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Final Exam Logistics

● The final is Tuesday 5/16/23 in Davis 101 from 3:30PM to 6:30PM
○ If you have any official conflicts (2 exams at same time, or 3 same day) 

please let me know ASAP
○ Seating will be randomized
○ All bags/electronics will be placed in the front of the room

● What's provided: Equivalence laws and inference rules
● What to bring:

○ UB ID card
○ Pen/pencil
○ One 8.5x11 cheat sheet (front and back)



Topic List

1. Propositional Logic
2. Logical Equivalence
3. Predicates and Quantifiers
4. Logical Reasoning/Proofs
5. Sets
6. Functions and Relations
7. Sequences
8. Counting
9. Graphs

10. Finite Automata

Emphasis on bolded topics (they were 
not covered by the midterm)



Propositional Logic 
[Chapter 1.1, 1.2]



Propositions

A proposition is a declarative statement

● Must be either TRUE (T) or FALSE (F)
○ Cannot be both…
○ Referred to as the truth value of the proposition

● An opinion of a specific person is a proposition
○ Their opinion would determine the true value

● The bits 0/1 are used for F/T
○ Digital logic uses 0/1, LOW/HIGH, or OFF/ON
○ Computers use bits and logic gates for all computation



Propositional Variables

Propositional variables are variables that represent propositions
● Commonly used letters are p, q, r, s, …

○ Alternatively, the first letter of what we are trying to represent
● May be associated a specific proposition or left as a placeholder for 

an arbitrary proposition

Compound propositions are formed by using propositional variables and 
logical operators
● A compound proposition is itself a proposition



Logical Operators

Logical Operators allow combining propositions into new ones
● Going forward: combine propositions to form new ones
● Going backward: decompose proposition into atomics

Example Compound Proposition

If I am at work, then I am wearing sneakers

Logical operator (if …, then …)



Negation Operator

Let p be a proposition.

The negation of p, denoted by ￢p (or sometimes p) is the statement: 

"It is not the case that p"

● ￢p is a new proposition, read as "not p"
● ￢ is referred to as the negation operator. It is a unary operator

○ Unary operators only operate on one proposition
● The truth value of ￢p is the opposite of the truth value of p



Let p and q be propositions.

The conjunction of p and q, denoted by p ∧ q is the statement: 

"p and q"

and is only TRUE when p and q are both TRUE, and is FALSE otherwise

Binary Logical Operators: Conjunction



Let p and q be propositions.

The disjunction of p and q, denoted by p ∨ q is the statement: 

"p or q"

and is TRUE when p is TRUE, q is TRUE, or both are TRUE

p ∨ q is FALSE only when both p and q are FALSE

Binary Logical Operators: Disjunction



Let p and q be propositions.

The exclusive or of p and q, denoted by p ⨁ q (read XOR) is the statement: 

"p or q, but not both"

and is TRUE when exactly one of p and q is TRUE, and FALSE otherwise

Binary Logical Operators: Exclusive Or



Let p and q be propositions.

The implication of p on q, denoted by p → q is the statement: 

"p implies q" or "if p, then q"

and is FALSE when p is TRUE, q is FALSE, and TRUE otherwise

p is called the hypothesis or antecedent or precedent

q is called the conclusion or consequence

Binary Logical Operators: Implication



Let p and q be propositions.

The bidirectional implication of p on q, denoted by p ⇔ q is the statement: 

"p if and only if q"

and is only TRUE when p and q have same truth value, FALSE otherwise

Binary Logical Operators: Bidirectional Implication



Truth Table

A Truth Table lists all possible combinations of truth values of the 
operands, as well as the resulting truth value in the rightmost column



Truth Tables: Negation Operator

● The negation operator has a single operand
○ This operand can either be TRUE or FALSE

● The truth value of ￢p is the opposite of the truth value of p

p ￢p

F T

T F

Truth table for negation



Truth Tables: Binary Logical Operators

p q p ∧ q

F F F

F T F

T F F

T T T

Conjunction/AND



Truth Tables: Binary Logical Operators

p q p ∨ q

F F F

F T T

T F T

T T T

Disjunction/OR

p q p ⊕ q

F F F

F T T

T F T

T T F

Exclusive Or/XOR



Truth Tables: Binary Logical Operators

p q p → q

F F T

F T T

T F F

T T T

Implication/If …, then …

p q p ⇔ q

F F T

F T F

T F F

T T T

Bidirectional Implication/IFF



Logical Equivalence 
[Chapter 1.3]



Tautologies and Contradictions

A tautology is a compound proposition that is ALWAYS TRUE, no matter 
what the truth values of the propositional variables that occur in it.

