## CSE 191 <br> Introduction to Discrete Structures

Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

Finite Automata and Regular Expressions

## Outline

- Computing with Limited Resources
- Finite Automata (Model of Computation)
- Regular Expressions


## Computing with Limited Resources



Example
Design the payment accepting component of a vending machine

## Computing with Limited Resources



## Computing with Limited Resources

## Example

Consider a park with a group of islands connected by 1-way bridges

- Each bridge has a toll to pay for each crossing
- Park entrance: A, Park exit: D

What is a valid fare sequence from entrance to exit?


## Computing with Limited Resources

## Example

Consider a park with a group of islands connected by 1-way bridges

- Each bridge has a toll to pay for each crossing
- Park entrance: A, Park exit: D

What is a valid fare sequence from entrance to exit?

- The shortest drive: $\mathbf{A}, \mathbf{B}, \boldsymbol{D}$

- $\boldsymbol{A} \rightarrow \boldsymbol{B}$ : pay $\$ 5$
$B \rightarrow D$ : pay $\$ 5$
- Fare sequence: \$5, \$5


## Computing with Limited Resources

## Example

Consider a park with a group of islands connected by 1-way bridges

- Each bridge has a toll to pay for each crossing
- Park entrance: A, Park exit: D

What is a valid fare sequence from entrance to exit?

- Another drive: $A, B, C, C, D, A, B, C, D$

- $\boldsymbol{A} \rightarrow \boldsymbol{B}$ : pay $\$ 5 \quad \boldsymbol{B} \rightarrow \boldsymbol{C}$ : pay $\$ 3$
$\mathbf{C} \rightarrow \mathbf{D}$ : pay $\$ 10$
- Fare sequence: $\$ 5, \$ 3, \$ 3, \$ 10, \$ 10, \$ 5, \$ 3, \$ 10$


## Computing with Limited Resources

Does the fare sequence $\$ 5, \$ 5, \$ 10, \$ 5, \$ 3$ end at $\mathbf{D}$ ?

What about \$5, \$10, \$10?


## Computing with Limited Resources

Does the fare sequence $\$ 5, \$ 5, \$ 10, \$ 5, \$ 3$ end at D?
No: $A, B, D, A, B, C$
What about \$5, \$10, \$10?


## Computing with Limited Resources

Does the fare sequence $\$ 5, \$ 5, \$ 10, \$ 5, \$ 3$ end at D?
No: $A, B, D, A, B, C$
What about \$5, \$10, \$10?
No: $A, B$, ???
Not even a valid sequence


## Computing with Limited Resources

Suppose we survey visitors of the park on what route they took
How can we validate their response?


## Computing with Limited Resources

Suppose we survey visitors of the park on what route they took
How can we validate their response?
Account for INVALID scenarios


## Computing with Limited Resources

Suppose we survey visitors of the park on what route they took
How can we validate their response?
Account for INVALID scenarios

Reconsider the sequence $\$ 5$, $\mathbf{\$ 1 0 , ~ \$ 1 0 ~}$

- A, B, INVALID, INVALID



## Computing with Limited Resources

What is needed to create this program?

- Vertices: states of computation
- Edges: state transitions
- Edge labels: symbols we process
- Start: where to start out computation
- Final: where it is OK/valid to end



## Finite Automata - Finite State Machines (with no output)

A (deterministic) finite automaton $M$ is a 5 -tuple ( $\mathbf{Q}, \boldsymbol{\Sigma}, \boldsymbol{\delta}, \boldsymbol{q}_{0}, F$ ) where:

- The set of states $\mathbf{Q}$ is finite and non-empty
- The input alphabet $\Sigma$ is finite and non-empty
- The transition function $\delta: \mathbf{Q} \times \boldsymbol{\Sigma} \rightarrow \mathbf{Q}$
- The starting state $q_{0} \in Q$
- The set of final states $F$


## Finite Automata

Let this automata be $\boldsymbol{M}_{1}=\left(\boldsymbol{Q}_{1}, \boldsymbol{\Sigma}_{1}, \boldsymbol{\delta}_{1}, \boldsymbol{S}_{1}, \boldsymbol{F}_{1}\right)$
$Q_{1}=$
$\Sigma_{1}=$
$S_{1}=$
$F_{1}=$
$\delta_{1}=$


