
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 191
Introduction to Discrete Structures

Finite Automata and Regular Expressions

mailto:epmikida@buffalo.edu


Outline

- Computing with Limited Resources
- Finite Automata (Model of Computation)
- Regular Expressions



Computing with Limited Resources

Example
Design the payment accepting component of a vending machine



Computing with Limited Resources

Assume
● Price of a drink/snack is $1
● Denominations accepted: $1 dollar bills
● No change is given
● Enter $1, press a button, machine gives you a drink/snack

State Table for a Vending Machine

Next State Output

Input Input

$1 pressButton $1 pressButton

S0 S1 S0 NONE NONE

S1 S1 S0 NONE DRINK

Balance: $0 Balance: 
Sufficient

pressButton/NONE

pressButton/DRINK

$1/NONE
$1/NONE

S0 S1



Computing with Limited Resources

Example
Consider a park with a group of islands connected by 1-way bridges
● Each bridge has a toll to pay for each crossing
● Park entrance: A, Park exit: D

What is a valid fare sequence from entrance to exit?

A

B
C

D

$5

$5

$3
$3

$10
$10



Computing with Limited Resources

Example
Consider a park with a group of islands connected by 1-way bridges
● Each bridge has a toll to pay for each crossing
● Park entrance: A, Park exit: D

What is a valid fare sequence from entrance to exit?
● The shortest drive: A, B, D

○ A → B: pay $5 B → D: pay $5
○ Fare sequence: $5, $5

A

B
C

D

$5

$5

$3
$3

$10
$10



Computing with Limited Resources

Example
Consider a park with a group of islands connected by 1-way bridges
● Each bridge has a toll to pay for each crossing
● Park entrance: A, Park exit: D

What is a valid fare sequence from entrance to exit?
● Another drive: A, B, C, C, D, A, B, C, D

○ A → B: pay $5 B → C: pay $3 … C → D: pay $10
○ Fare sequence: $5, $3, $3, $10, $10, $5, $3, $10

A

B
C

D

$5

$5

$3
$3

$10
$10



Computing with Limited Resources

Does the fare sequence $5, $5, $10, $5, $3 end at D?

What about $5, $10, $10?
A

B
C

D

$5

$5

$3
$3

$10
$10



Computing with Limited Resources

Does the fare sequence $5, $5, $10, $5, $3 end at D?

No: A, B, D, A, B, C 

What about $5, $10, $10?
A

B
C

D

$5

$5

$3
$3

$10
$10



Computing with Limited Resources

Does the fare sequence $5, $5, $10, $5, $3 end at D?

No: A, B, D, A, B, C 

What about $5, $10, $10?

No: A, B, ???

Not even a valid sequence

A

B
C

D

$5

$5

$3
$3

$10
$10



Computing with Limited Resources

Suppose we survey visitors of the park on what route they took

How can we validate their response?

A

B
C

D

$5

$5

$3
$3

$10
$10



Computing with Limited Resources

Suppose we survey visitors of the park on what route they took

How can we validate their response?

Account for INVALID scenarios
A

B
C

D

$5

$5

$3
$3

$10
$10

INVALID

$5$3,$5$3,$10
$10

$3,$5,$10



Computing with Limited Resources

Suppose we survey visitors of the park on what route they took

How can we validate their response?

Account for INVALID scenarios

Reconsider the sequence $5, $10, $10

● A, B, INVALID, INVALID

A

B
C

D

$5

$5

$3
$3

$10
$10

INVALID

$5$3,$5$3,$10
$10

$3,$5,$10



Computing with Limited Resources

What is needed to create this program?
● Vertices: states of computation
● Edges: state transitions
● Edge labels: symbols we process
● Start: where to start out computation
● Final: where it is OK/valid to end

A

B
C

D

$5

$5

$3
$3

$10
$10

INVALID

$5$3,$5$3,$10
$10

$3,$5,$10



Finite Automata - Finite State Machines (with no output)

A (deterministic) finite automaton M is a 5-tuple (Q, Σ, δ, q0, F) where:
● The set of states Q is finite and non-empty
● The input alphabet Σ is finite and non-empty
● The transition function δ: Q ⨉ Σ → Q
● The starting state q0 ∈ Q
● The set of final states F



Finite Automata

Let this automata be M1 = (Q1, Σ1, δ1, S1, F1)

Q1 = 

Σ1 = 

S1 = 

F1 = 

δ1 = 

A

B
C

D

$5

$5

$3
$3

$10
$10

INVALID

$5$3,$5$3,$10
$10

$3,$5,$10



Finite Automata

Let this automata be M1 = (Q1, Σ1, δ1, S1, F1)

Q1 = { A, B, C, D, INVALID }

Σ1 = 

S1 = 

F1 = 

δ1 = 

A

B
C

D

$5

$5

$3
$3

$10
$10

INVALID

$5$3,$5$3,$10
$10

$3,$5,$10



Finite Automata

Let this automata be M1 = (Q1, Σ1, δ1, S1, F1)