A contradiction is a compound proposition that is ALWAYS FALSE.

A contingency is a compound proposition that is neither a contradiction or 
a tautology. There at least one assignment of truth values to the atomics 
that can result in TRUE, and at least one that can result in FALSE.



Logical Equivalence

Two propositions, p and q are logically equivalent if p ⇔ q is a tautology
● In other words, p and q are logically equivalent if their truth values in 

their truth table are all the same
● Two compound propositions are logically equivalent if their truth 

values agree for all combinations of the truth values of their atomics
● We write equivalence as p ≡ q

○ ≡ is NOT a logical operator
○ p ≡ q is NOT a compound proposition



Logical Equivalence Rules

Equivalence Name
p ∧ T ≡ p        p ∨ F ≡ p Identity laws
p ∨ T ≡ T         p ∧ F ≡ F Domination laws
p ∨ p ≡ p        p ∧ p ≡ p Idempotent laws

￢(￢p) ≡ p Double negation law
p ∨ q ≡ q ∨ p        p ∧ q ≡ q ∧ p Commutative laws

(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)        (p ∧ q) ∧ r ≡ p ∧ (q ∧ r) Associative laws
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)         p ∧ (q ∨ r) ≡ (p ∧ q) ∨ 

(p ∧ r)
Distributive laws

￢(p ∨ q) ≡ ￢p ∧ ￢q        ￢(p ∧ q) ≡ ￢p ∨ ￢q De Morgan's laws
p ∨ (p ∧ q) ≡ p        p ∧ (p ∨ q) ≡ p Absorption laws

p ∨ ￢p ≡ T        p ∧ ￢p ≡ F Negation laws



Logical Equivalence Rules

Equivalences with Implication
p → q ≡ ￢p ∨ q

p → q ≡ ￢q → ￢p
p ∨ q ≡ ￢p → q

p ∧ q ≡ ￢(p → ￢q)
￢(p → q) ≡ p ∧ ￢q

(p → q) ∧ (p → r) ≡ p → (q ∧ r)
(p → q) ∧ (q → r) ≡ (p ∨ q) → r
(p → q) ∨ (p → r) ≡ p → (q ∨ r)
(p → q) ∨ (q → r) ≡ (p ∧ q) → r

Equivalences with Bidirectional 
Implication

p ⇔ q ≡ (p → q) ∧ (q → p)
p ⇔ q ≡ q ⇔ p

p ⇔ q ≡ ￢p ⇔ ￢q
p ⇔ q ≡ (p ∧ q) ∨ (￢p ∧ ￢q)

￢(p ⇔ q) ≡ p ⇔ ￢q



Proving Logical Equivalence

● By using equivalence laws, we can prove two propositions are logically 
equivalent without having to construct large truth tables

● The logical equivalences shown in the tables can be used to construct 
additional logical equivalences



Proving Logical Equivalence

In General:

● Each line should be equivalent to the previous
● Each line should list the law that led to it

○ Exactly one law applied per line
● Start with LHS and go until you reach the RHS

Note: Logical equivalence proofs are very exact. Later proofs will be less restrictive.



Propositional Satisfiability

A compound proposition is satisfiable if there is an assignment of truth 
values to its variables that makes it true.

A compound proposition is unsatisfiable when no such assignment exists

● A compound proposition is unsatisfiable iff its negation is a tautology
● An assignment of truth values that make a compound proposition true 

is called a solution to that satisfiability problem



Predicates and Quantifiers 
[Chapter 1.4, 1.5]



Predicates

A predicate is a function that takes some variable(s) as arguments; it 
returns either TRUE or FALSE, but never both, depending on the 
combination of the combination of values passed as arguments.

Example: P(x): x is an even number.

P is the function, x is the variable

P(x) is the value of the predicate P at x

What are the possible values of X?



Domain of Discourse

Given a predicate, P(x), the domain of discourse (often just called the 
domain) is the set of all possible values for the variable x.