## Finite Automata

Let this automata be $\boldsymbol{M}_{1}=\left(\boldsymbol{Q}_{1}, \boldsymbol{\Sigma}_{1}, \boldsymbol{\delta}_{1}, \boldsymbol{S}_{1}, \boldsymbol{F}_{1}\right)$
$Q_{1}=\{A, B, C, D$, INVALID $\}$
$\Sigma_{1}=$
$S_{1}=$
$F_{1}=$
$\delta_{1}=$


## Finite Automata

Let this automata be $\boldsymbol{M}_{1}=\left(\boldsymbol{Q}_{1}, \boldsymbol{\Sigma}_{1}, \boldsymbol{\delta}_{1}, \boldsymbol{S}_{1}, \boldsymbol{F}_{1}\right)$
$Q_{1}=\{A, B, C, D$, INVALID $\}$
$\Sigma_{1}=\{\$ 3, \$ 5, \$ 10\}$
$S_{1}=$
$F_{1}=$
$\delta_{1}=$


## Finite Automata

Let this automata be $\boldsymbol{M}_{1}=\left(\boldsymbol{Q}_{1}, \boldsymbol{\Sigma}_{1}, \boldsymbol{\delta}_{1}, \boldsymbol{S}_{1}, \boldsymbol{F}_{1}\right)$
$Q_{1}=\{A, B, C, D$, INVALID $\}$
$\Sigma_{1}=\{\$ 3, \$ 5, \$ 10\}$
$S_{1}=A$
$F_{1}=$
$\delta_{1}=$


## Finite Automata

Let this automata be $\boldsymbol{M}_{1}=\left(\boldsymbol{Q}_{1}, \boldsymbol{\Sigma}_{1}, \boldsymbol{\delta}_{1}, \boldsymbol{S}_{1}, \boldsymbol{F}_{1}\right)$
$Q_{1}=\{A, B, C, D$, INVALID $\}$
$\Sigma_{1}=\{\$ 3, \$ 5, \$ 10\}$
$S_{1}=A$
$F_{1}=\{D\}$
$\delta_{1}=$


## Finite Automata

Let this automata be $\boldsymbol{M}_{1}=\left(\boldsymbol{Q}_{1}, \boldsymbol{\Sigma}_{1}, \boldsymbol{\delta}_{1}, \boldsymbol{S}_{1}, \boldsymbol{F}_{1}\right)$
$Q_{1}=\{A, B, C, D$, INVALID $\}$
$\Sigma_{1}=\{\$ 3, \$ 5, \$ 10\}$
$S_{1}=A$
$F_{1}=\{D\}$
$\delta_{1}=\{((A, \$ 3)$, INVALID $),((A, \$ 5), B), \ldots\}$


## Finite Automata

Let this automata be $\boldsymbol{M}_{1}=\left(\boldsymbol{Q}_{1}, \boldsymbol{\Sigma}_{1}, \boldsymbol{\delta}_{1}, \boldsymbol{S}_{1}, \boldsymbol{F}_{1}\right)$
$Q_{1}=\{A, B, C, D$, INVALID $\}$
$\Sigma_{1}=\{\$ 3, \$ 5, \$ 10\}$
$S_{1}=A$
$F_{1}=\{D\}$
$\delta_{1}=\{((A, \$ 3)$, INVALID $),((A, \$ 5), B), \ldots\}$


## Finite Automata

Let this automata be $\boldsymbol{M}_{1}=\left(\boldsymbol{Q}_{1}, \boldsymbol{\Sigma}_{1}, \boldsymbol{\delta}_{1}, \boldsymbol{S}_{1}, \boldsymbol{F}_{1}\right)$
$Q_{1}=\{A, B, C, D$, INVALID $\}$
$\Sigma_{1}=\{\$ 3, \$ 5, \$ 10\}$
$S_{1}=A$
$F_{1}=\{D\}$
$\delta_{1}=\{((A, \$ 3)$, INVALID $),((A, \$ 5), B), \ldots\}$


## Finite Automata

$$
\text { Let this automata be } M_{1}=\left(Q_{1}, \Sigma_{1}, \delta_{1}, S_{1}, F_{1}\right)
$$

|  | Input Symbols |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | $\delta_{1}$ | $\$ 3$ | $\$ 5$ | \$10 |
| States | A | INVALID | B | INVALID |
|  | B | C | D | INVALID |
|  | C | C | INVALID | D |
|  | D | INVALID | INVALID | A |
|  | INVALID | INVALID | INVALID | INVALID |