Q1 = { A, B, C, D, INVALID }

Σ1 = { $3, $5, $10 }

S1 = 

F1 = 

δ1 = 

A

B
C

D

$5

$5

$3
$3

$10
$10

INVALID

$5$3,$5$3,$10
$10

$3,$5,$10



Finite Automata

Let this automata be M1 = (Q1, Σ1, δ1, S1, F1)

Q1 = { A, B, C, D, INVALID }

Σ1 = { $3, $5, $10 }

S1 = A

F1 = 

δ1 = 

A

B
C

D

$5

$5

$3
$3

$10
$10

INVALID

$5$3,$5$3,$10
$10

$3,$5,$10



Finite Automata

Let this automata be M1 = (Q1, Σ1, δ1, S1, F1)

Q1 = { A, B, C, D, INVALID }

Σ1 = { $3, $5, $10 }

S1 = A

F1 = { D }

δ1 = 

A

B
C

D

$5

$5

$3
$3

$10
$10

INVALID

$5$3,$5$3,$10
$10

$3,$5,$10



Finite Automata

Let this automata be M1 = (Q1, Σ1, δ1, S1, F1)

Q1 = { A, B, C, D, INVALID }

Σ1 = { $3, $5, $10 }

S1 = A

F1 = { D }

δ1 = { ((A, $3), INVALID), ((A, $5), B), … }

A

B
C

D

$5

$5

$3
$3

$10
$10

INVALID

$5$3,$5$3,$10
$10

$3,$5,$10



Finite Automata

Let this automata be M1 = (Q1, Σ1, δ1, S1, F1)

Q1 = { A, B, C, D, INVALID }

Σ1 = { $3, $5, $10 }

S1 = A

F1 = { D }

δ1 = { ((A, $3), INVALID), ((A, $5), B), … }

A

B
C

D

$5

$5

$3
$3

$10
$10

INVALID

$5$3,$5$3,$10
$10

$3,$5,$10



Finite Automata

Let this automata be M1 = (Q1, Σ1, δ1, S1, F1)

Q1 = { A, B, C, D, INVALID }

Σ1 = { $3, $5, $10 }

S1 = A

F1 = { D }

δ1 = { ((A, $3), INVALID), ((A, $5), B), … }

A

B
C

D

$5

$5

$3
$3

$10
$10

INVALID

$5$3,$5$3,$10
$10

$3,$5,$10



Finite Automata

Let this automata be M1 = (Q1, Σ1, δ1, S1, F1)

A

B
C

D

$5

$5

$3
$3

$10
$10

INVALID

$5$3,$5$3,$10
$10

$3,$5,$10

Input Symbols

δ1 $3 $5 $10

States A INVALID B INVALID

B C D INVALID

C C INVALID D

D INVALID INVALID A

INVALID INVALID INVALID INVALID



Finite Automata Example

Let M2 = (Q2, Σ2, δ2, s0, F2) where

Q2 = { s0, s1, s2, s3 }, Σ2 = { 0, 1 }, F = { s0, s3 }, and  δ2 is defined as:

δ2

Input Symbols
0 1

States

s0 s0 s1

s1 s0 s2

s2 s0 s0

s3 s2 s1



Finite Automata Example

Let M2 = (Q2, Σ2, δ2, s0, F2) where

Q2 = { s0, s1, s2, s3 }, Σ2 = { 0, 1 }, F = { s0, s3 }, and  δ2 is defined as:

δ2

Input Symbols
0 1

States

s0 s0 s1

s1 s0 s2

s2 s0 s0

s3 s2 s1

s1

s0 s3

s2
0

0

0

0,1

1 1

1



Finite Automata

A string x is recognized or accepted by the machine M if it takes the 
starting state q0 to a final state.

The language that is recognized or accepted by the machine M, denoted by 
L(M) is the set of strings recognized by M.

L(M) = { x ∈ Σ* | δ(q0, x) ∈ F }



Finite Automata Examples

Problem: Design a machine that determines if the total number of 1s in a 
bit string is even or odd



Problem: Design a machine that determines if the total number of 1s in a 
bit string is even or odd

If this machine accepts the string, it has odd parity. Otherwise, even.