● Predicates with multiple variables may have:
○ Multiple domains of discourse (one for each variable)
○ A single domain of discourse for all variables



Quantifiers

Quantification expresses the extent to which a predicate is true over a 
range of elements. For example, in English: all, some, none, many, few, …



Universal Quantification

Suppose P(x) is a predicate on some domain, D.

The universal quantification of P(x) is the proposition:

"P(x) is true for all x in the domain of discourse D."

Written as: ∀x, P(x)
Read as: "For all x, P(x)" or "For every x, P(x)"

∀x, P(x) is TRUE if P(x) is TRUE for every x in D.
∀x, P(x) is FALSE if P(x) is FALSE for some x in D.



Existential Quantification

Suppose P(x) is a predicate on some domain, D.

The existential quantification of P(x) is the proposition:

"P(x) is true for some x in the domain of discourse D."

Written as: ∃x, P(x)
Read as: "There exists an x such that, P(x)" or "For some x, P(x)"

∃x, P(x) is TRUE if P(x) is TRUE for some x in D.
∃x, P(x) is FALSE if P(x) is FALSE for every x in D.



Binding Variables

The occurrence of a variable, x, is said to be bound when a quantifier is 
used on that variable.

The occurrence of a variable, x, is said to be free when it is not bound by a 
quantifier or set to a particular variable.

The part of a logical expression to which a quantifier is applied is called 
the scope of this quantifier.

Note: A variable is free if it is outside of the scope of all quantifiers in the 
formula that specify this variable.



Quantifier Negation Rule

Quantifier Negation

In general we have, for any predicate P(x):

￢∀x, P(x) ≡ ∃x,￢ P(x) and ￢∃x, P(x) ≡ ∀x,￢ P(x)

De Morgan's Law for Quantifiers

Negation Equivalent 
statement

Negation is TRUE 
when…

Negation is FALSE 
when…

￢∃x, P(x) ∀x,￢ P(x) For every x, P(x) is 
FALSE

There is an x where 
P(x) is TRUE

￢∀x, P(x) ∃x,￢ P(x) There is an x where 
P(x) is FALSE P(x) is true for every x



Nested Quantifiers

A logical expression with more than one quantifier that bind different 
variables in the same predicate is said to have nested quantifiers.

In order to evaluate them we must consider their ordering and scope



Nested Quantifiers: Scope

The portion of the formula a quantifier covers is called the scope
● The scope of the quantifier is the predicate immediately following
● Precedence is just below parenthesis
● Any variable not covered by any quantifier is a free variable

Consider the following formula:

∀i ∃j, (P(i,j) →  ∀k, Q(k,j))



Nested Quantifiers: Scope

The portion of the formula a quantifier covers is called the scope
● The scope of the quantifier is the predicate immediately following
● Precedence is just below parenthesis
● Any variable not covered by any quantifier is a free variable

Consider the following formula:

∀i ∃j, (P(i,j) →  ∀k, Q(k,j))

The scope of ∀i is the entire formula



Nested Quantifiers: Scope

The portion of the formula a quantifier covers is called the scope
● The scope of the quantifier is the predicate immediately following
● Precedence is just below parenthesis
● Any variable not covered by any quantifier is a free variable

Consider the following formula:

∀i ∃j, (P(i,j) →  ∀k, Q(k,j))

The scope of ∃j is the entire formula (other than ∀i)



Nested Quantifiers: Scope

The portion of the formula a quantifier covers is called the scope
● The scope of the quantifier is the predicate immediately following
● Precedence is just below parenthesis
● Any variable not covered by any quantifier is a free variable

Consider the following formula:

∀i ∃j, (P(i,j) →  ∀k, Q(k,j))

The scope of ∀k is the limited to Q(k,j)



Nested Quantifiers: Scope

The portion of the formula a quantifier covers is called the scope
● The scope of the quantifier is the predicate immediately following
● Precedence is just below parenthesis
● Any variable not covered by any quantifier is a free variable

Consider the following formula:

∀i ∃j, (P(i,j) →  ∀k, Q(k,j))



Logical Reasoning/Proofs 
[Chapter 1.6-1.8]



Logical Reasoning: What is it?

Suppose the following are TRUE statements:
1. You will buy your friend lunch if they drive you to work
2. They drove you to work

What can you conclude?
You will buy your friend lunch.