## Finite Automata Example

Let $\boldsymbol{M}_{2}=\left(\boldsymbol{Q}_{\mathbf{2}}, \boldsymbol{\Sigma}_{\mathbf{2}}, \boldsymbol{\delta}_{\mathbf{2}}, \boldsymbol{s}_{0}, F_{2}\right)$ where
$\boldsymbol{Q}_{2}=\left\{\boldsymbol{s}_{0^{\prime}}, \boldsymbol{s}_{1}, \boldsymbol{s}_{2}, \boldsymbol{s}_{3}\right\}, \boldsymbol{\Sigma}_{2}=\{\mathbf{0}, \mathbf{1}\}, \boldsymbol{F}=\left\{\boldsymbol{s}_{0}, \boldsymbol{s}_{3}\right\}$, and $\boldsymbol{\delta}_{2}$ is defined as:

|  |  | Input Symbols |  |
| :---: | :---: | :---: | :---: |
|  | $\delta_{2}$ | 0 | 1 |
| States | $s_{0}$ | $s_{0}$ | $s_{1}$ |
|  | $s_{1}$ | $s_{0}$ | $s_{2}$ |
|  | $s_{2}$ | $s_{0}$ | $s_{0}$ |
|  | $s_{3}$ | $s_{2}$ | $s_{1}$ |

## Finite Automata Example

Let $\boldsymbol{M}_{2}=\left(\boldsymbol{Q}_{\mathbf{2}}, \boldsymbol{\Sigma}_{\mathbf{2}}, \boldsymbol{\delta}_{\mathbf{2}}, \boldsymbol{s}_{0}, F_{2}\right)$ where
$\boldsymbol{Q}_{2}=\left\{\boldsymbol{s}_{0^{\prime}}, \boldsymbol{s}_{1}, \boldsymbol{s}_{2}, \boldsymbol{s}_{3}\right\}, \boldsymbol{\Sigma}_{2}=\{\mathbf{0}, \mathbf{1}\}, \boldsymbol{F}=\left\{\boldsymbol{s}_{0}, \boldsymbol{s}_{3}\right\}$, and $\boldsymbol{\delta}_{2}$ is defined as:

|  |  | Input Symbols |  |
| :---: | :---: | :---: | :---: |
|  | $\delta_{2}$ | 0 | 1 |
| States | $s_{0}$ | $s_{0}$ | $s_{1}$ |
|  | $s_{1}$ | $s_{0}$ | $s_{2}$ |
|  | $s_{2}$ | $s_{0}$ | $s_{0}$ |
|  | $s_{3}$ | $s_{2}$ | $s_{1}$ |



## Finite Automata

A string $\boldsymbol{x}$ is recognized or accepted by the machine $\boldsymbol{M}$ if it takes the starting state $\boldsymbol{q}_{0}$ to a final state.

The language that is recognized or accepted by the machine $\boldsymbol{M}$, denoted by $L(M)$ is the set of strings recognized by $M$.

$$
L(M)=\left\{x \in \Sigma^{\star} \mid \delta\left(q_{0}, x\right) \in F\right\}
$$

## Finite Automata Examples

Problem: Design a machine that determines if the total number of 1 s in a bit string is even or odd

## Finite Automata Examples

Problem: Design a machine that determines if the total number of 1 s in a bit string is even or odd

If this machine accepts the string, it has odd parity. Otherwise, even.


## Finite Automata Examples

Determine the languages recognized by these finite automata


## Finite Automata Examples

Determine the languages recognized by these finite automata

start


$$
L\left(M_{1}\right)=\{1,11,111, \ldots\}=1^{n}
$$

$$
L\left(M_{2}\right)=\{01,1\}
$$

## Finite Automata Examples

Construct finite automata that recognize the following languages:

1. The set of bit strings that begin with two 0 s
2. The set of bit strings that contain two consecutive 0 s

## Finite Automata Examples

Construct finite automata that recognize the following languages:

1. The set of bit strings that begin with two 0 s
2. The set of bit strings that contain two consecutive 0s

start

## Nondeterministic Finite Automata (NFA)

A nondeterministic finite-state automaton $\boldsymbol{M}=\left(S, \Sigma, f, s_{0}, F\right)$ consists of a set of states $S$, an input alphabet $\boldsymbol{\Sigma}$, and a transition function $f$ that assigns a set of states to each pair of state and input

