CSE 191 Introduction to Discrete Structures

Dr. Eric Mikida epmikida@buffalo.edu 208 Capen Hall

Finite Automata and Regular Expressions

Outline

- Computing with Limited Resources
 - Finite Automata (Model of Computation)
 - Regular Expressions

Example

Design the payment accepting component of a vending machine

Assume

- Price of a drink/snack is \$1
- Denominations accepted: \$1 dollar bills
- No change is given
- Enter \$1, press a button, machine gives you a drink/snack

Output

pressButton

NONE

DRINK

				State	Table for a Ver	nding Machi	ine	
sButton/NONE	\$1/NONE	\$1/NONE		Next	State	Οι	utpu	
					Input		Input	
Balance: \$0		Balance: Sufficient		\$1	pressButton	\$1	р	
	$\langle \rangle$		S _o	S ₁	S _o	NONE		
S _o	pressButton/DRINK	S ₁	S ₁	S ₁	S _o	NONE		

Example

Consider a park with a group of islands connected by 1-way bridges

- Each bridge has a toll to pay for each crossing
- Park entrance: **A**, Park exit: **D**

What is a valid fare sequence from entrance to exit?

Example

Consider a park with a group of islands connected by 1-way bridges

\$5

\$10

Α

\$3

С

\$10

В

\$5

D

\$3

- Each bridge has a toll to pay for each crossing
- Park entrance: **A**, Park exit: **D**

What is a valid fare sequence from entrance to exit?

• The shortest drive: **A**, **B**, **D**

• Fare sequence: \$5, \$5

Example

Consider a park with a group of islands connected by 1-way bridges

\$5

\$10

Α

\$3

С

\$10

В

\$5

D

\$3

- Each bridge has a toll to pay for each crossing
- Park entrance: **A**, Park exit: **D**

What is a valid fare sequence from entrance to exit?

- Another drive: A, B, C, C, D, A, B, C, D
 - $\mathbf{A} \rightarrow \mathbf{B}$: pay \$5 $\mathbf{B} \rightarrow \mathbf{C}$: pay \$3 ... $\mathbf{C} \rightarrow \mathbf{D}$: pay \$10
 - Fare sequence: \$5, \$3, \$3, \$10, \$10, \$5, \$3, \$10

Does the fare sequence \$5, \$5, \$10, \$5, \$3 end at **D**?

What about \$5, \$10, \$10?

Does the fare sequence \$5, \$5, \$10, \$5, \$3 end at **D**?

No: *A*, *B*, *D*, *A*, *B*, *C*

What about \$5, \$10, \$10?

Does the fare sequence \$5, \$5, \$10, \$5, \$3 end at **D**?

No: *A*, *B*, *D*, *A*, *B*, *C*

What about \$5, \$10, \$10?

No: *A*, *B*, ???

Not even a valid sequence

Suppose we survey visitors of the park on what route they took

How can we validate their response?

Suppose we survey visitors of the park on what route they took

How can we validate their response?

Account for INVALID scenarios

Suppose we survey visitors of the park on what route they took

How can we validate their response?

Account for INVALID scenarios

Reconsider the sequence \$5, \$10, \$10

• A, B, INVALID, INVALID

What is needed to create this program?

- Vertices: states of computation
- Edges: state transitions
- Edge labels: symbols we process
- **Start**: where to start out computation
- Final: where it is OK/valid to end

Finite Automata - Finite State Machines (with no output)

A (deterministic) <u>finite automaton</u> *M* is a 5-tuple ($Q, \Sigma, \delta, q_0, F$) where:

- The set of states Q is finite and non-empty
- The **input alphabet Σ** is finite and non-empty
- The transition function $\delta: Q \times \Sigma \rightarrow Q$
- The starting state $q_0 \in Q$
- The set of final states F

Let this automata be $\boldsymbol{M}_1 = (\boldsymbol{Q}_1, \boldsymbol{\Sigma}_1, \boldsymbol{\delta}_1, \boldsymbol{S}_1, \boldsymbol{F}_1)$

Let this automata be $M_1 = (Q_1, \Sigma_1, \delta_1, S_1, F_1)$

 $Q_1 = \{ A, B, C, D, INVALID \}$

 $\Sigma_{1} =$ $S_{1} =$ $F_{1} =$ $\delta_{1} =$

Let this automata be $M_1 = (Q_1, \Sigma_1, \delta_1, S_1, F_1)$ $Q_1 = \{ A, B, C, D, INVALID \}$ Σ₁ = { \$3, \$5, \$10 } **S**₁ = **F**₁ = δ₁ =

Let this automata be $M_1 = (Q_1, \Sigma_1, \delta_1, S_1, F_1)$ $Q_1 = \{ A, B, C, D, INVALID \}$ Σ₁ = { \$3, \$5, \$10 } $S_1 = A$ **F**₁ = δ, =