Note: This differs from logical equivalence
● Statements derived are not always equivalent
● Can derive new knowledge from multiple facts



Logical Reasoning: Arguments

Arguments are:
● a list of propositions, called hypotheses (also called premises)
● a final proposition, called the conclusion

p1
p2
…
pn

∴ 
c

An argument is valid if (p1 ∧ p2 ∧ … ∧  pn) → c is a tautology
● Otherwise, it is invalid
● Fallacies are incorrect reasonings which lead to invalid arguments

Hypotheses →

Conclusion →

(p1 ∧ p2 ∧ … ∧  pn)

c



Logical Reasoning: Proof Definition

A logical proof of an argument is a sequence of steps, each of which 
consists of a proposition and a justification

Each line should contain one of the following:
● a hypothesis (assumption)
● a proposition that is equivalent to a previous statement
● a proposition that is derived by applying an argument to previous statements

Jusificiations should state one of the following:
● hypothesis
● the equivalence law used (and the line it was applied to)
● the argument used (and the line(s) it was applied to)

The last line should be the conclusion



Logical Reasoning: Invalid Argument

Remember: An argument is valid if (p1 ∧ p2 ∧ … ∧  pn) → c is a tautology

Therefore to show it is invalid, we need a counterexample. A counterexample is a 
situation where the hypotheses are all TRUE, and the conclusion is FALSE.

Example consider the converse as an argument.

Suppose p: FALSE and q: TRUE.
Then p → q is TRUE, but q → p is FALSE.
Therefore the argument is invalid.

p → q

∴ q → p



Logical Reasoning: Rules of Inference

Rule of Inference Name

Modus Ponens

Modus Tollens

Hypothetical Syllogism

p
p → q
∴ q 

￢q
p → q
∴ ￢p

p → q
q → r

∴ p → r



Logical Reasoning: Rules of Inference

Rule of Inference Name

Disjunctive Syllogism

Addition

Simplification

p ∨ q
￢p
∴ q

p
∴ p ∨ q

p ∧ q
∴ p



Logical Reasoning: Rules of Inference

Rule of Inference Name

Conjunction

Resolution

p
q

∴ p ∧ q

p ∨ q
￢p ∨ r
∴ q ∨ r



Mathematical Proofs

● A mathematical proof is usually "informal"
● More formal than everyday language, less formal than logical proofs

○ More than one rule may be used in a step
○ (Some) steps may be skipped
○ Axioms may be assumed
○ Rules for inference need not be explicitly stated

● Proofs must be a self-contained line of reasoning containing only:
○ facts (axioms)
○ Theorems, lemmas, corollaries (previously proven statements), or
○ statements derived from the above

You cannot use something as fact within a proof if you are not certain that it is



Some Terminology

● Theorem: statement that can be shown true
○ Proposition: less important theorem
○ Lemma: less important theorem used to prove other theorems
○ Corollary: theorem that trivially follows another theorem

● Conjecture: statement proposed to be true, but not yet proven
● Axiom: statement assumed to be true (does not need a proof)
● Most axioms, theorems, etc are universal over some domain

○ ie all perfect squares are non-negative
○ the domain should be clear from context, or explicitly stated



Proof Method: Proof by Exhaustion

A proof by exhaustion for p → q starts by considering each element of the 
domain of discourse and showing the predicate is true

Only useful when dealing with a small domain
● Small is relative, but must be finite
● Example: {2,4,6} is a small and finite domain

This is a special type of proof by cases



Direct Proofs

A direct proof for P(x) → Q(x) starts by assuming P(x) as fact, and finishes 
by establishing Q(x)

It makes use of axioms, previously proven theorems, inference rules, etc

Same approach as proving a logical argument is valid
● P(x) is the hypothesis
● Q(x) is the conclusion



Proof by Contraposition

A proof by contraposition for P(x) → Q(x) is a proof where you:
1. Write a direct proof for ￢Q(x) → ￢P(x)
2. Conclude that the contrapositive, P(x) → Q(x), is also true

Proof Layout:
Assume ￢Q(x)
Perform your derivations (using theorems, axioms, etc)
∴ ￢P(x)

Since ￢Q(x) → ￢P(x) is TRUE, we may conclude that our original 
statement P(x) → Q(x) is also TRUE



Proof by Contradiction

Note that p is logically equivalent to ￢p → (r ∧ ￢r)