- DFA: For each pair of state and input there is a unique next state
- NFA: There may be many possible next states for each state/input pair

|  |  | Input Symbols |  |
| :---: | ---: | :---: | :---: |
|  | $f$ | 0 | 1 |
| States | $s_{0}$ | $s_{0}, s_{1}$ |  |
|  | $s_{1}$ | $s_{0}, s_{1}$ | $s_{2}, s_{3}$ |
|  | $s_{2}$ | $s_{0}$ | $s_{0}, s_{1}$ |
|  | $s_{3}$ | $s_{1}, s_{2}, s_{3}$ | $s_{1}$ |



## Outline

- Computing with Limited Resources
- Finite Automata (Model of Computation)
- Regular Expressions


## Valid Fare Pattern

Is there a pattern representing every fare sequence to get from $\boldsymbol{A}$ to $\boldsymbol{D}$ ?


## Valid Fare Pattern

Is there a pattern representing every fare sequence to get from $\boldsymbol{A}$ to $\boldsymbol{D}$ ?


How can we summarize the language with a succinct pattern?

## Regular Expressions

A regular expression, or regex, $r$ over alphabet $\Sigma=\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$ is:

- $r=c_{i}$ for some $i \in\{1, \ldots, k\}$
- $r=\varnothing$
- $r=\lambda$
or, given regular expressions $\boldsymbol{r}_{1}$ and $\boldsymbol{r}_{2}$, we can build up a new regex $\boldsymbol{r}$ :
- $\boldsymbol{r}=\left(\boldsymbol{r}_{1} \mid \boldsymbol{r}_{2}\right) \quad \leftarrow \boldsymbol{r}_{1}$ OR $\boldsymbol{r}_{2}$, also sometimes written $\left(\boldsymbol{r}_{1} \cup \boldsymbol{r}_{2}\right)$
- $r=\left(r_{1} r_{2}\right) \quad \leftarrow r_{1}$ concatenated with $r_{2}$
- $\boldsymbol{r}=\left(\boldsymbol{r}_{1}\right)^{\star} \quad \leftarrow$ kleene closure (0 or more repetitions)


## Regular Expressions

## Each regular expression represents a set specified by these rules:

- $\quad \varnothing$ represents the empty set (the set with no strings)
- $\boldsymbol{\lambda}$ represents the set $\{\boldsymbol{\lambda}\}$ (the set containing the empty string)
- $\boldsymbol{x}$ represents the set $\{\boldsymbol{x}\}$ (the set containing one symbol, $\boldsymbol{x}$ )
- ( $\boldsymbol{A} \boldsymbol{B}$ ) represents the concatenation of the sets represented by $\boldsymbol{A}$ and $\boldsymbol{B}$
- $(\boldsymbol{A} \cup B)$ represents the union of the sets represented by $\boldsymbol{A}$ and $\boldsymbol{B}$
- $\boldsymbol{A}^{*}$ represents the Kleene closure of the set represented by $\boldsymbol{A}$

Regular Sets are the sets represented by regular expressions

## Examples

Let $\Sigma=\{a, b\}$

Examples

Let $\Sigma=\{a, b\}$
Let $\boldsymbol{r}_{1}=\mathrm{a}, \boldsymbol{r}_{2}=\mathrm{b}$

- $L\left(r_{1}\right)=\{a\}, L\left(r_{2}\right)=\{b\}$

Examples

Let $\Sigma=\{a, b\}$
Let $\boldsymbol{r}_{1}=\mathrm{a}, \boldsymbol{r}_{2}=\mathrm{b}$

- $L\left(r_{1}\right)=\{a\}, L\left(r_{2}\right)=\{b\}$

Let $\boldsymbol{r}_{3}=\left(\boldsymbol{r}_{1} \mid \boldsymbol{r}_{2}\right)=(\mathrm{a} \mid \mathrm{b})$

- $L\left(r_{3}\right)=\{a, b\} \leftarrow a$ orb

Examples

Let $\Sigma=\{a, b\}$
Let $\boldsymbol{r}_{1}=\mathrm{a}, \mathrm{r}_{2}=\mathrm{b}$