Let this automata be $M_1 = (Q_1, \Sigma_1, \delta_1, S_1, F_1)$ $Q_1 = \{ A, B, C, D, INVALID \}$ Σ₁ = { \$3, \$5, \$10 } $S_1 = A$ $F_1 = \{ D \}$ δ, =

Let this automata be $M_1 = (Q_1, \Sigma_1, \delta_1, S_1, F_1)$ $Q_1 = \{ A, B, C, D, INVALID \}$ $\Sigma_1 = \{ \$3, \$5, \$10 \}$ $S_1 = A$ $F_{1} = \{ D \}$ $\delta_1 = \{ ((A, \$3), INVALID), ((A, \$5), B), ... \}$

Let this automata be $M_1 = (Q_1, \Sigma_1, \delta_1, S_1, F_1)$ $Q_1 = \{ A, B, C, D, INVALID \}$ \$5 \$3 \$3 $\Sigma_1 = \{ \$3, \$5, \$10 \}$ В С **\$5** Α $S_1 = A$ \$10 \$10 D $F_{1} = \{ D \}$ \$10 \$3,\$10 \$3,\$5 \$5 δ₁ = { ((A, \$3), INVALID), ((A, \$5), B), ... } ^{53,55,5}70 **INVALID**

Let this automata be $M_1 = (Q_1, \Sigma_1, \delta_1, S_1, F_1)$ $Q_1 = \{ A, B, C, D, INVALID \}$ \$5 \$3 \$3 $\Sigma_1 = \{ \$3, \$5, \$10 \}$ В С **\$5** Ά $S_1 = A$ \$10 \$10 D $F_{1} = \{ D \}$ \$10 \$3,\$5 \$3,\$10 \$5 $\delta_1 = \{ ((A, \$3), INVALID), ((A, \$5), B), ... \}$ ^{53,55,5}70 **INVALID**

Let this automata be $\boldsymbol{M}_1 = (\boldsymbol{Q}_1, \boldsymbol{\Sigma}_1, \boldsymbol{\delta}_1, \boldsymbol{S}_1, \boldsymbol{F}_1)$

		Input Symbols		
	δ ₁	\$3	\$5	\$10
States	А	INVALID	В	INVALID
	В	С	D	INVALID
	С	С	INVALID	D
	D	INVALID	INVALID	A
	INVALID	INVALID	INVALID	INVALID

\$3

53,55,570

Let $M_2 = (Q_2, \Sigma_2, \delta_2, s_0, F_2)$ where $Q_2 = \{s_0, s_1, s_2, s_3\}, \Sigma_2 = \{0, 1\}, F = \{s_0, s_3\}, \text{ and } \delta_2 \text{ is defined as:}$

		Input Symbols		
	δ2	0	1	
	s ₀	s _o	S ₁	
States	S ₁	s _o	s ₂	
States	S ₂	s _o	s _o	
	S ₃	s ₂	S ₁	

Let $M_2 = (Q_2, \Sigma_2, \delta_2, s_0, F_2)$ where $Q_2 = \{ s_0, s_1, s_2, s_3 \}, \Sigma_2 = \{ 0, 1 \}, F = \{ s_0, s_3 \}$, and δ_2 is defined as:

		Input Symbols		
	δ2	0	1	
	s ₀	s _o	s ₁	
States	S ₁	s ₀	s ₂	
States	s ₂	s _o	s _o	
	S ₃	s ₂	s ₁	

A string **x** is **recognized** or **accepted** by the machine **M** if it takes the starting state q_0 to a final state.

The <u>language</u> that is *recognized* or *accepted* by the machine *M*, denoted by *L(M)* is the set of strings recognized by *M*.

 $L(M) = \{ x \in \Sigma^* \mid \delta(q_0, x) \in F \}$

Problem: Design a machine that determines if the total number of 1s in a bit string is even or odd

Problem: Design a machine that determines if the total number of 1s in a bit string is even or odd

If this machine accepts the string, it has odd parity. Otherwise, even.

Determine the languages recognized by these finite automata

Determine the languages recognized by these finite automata

Construct finite automata that recognize the following languages:

- 1. The set of bit strings that begin with two 0s
- 2. The set of bit strings that contain two consecutive 0s

Construct finite automata that recognize the following languages:

- 1. The set of bit strings that begin with two 0s
- 2. The set of bit strings that contain two consecutive 0s

Nondeterministic Finite Automata (NFA)

A <u>nondeterministic finite-state automaton</u> $M = (S, \Sigma, f, s_0, F)$ consists of a set of states S, an input alphabet Σ , and a transition function f that assigns a **set** of states to each pair of state and input

- DFA: For each pair of state and input there is a unique next state
- NFA: There may be many possible next states for each state/input pair

		Input Symbols		
	f	0	1	
States	s ₀	s ₀ , s ₁		
	s ₁	s ₀ , s ₁	s ₂ , s ₃	
	s ₂	s _o	s ₀ , s ₁	
	S ₃	s ₁ , s ₂ , s ₃	s ₁	

Outline

- Computing with Limited Resources

- Finite Automata (Model of Computation)
- Regular Expressions

Valid Fare Pattern

Is there a pattern representing every fare sequence to get from **A** to **D**?