A proof by contradiction for p is actually a proof for ￢p → (r ∧ ￢r) where you:
1. Write a proof starting with the asumption ￢p
2. Find some proposition r where you can derive both r and ￢r to be TRUE         

(a contradiction)

Proof Layout:
Assume ￢p
Find something that breaks
∴ contradiction, so p has to be true



Additional Review
[Chapter 1 Review/Summary Exercises]



Sets
[Chapter 2.1, 2.2]



Sets

A set  is a collection of objects that do NOT have an order

Each object is called an element or member of the set

Notation:
● e ∈ S means that e is an element of S
● e ∉ S means that e is not an element of S



Common Sets

● ℕ = {1, 2, 3, …}: the set of natural numbers
○ Sometimes 0 is considered a member, which some disagree with

● ℤ = {0, -1, 1, -2, 2, …}: the set of integers
● ℤ+ = {1, 2, 3, …}: the set of positive integers
● ℚ = { p/q | p ∈ ℤ, q ∈ ℤ, q ≠ 0}:  the set of rational numbers

○ Numbers that can be written as a fraction of integers
● ℚ+ = { x | x ∈ℚ, x > 0}: the set of positive rational numbers
● ℝ: the set of real numbers
● ℝ+ = {x | x ∈ ℝ, x > 0}: the set of positive real numbers
● ℂ: the set of complex numbers



Cardinality (for Finite Sets)

If a set A contains exactly n elements, where n is a non-negative integer, 
then A is a finite set.

n is called the cardinality of A, denoted by |A|.

The empty set or null set is the set that contains no elements, denoted by 
∅ or {}. It has size 0.



Subsets

A set A is a subset of B if and only if every element of A is also in B.
Denoted by A ⊆ B
If A ⊆ B, then ∀x ∈ A, x ∈ B

Note: for any set A, ∅ ⊆ A and A ⊆ A

If A ⊆ B but A ≠ B, then A is a proper subset of B.
Denoted by A ⊂ B or A ⊊ B Venn Diagram showing A ⊆ 

B 



Set Equality

Fact: Suppose A and B are sets. Then A = B if and only if A ⊆ B and B ⊆ A

Prove A ⊆ B:
Assume x in A
…
∴ x in B as well

Conclude that A ⊆ B

Prove B ⊆ A:
Assume y in B
…
∴ y in A as well

Conclude that B ⊆ A

To Prove Set Equality

Conclude that since A ⊆ B and B ⊆ A then A = B



Set Union

The union of two sets, A and B, is the set that contains exactly all elements 
that are in A or B (or in both)

● Denoted by A ⋃ B
● Formally, A ⋃ B = { x | x ∈ A or x ∈ B }

A ⋃ B is shaded → ← A ⋃ B ⋃ C is shaded 



Set Intersection

The intersection of two sets, A and B, is the set that contains exactly all 
elements that are in A and B

● Denoted by A ⋂ B
● Formally, A ⋂ B = { x | x ∈ A and x ∈ B }

A ⋂ B is shaded → ← A ⋂ B ⋂ C is shaded 



Set Intersection

The intersection of two sets, A and B, is the set that contains exactly all 
elements that are in A and B

● Denoted by A ⋂ B
● Formally, A ⋂ B = { x | x ∈ A and x ∈ B }

Two sets are disjoint if their intersection is the empty set

Principle of Inclusion-Exclusion

|A ⋃ B| = |A| + |B| - |A ⋂ B|



Set Complement

The complement of set A is the set that contains exactly all the elements 
that are not in A.

● Denoted by A
● Formally, A = { x | x ∉ A }

A is shaded → ← A ⋃ B is shaded 



Set Difference

The difference of set A and set B is the set that contains exactly all 
elements that are in A but not in B

● Denoted by A - B (or A \ B)
● Formally, A - B = { x | x ∈ A and x ∉ B } = A ⋂ B

A - B is shaded → ← A - (B ⋃ C) is shaded 



Symmetric Difference

The symmetric difference of set A and set B is the set that contains all 
elements that are in exactly one of A or B

● Denoted by A ⊕ B (or A ◯ B)
● Formally, A ⊕ B = (A - B) ⋃ (B - A)

A ⊕ B is shaded → ← A ⊕ B ⊕ C is shaded 

It includes values that are in an odd number of sets, ie { x | x ∈ A ⊕ x ∈ B ⊕ x ∈ C }



Power Set

The power set of set A is the set of all possible subsets of A

Denoted by 𝒫(A)

In general, |𝒫(A)| = 2|A|

For any set A, it is always the case that:
● ∅ ∈ 𝒫(A) (the empty set is a subset of A …and every other set)
● A ∈ 𝒫(A) (A is a subset of itself…every elements of A is in A)



Imposing Order on Elements

Sometimes order is important…

How can we impose order on elements?