Finite Automata Examples

s0 s1

1

1

start

00



Finite Automata Examples

Determine the languages recognized by these finite automata

s1s0

start

0

0,11

s0 s1 s3s2

start

0

0

1 0,1

0,1

1

M1 M2



Finite Automata Examples

Determine the languages recognized by these finite automata

s1s0

start

0

0,11

s0 s1 s3s2

start

0

0

1 0,1

0,1

1

M1 M2

L(M1) = { 1, 11, 111, … } = 1n L(M2) = { 01, 1 }



Finite Automata Examples

Construct finite automata that recognize the following languages:

1. The set of bit strings that begin with two 0s
2. The set of bit strings that contain two consecutive 0s



Finite Automata Examples

Construct finite automata that recognize the following languages:

1. The set of bit strings that begin with two 0s
2. The set of bit strings that contain two consecutive 0s

s0 s1 s3s2

start

0

1

0

0,1
1

0,1

s0 s1 s2

start

1

0

1

0,1

0



Nondeterministic Finite Automata (NFA)

A nondeterministic finite-state automaton M = (S, Σ, 𝑓, s0, F) consists of a set of 
states S, an input alphabet Σ, and a transition function 𝑓 that assigns a set of states 
to each pair of state and input
● DFA: For each pair of state and input there is a unique next state
● NFA: There may be many possible next states for each state/input pair

s1

s0 s3

s2
0

0

0

0,1

0 0,1

1

0

1 1

0

𝑓

Input Symbols

0 1

States

s0 s0, s1

s1 s0, s1 s2, s3

s2 s0 s0, s1

s3 s1, s2, s3 s1



Outline

- Computing with Limited Resources
- Finite Automata (Model of Computation)
- Regular Expressions



Valid Fare Pattern

Is there a pattern representing every fare sequence to get from A to D?

A

B
C

D

$5

$5

$3
$3

$10
$10

INVALID

$5

$3,$5$3,$10

$10

$3,$5,$10

start



Valid Fare Pattern

Is there a pattern representing every fare sequence to get from A to D?

A

B
C

D

$5

$5

$3
$3

$10
$10

INVALID

$5

$3,$5$3,$10

$10

$3,$5,$10

start

L(M) = { $5$5, $5$5$10$5$5, $5$3$10, … }

How can we summarize 
the language with a 
succinct pattern?



Regular Expressions

A regular expression, or regex, r over alphabet Σ = { c1, c2, …, ck } is:
● r = ci for some i ∈ { 1, …, k }
● r = ∅
● r = λ

or, given regular expressions r1 and r2, we can build up a new regex r:
● r = (r1 | r2) ← r1 OR r2, also sometimes written (r1 ⋃ r2)

● r = (r1r2) ← r1 concatenated with r2

● r = (r1)* ← kleene closure (0 or more repetitions)



Regular Expressions

Each regular expression represents a set specified by these rules:

● ∅ represents the empty set (the set with no strings)
● λ represents the set { λ } (the set containing the empty string)
● x represents the set { x } (the set containing one symbol, x)
● (AB) represents the concatenation of the sets represented by A and B
● (A ⋃ B) represents the union of the sets represented by A and B
● A* represents the Kleene closure of the set represented by A

Regular Sets are the sets represented by regular expressions



Examples

Let Σ = { a, b }



Examples

Let Σ = { a, b }

Let r1 = a, r2 = b
● L(r1) = { a }, L(r2) = { b }



Examples

Let Σ = { a, b }

Let r1 = a, r2 = b
● L(r1) = { a }, L(r2) = { b }

Let r3 = ( r1 | r2 ) = (a | b)
● L(r3) = { a, b } ← a or b



Examples

Let Σ = { a, b }

Let r1 = a, r2 = b
● L(r1) = { a }, L(r2) = { b }

Let r3 = ( r1 | r2 ) = (a | b)
● L(r3) = { a, b }

Let r4 = ( r1r2) = (ab)
● L(r4) = { ab } ← a followed by b



Examples

Let Σ = { a, b }

Let r1 = a, r2 = b
● L(r1) = { a }, L(r2) = { b }

Let r3 = ( r1 | r2 ) = (a | b)
● L(r3) = { a, b }

Let r4 = ( r1r2) = (ab)
● L(r4) = { ab }

Let r5 = (r1)* = (a)*
● L(r5) = { λ, a, aa, aaa, … } 

0 or more copies of a concatenated



Examples

Let Σ = { a, b }

Let r1 = a, r2 = b
● L(r1) = { a }, L(r2) = { b }

Let r3 = ( r1 | r2 ) = (a | b)
● L(r3) = { a, b }

Let r4 = ( r1r2) = (ab)
● L(r4) = { ab }

Let r5 = (r1)* = (a)*
● L(r5) = { λ, a, aa, aaa, … } 

Let r6 = ∅
● L(r6) = { } ← matches nothing



Examples

Let Σ = { a, b }

Let r1 = a, r2 = b
● L(r1) = { a }, L(r2) = { b }

Let r3 = ( r1 | r2 ) = (a | b)
● L(r3) = { a, b }

Let r4 = ( r1r2) = (ab)
● L(r4) = { ab }

Let r5 = (r1)* = (a)*
● L(r5) = { λ, a, aa, aaa, … } 

Let r6 = ∅
● L(r6) = { }

Let r7 = λ
● L(r7) = { λ } ←matches λ