- $L\left(r_{1}\right)=\{a\}, L\left(r_{2}\right)=\{b\}$

Let $\boldsymbol{r}_{3}=\left(\boldsymbol{r}_{1} \mid \boldsymbol{r}_{2}\right)=(\mathrm{a} \mid \mathrm{b})$

- $L\left(r_{3}\right)=\{a, b\}$

Let $\boldsymbol{r}_{4}=\left(\boldsymbol{r}_{1} \boldsymbol{r}_{2}\right)=(\mathrm{ab})$

- $L\left(r_{4}\right)=\{a b\} \leftarrow a$ followed by $b$


## Examples

$$
\begin{aligned}
& \text { Let } \sum=\{\mathrm{a}, \mathrm{~b}\} \\
& \text { Let } \boldsymbol{r}_{1}=\mathrm{a}, \boldsymbol{r}_{2}=\mathrm{b} \\
& \text { - } L\left(\boldsymbol{r}_{1}\right)=\{\mathrm{a}\}, L\left(\boldsymbol{r}_{2}\right)=\{\mathrm{b}\} \\
& \text { Let } \boldsymbol{r}_{3}=\left(\boldsymbol{r}_{1} \mid \boldsymbol{r}_{2}\right)=(\mathrm{a} \mid \mathrm{b}) \\
& \text { - } L\left(r_{3}\right)=\{\mathrm{a}, \mathrm{~b}\} \\
& \text { Let } \boldsymbol{r}_{4}=\left(\boldsymbol{r}_{1} \boldsymbol{r}_{2}\right)=(\mathrm{ab}) \\
& \text { - } L\left(\boldsymbol{r}_{4}\right)=\{\mathrm{ab}\}
\end{aligned}
$$

Examples

Let $\Sigma=\{a, b\}$
Let $\boldsymbol{r}_{1}=\mathrm{a}, \boldsymbol{r}_{2}=\mathrm{b}$
Let $\boldsymbol{r}_{5}=\left(\boldsymbol{r}_{1}\right)^{*}=(\mathrm{a})^{*}$

- $L\left(r_{1}\right)=\{a\}, L\left(r_{2}\right)=\{b\}$
- $L\left(r_{5}\right)=\{\lambda, a, a a, a a a, \ldots\}$

Let $\boldsymbol{r}_{3}=\left(\boldsymbol{r}_{1} \mid \boldsymbol{r}_{2}\right)=(\mathrm{a} \mid \mathrm{b})$
Let $r_{6}=\varnothing$

- $L\left(r_{3}\right)=\{a, b\}$
- $L\left(r_{6}\right)=\{ \} \leftarrow$ matches nothing

Let $\boldsymbol{r}_{4}=\left(\boldsymbol{r}_{1} \boldsymbol{r}_{2}\right)=(\mathrm{ab})$

- $L\left(r_{4}\right)=\{a b\}$


## Examples

$$
\begin{aligned}
& \text { Let } \Sigma=\{\mathrm{a}, \mathrm{~b}\} \\
& \text { Let } \boldsymbol{r}_{1}=\mathrm{a}, \boldsymbol{r}_{2}=\mathrm{b} \\
& \bullet \quad L\left(\boldsymbol{r}_{1}\right)=\{\mathrm{a}\}, L\left(\boldsymbol{r}_{2}\right)=\{\mathrm{b}\} \\
& \text { Let } \boldsymbol{r}_{3}=\left(\boldsymbol{r}_{1} \mid \boldsymbol{r}_{2}\right)=(\mathrm{a} \mid \mathrm{b}) \\
& \bullet \\
& \text { Let } \boldsymbol{r}_{3}=\left(\boldsymbol{r}_{3}\right)=\{\mathrm{a}, \mathrm{~b}\} \\
& \text { - } L\left(\boldsymbol{r}_{4}\right)=\{\mathrm{ab}\}
\end{aligned}
$$

Let $r_{5}=\left(r_{1}\right)^{*}=(\mathrm{a})^{*}$

- $L\left(r_{5}\right)=\{\boldsymbol{\lambda}, \mathrm{a}, \mathrm{aa}$, aaa,...$\}$

Let $\boldsymbol{r}_{6}=\varnothing$

- $L\left(r_{6}\right)=\{ \}$

Let $\boldsymbol{r}_{7}=\boldsymbol{\lambda}$

- $L\left(r_{7}\right)=\{\lambda\} \leftarrow$ matches $\boldsymbol{\lambda}$