Order is important for tuples. Assume a1 ≠ a2
● (a1, a2) ≠ (a2, a1) ← tuple comparison
● {a1, a2} = {a2, a1} ← set comparison

An ordered n tuple (a1, a2, …, an) has a1 as its first element, a2 as its second, 
…, and an as its nth element.



Imposing Order: Cartesian Product

The Cartesian product of two sets A1 and A2 is defined as the set of 
ordered tuples (a1, a2) where a1 ∈ A1  and a2 ∈ A2

● Denoted by A1 ⨉ A2
● Formally, A1 ⨉ A2 = {(a1, a2) | a1 ∈ A1  and a2 ∈ A2}
● We say "A1 cross A2"

René Descartes



Strings

An alphabet is a non-empty finite set of symbols

A string is a finite sequence of symbols from an alphabet
● Shorthand for a tuple from the Cartesian power of an alphabet

The number of characters in a string is called th length of the string
● The length of string s is denoted by |s|



Pairwise Disjoint Sets

Two sets A and B are disjoint iff A ⋂ B = ∅

A sequence of sets, A1, A2, A3, …, An are pairwise disjoint if:
for any i, j ∈ {1,2,3,...,n}, where i ≠ j, we have Ai ⋂ Aj = ∅

Symbolically we write ∀i,j ∈ {1,2,3,...,n}: [(i ≠ j) → (Ai ⋂ Aj = ∅)]



Partitions

A partition of a non-empty set A is a list of one or more non-empty subsets 
of A such that each element of A appears in exactly one of the subsets.

Formally, a partition of A is a list of sets, A1, A2, …, Ak such that:
1. ∀i ∈ [1, k]: Ai ≠ ∅ (the sets are non-empty)
2. ∀i ∈ [1, k]: Ai ⊆ A (the sets are subsets of A)
3. ∀i,j ∈ [1, k]: i ≠ j → Ai ⋂ Aj = ∅ (the sets are pairwise disjoint)
4. A = A1 ⋃ A2 ⋃ A3 ⋃ … ⋃ Ak



Functions and Relations 
[Chapter 2.3, 9.1, 9.5, 9.6]



Binary Relations

A binary relation between two sets A and B is any set R ⊆ A ⨉ B

A binary relation from A to B is a set R of ordered pairs, where the first 
element of each ordered pair comes from A and the second from B
● For any a ∈ A and b ∈ B we say that a is related to b iff (a,b) ∈ R
● Denoted by a R b

Note: a relation is a binary predicate R(a,b): "a is related to b"



Example

Consider the set of student, S = { Alice, Bob, Carol, Don },
         and the set of courses, C = { CSE115, CSE116, CSE191 }

Alice, Bob, and Carol are enrolled in CSE115

Don is enrolled in CSE116

Alice and Don are enrolled in CSE191

This is called an arrow diagram. It is a visual 
representation of a binary relation.

Alice

Bob

Carol

Don

CSE115

CSE116

CSE191



Example

Consider the set of student, S = { Alice, Bob, Carol, Don },
         and the set of courses, C = { CSE115, CSE116, CSE191 }

We can also use matrix representation to 
describe E:

Alice

Bob

Carol

Don

CSE115

CSE116

CSE191

CSE115 CSE116 CSE191

Alice 1 0 1

Bob 1 0 0

Carol 1 0 0

Don 0 1 1



Binary Relations on a Set

The binary relation R on a set A is a subset of A ⨉ A.

The set A is called the domain of the binary relation.



Special Properties of Binary Relations

A relation R on set A is called reflexive if every a ∈ A is related to itself.

Formally, a R a for all a ∈ A

Example: Consider the ≤ relation on ℤ



Special Properties of Binary Relations

A relation R on set A is called symmetric if for every a R b, we also have 
that b R a.