Valid Fare Pattern

Is there a pattern representing every fare sequence to get from **A** to **D**?

Regular Expressions

A <u>regular expression</u>, or *regex*, *r* over alphabet $\Sigma = \{c_1, c_2, ..., c_k\}$ is: • $r = c_i$ for some $i \in \{1, ..., k\}$ • $r = \emptyset$ • $r = \lambda$ or, given regular expressions r_1 and r_2 , we can build up a new regex *r*:

- $\mathbf{r} = (\mathbf{r}_1 | \mathbf{r}_2) \leftarrow \mathbf{r}_1 \text{ OR } \mathbf{r}_2$, also sometimes written $(\mathbf{r}_1 \cup \mathbf{r}_2)$
- $\mathbf{r} = (\mathbf{r}_1 \mathbf{r}_2) \leftarrow \mathbf{r}_1$ concatenated with \mathbf{r}_2
- $r = (r_1)^* \leftarrow \text{kleene closure (0 or more repetitions)}$

Regular Expressions

Each regular expression represents a set specified by these rules:

- ø represents the empty set (the set with no strings)
- λ represents the set { λ } (the set containing the empty string)
- **x** represents the set { **x** } (the set containing one symbol, **x**)
- (AB) represents the concatenation of the sets represented by A and B
- (**A** U **B**) represents the union of the sets represented by **A** and **B**
- **A*** represents the Kleene closure of the set represented by **A**

<u>Regular Sets</u> are the sets represented by regular expressions

Let $\Sigma = \{ a, b \}$

Let $\Sigma = \{ a, b \}$

Let $r_1 = a, r_2 = b$ • $L(r_1) = \{a\}, L(r_2) = \{b\}$

Let $\Sigma = \{a, b\}$ Let $r_1 = a, r_2 = b$ • $L(r_1) = \{a\}, L(r_2) = \{b\}$ Let $r_3 = (r_1 | r_2) = (a | b)$ • $L(r_3) = \{a, b\} \leftarrow a \text{ or } b$

- Let $r_4 = (r_1 r_2) = (ab)$ • $L(r_4) = \{ab\} \leftarrow a \text{ followed by } b$
- Let $r_3 = (r_1 | r_2) = (a | b)$ • $L(r_3) = \{a, b\}$
- Let $r_1 = a, r_2 = b$ • $L(r_1) = \{a\}, L(r_2) = \{b\}$
- Let $\Sigma = \{ a, b \}$

Let $\Sigma = \{a, b\}$ Let $r_1 = a, r_2 = b$ • L(r₁) = { a }, L(r₂) = { b } Let $\mathbf{r}_3 = (\mathbf{r}_1 | \mathbf{r}_2) = (a | b)$ • *L*(*r*₃) = { a, b } Let $r_4 = (r_1 r_2) = (ab)$ • *L*(*r*₄) = { ab }

0 or more copies of a concatenated

Let
$$r_4 = (r_1 r_2) = (ab)$$

• $L(r_4) = \{ab\}$

Let
$$r_3 = (r_1 | r_2) = (a | b)$$

• $L(r_3) = \{a, b\}$

Let
$$r_1 = a, r_2 = b$$

• $L(r_1) = \{a\}, L(r_2) = \{b\}$

•
$$L(r_5) = \{\lambda, a, aa, aaa, ... \}$$

Let $r_6 = \emptyset$

• $L(r_6) = \{\} \leftarrow \text{matches nothing}$

Let
$$r_5 = (r_1)^* = (a)^*$$

• $L(r_5) = \{\lambda, a, aa, aaa, ... \}$

Let $\Sigma = \{ a, b \}$

Let $\Sigma = \{a, b\}$ Let $r_1 = a, r_2 = b$ • L(r₁) = { a }, L(r₂) = { b } Let $\mathbf{r}_3 = (\mathbf{r}_1 | \mathbf{r}_2) = (a | b)$ • *L*(*r*₃) = { a, b } Let $r_4 = (r_1 r_2) = (ab)$ • *L*(*r*₄) = { ab }

Let
$$r_5 = (r_1)^* = (a)^*$$

• $L(r_5) = \{ \lambda, a, aa, aaa, ... \}$
Let $r_6 = \emptyset$
• $L(r_6) = \{ \}$
Let $r_7 = \lambda$
• $L(r_7) = \{ \lambda \} \leftarrow \text{matches } \lambda$