) → (p ∨ q)

e) (p ∨ q) → (p ⊕ q)

f) (p ∧ q) ∧ (p ⊕ q)
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Part 2 - Predicates and Quantifiers [7 Points]
For all questions in this part, consider the following predicates:

P(x): x accommodates 4 players
Q(x): x is cooperative
R(x): x has purple as a player color
S(x): x takes less than an hour to play

Where the domain of x is { all board games I own }

4. Write the logical expression that is equivalent to: [3 points]
"None of my cooperative board games accommodate 4 players"
RUBRIC: 3 points for perfect

2 points if only mistake was switched → and ∧
1 point if only mistake was wrong quantifier/negation

￢∃x(Q(x) ∧ P(x)) or ∀x(Q(x) → ￢P(x))

5. Select the logical expression that is equivalent to: [2 points]
"Every game I own that doesn't accommodate 4, can be played in under an hour"

a) ∀x(￢P(x) ∨ S(x))

b) ∀x (￢P(x) → S(x))

c) ￢∀x (P(x) → S(x))

d) ￢∃x (P(x) ∧ S(x))

e) ∀x (￢P(x) ∧ S(x))

6. From the expressions below, select ALL that have free variables: [2 points]

a) ￢∀x P(x) → S(x)

b) ∀x Q(x) ↔ ∃y R(y)

c) ∃x,y (P(x) ∨ P(y))

d) ∃x, ∀y (P(y) → P(x))

e) ∃x S(x) → ∀y (R(x) ⊕ P(y))
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Part 3 - Logical Equivalence, Reasoning, and Proofs [12 Points]
7. Select the logical expression that is equivalent to: [2 points]
￢(p ∧ q) ∧ (￢p ∨ r)

a) ￢(p ∧ q ∧ ￢r)

b) p ∨ (q ∧ r)

c) p ∧ (￢q ∨ ￢r)

d) p ∨ q ∨ r

e) ￢p ∨ (￢q ∧ r)

8. Find the assignment of truth values to p and q that prove that argument [2 points]
below is invalid.
RUBRIC: 2 points if perfect, 0 otherwise
p → q p: F, q: F
q → p
———
∴ q

9. Use logical inference and/or logical equivalence rules to prove that the [3 points]
following argument is valid:

If I've made it this far, then I've conquered the enemies and found the treasure
I haven't found the treasure
———————————————————————————————————
∴ I haven't made it this far
RUBRIC: 1 point for translating to propositions, 1 point for proof structure

1 for correct steps/justifications [award all 3 if this part is perfect]

p: I've made it this far p → (q ∧ r)
q: I've conquered the enemies ￢r
r: I've found the treasure ———

∴￢p

1. ￢r Hypothesis
2. ￢r ∨ ￢q Addition, 1
3. ￢(r ∧ q) De Morgan's 2
4. p → (r ∧ q) Hypothesis
5. ￢(r ∧ q) → ￢p Contrapositive, 4
6. ￢p Modus ponens, 3, 5
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10. Consider the following statement: [2 points]
If x < 10 and y ≥ 0 then x < y + 10

If we wanted to prove this statement with a proof by contraposition, what assumption
would we begin our proof with?

a) x ≥ 10 or y < 0

b) x < y + 10

c) x ≥ y + 10

d) x < 10 and y ≥ 0

e) x < 10 and y ≥ 0 and x < y + 10

11. Use a direct proof to show that for all integers x, y, and z, if y divides x and [3 points]
z divides y, then z divides x. Note: If a divides b, then we can write b = an
where n is an integer.
RUBRIC: 1 point for correct starting assumption

1 point for correct steps
1 point for correct conclusion

Assume y divides x and z divides y

(1) Then exists an integer n s.t. x = y * n
(2) There exists an integer m s.t. y = z * m

Then we can substitute (2) into (1) to get
(3) x = z * n * m

Since n and m are integers, m * n is also an integer

Therefore z divides x
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Part 4 - Sets [5 Points]
12. Select ALL expressions that evaluate to TRUE: [2 points]

a) { ∅ } ⊆ { ∅ }

b) {4} ∈ {4}

c) 2 ∈ {1, 2, 3} ⋃ {4, 5, 6}

d) {2, 4, 6} ⊆ {2, 4, 6, 8, 10} ∩ {2, 4, 8, 16, 32}

e) 12 ∈ {2, 12, 22, 32} - {0, 12, 144}

13. Consider the following set: S = (ℤ+ ∩ { x | x < 10 }) - { x | x is odd }. [3 points]
Write S using roster notation.
RUBRIC: 1 point if contains only integers < 10

2 point if it contains only even integers

S = { 2, 4, 6, 8 }
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Part 5 - Extra Credit [5 Points]
14. Consider the following statement: [2 points]

If the product of two integers (a)(b) is odd, then a is odd and b is odd

A proof by contradiction for this statement would start with which assumption:

a) The product of two integers (a)(b) is odd

b) a is even or b is even

c) The product of two integers (a)(b) is even

d) The product of two integers (a)(b) is odd and a is even or b is even

e) a and b are not odd

15. Translate the following sentence into symbolic logic using predicates and [3 points]
quantifiers
There exists a real number y such that for every real number x, y + x = x
RUBRIC: 1 point for mentioning domain

1 point for including existential and universal quantifiers
1 point if they are in the right order

Domain is all real numbers
∃y, ∀x (y + x = x)
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Scrap Paper
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