A relation R on set A is called anti-symmetric if for all a, b ∈ A:
 a R b and b R a implies that a = b.

Example: Consider the ≤ relation on ℤ

Example: Consider the = relation on ℤ



Special Properties of Binary Relations

A relation R on set A is called transitive if for all a,b,c ∈ A:
a R b and b R c implies a R c.

Example: Consider the < relation on ℤ



Partial Ordering

A relation R on a set A is called a partial order if it is reflexive, transitive, 
and antisymmetric.

a R b is denoted a ⪯ b for partial a ordering R
● We read a ⪯ b as "a is at most b" or "a precedes b"
● A domain, A, with a partial ordering ⪯ can be treated as the object (A,⪯)

○ (A,⪯) is called a partially ordered set or poset



Comparable Elements and Total Ordering

Elements x and y are comparable if x ⪯ y or y ⪯ x (or both)

A partial order is a total order if every pair of elements in the domain are 
comparable.

In our previous example, (ℤ, R) is a total order
● It is a partial order, and for every x,y ∈ ℤ, x R y or y R x
● We say that R is a total ordering of  ℤ



Equivalence Relations

A relation R on a set A is called an equivalence relation if it is reflexive, 
transitive, and symmetric.

a R b is denoted a ~ b for an equivalence relation R
● We read a ~ b as "a is equivalent to b"



Equivalence Classes

We can partition the domain of an equivalence relation into equivalent 
elements. These partitions are called equivalence classes.

If e ∈ D then the equivalence class containing e is denoted [e]

[e] = { x | x ∈ D, x ~ e }



Function Definition

Let A and B be nonempty sets. A function, 𝒇, from A to B is an assignment 
of exactly one element of B to each element of A.

Denoted by 𝒇: A → B

We write 𝒇(a) = b if b is the unique element of B assigned by 𝒇 to the 
element a of A

The set A is the domain of 𝒇

The set B is the codomain of 𝒇



Function Range

If 𝒇 is a function from A to B, the set range(𝒇) = { y | ∃x ∈ A, 𝒇(x) = y } is 
called the range of 𝒇

It is the set of all values in the codomain that have an element from the 
domain mapped to it
● For any function 𝒇: A → B, range(𝒇) ⊆ B
● It does not have to be the whole codomain



Injective Functions

A function 𝒇: A → B is injective if ∀x1, x2 ∈ A, (𝒇(x1) = 𝒇(x2) → x1 = x2)

Also known as one-to-one or 1-1

● Each element in the domain is mapped to a unique element from the 
codomain (no element in the codomain is hit twice)

● To prove a function is 1-1
○ Take an arbitrary x and y such that 𝒇(x) = 𝒇(y)
○ Conclude that x = y

●  To prove a function is not 1-1
○ Find a counterexample where x ≠ y but 𝒇(x) = 𝒇(y)



Surjective Functions

A function 𝒇: A → B is surjective if ∀y ∈ B, ∃x ∈ A, 𝒇(x) = y

Also known as onto

● Every element in the codomain has an element that maps to it
● To prove a function is onto:

○ Take arbitrary y in the codomain
○ Find the value of x in the domain such that 𝒇(x) = y

● To prove a function is not onto:
○ Find a counterexample, element y in codomain s.t. no element maps to it



Bijective Functions

A function𝒇: A → B is bijective if it is injective and surjective

A bijective function is called a bijection, or a one-to-one correspondence



Inverse of Functions

For any function 𝒇: A → B, the inverse mapping of 𝒇, denoted by 𝒇-1, is 
defined by the mapping 𝒇-1: B → A where: 𝒇–1 = { (y, x) | (x, y) ∈ 𝒇 }

If 𝒇 is a bijection then 𝒇-1 is a function (otherwise it is just a mapping)
● 𝒇-1 maps codomain elements of 𝒇 to domain elements of 𝒇
● If 𝒇(x) = y then 𝒇-1(y) = x



Floor Functions

The floor function is the function floor : ℝ → ℤ defined by

floor(x) = max{ y | y ∈ ℤ, y ≤ x }

Evaluates to the maximum integer below the given number.

Denoted by: floor(x) = ⌊x⌋

Examples

⌊4.5⌋ = 4 ⌊17⌋ = 17

⌊-8.7⌋ = -9 ⌊𝝿⌋ = ⌊3.14159⌋ = 3



Ceiling Function

The ceiling function is the function floor : ℝ → ℤ defined by

ceiling(x) = min{ y | y ∈ ℤ, y ≥ x }

Evaluates to the minimum integer above the given number.

Denoted by: ceiling(x) = ⌈x⌉

Examples

⌈4.5⌉ = 5 ⌈17⌉ = 17

⌈-8.7⌉ = -8 ⌈𝝿⌉ = ⌈3.14159⌉ = 4



Divides

Let x and y be integers. Then x divides y if there is an integer k s.t. y = kx.

Denoted by x | y
● x does not divide y is denoted by x | y

If x | y, then we say:
● y is a multiple of x
● x is a factor or divisor of y



Integer Division Definition

The Division Algorithm for n ∈ ℤ and d ∈ ℤ+ gives unique values
q ∈ ℤ and r ∈ {0, ... , d − 1}.

● The number q is called the quotient.
● The number r is called the remainder.

The operations div and mod produce the quotient and the remainder, 
respectively, as a function of n and d.
● n div d = q
● n mod d = r

In programming, n % d = r denotes n mod d = r



Addition mod n

For any integer n > 0, x mod n can be seen as a function modn(x):
● modn: ℤ → {0, 1, 2, ... , n − 1}, where modn(x) = x mod n.

Addition mod n is defined by adding two numbers and then applying modn
● All results in the range {0, 1, ... , n − 1}

Suppose n = 7
+ mod7(4, 6) = (4 + 6) mod 7 = 10 mod 7 = 3

+ mod7(15, 17) = (15 + 17) mod 7 = 32 mod 7 = 4

+ mod7(8, 20) = (8 + 20) mod 7 = 28 mod 7 = 0



Multiplication mod n

Multiplication mod n is defined by multiplying two numbers and then 
applying modn.

● All results in the range { 0, 1, ... , n − 1 }

Suppose n = 11.
∗ mod11(4, 6) = (4 ∗ 6) mod 11 = 24 mod 11 = 2

∗ mod11(5, 7) = (5 ∗ 7) mod 11 = 35 mod 11 = 2

∗ mod11(8, 23) = (8 ∗ 23) mod 11 = 184 mod 11 = 8



Congruence Modulo

If a and b are integers and m is a positive integer, then a is congruent to b 
modulo m if m divides a − b.

The notation a ≡ b (mod m) indicates that a is congruent to b modulo m.
● a ≡ b (mod m) is a congruence.
● Indicates that a and b are in the same equivalence class.

Is 17 congruent to 5 modulo 6? Yes, because 6 divides 17 - 5.

● 17 mod 6 = 5; it is in the equivalence class for 5 in mod 6.
● 5 mod 6 = 5; it is in the equivalence class for 5 in mod 6.



Composition of Functions

If 𝑓 and 𝑔 are two functions, where 𝑓: X → Y and 𝑔: Y → Z, the composition 
of 𝑔 with 𝑓, denoted by 𝑔 ◦ 𝑓, is the function:

(𝑔 ◦ 𝑓): X → Z, s.t. for all x ∈ X, (𝑔 ◦ 𝑓)(x) = 𝑔(𝑓(x))



Sequences
[Chapter 2.4, 5.1, 5.2]



Sequences: Terminology

A sequence is created by a special type of function with a domain of 
consecutive integers…ie no gaps in the domain

OK: ℕ, ℤ+, ℤ+ ⋃ {0}, ℤ, {1,2,34,5}

Not OK: {1,3,5,7}, { x ∈ ℕ | x is even }



Increasing Sequences

A sequence {ak} is increasing if, ∀i, ai < ai + 1

A sequence {ak} is non-decreasing if, ∀i, ai ≤ ai + 1

dk = k for 1 ≤ k ≤ 10 is increasing

ek = 2k for k ≥ 1 is increasing

fk = 2k for k ≥ 0 is increasing

What about the sequence { hk } = 1, 2, 2, 2, 3? Non-Decreasing

Every increasing sequence is non-decreasing

Not every non-decreasing sequence is increasing



Decreasing Sequences

A sequence {ak} is decreasing if, ∀i, ai > ai + 1

A sequence {ak} is non-increasing if, ∀i, ai ≥ ai + 1

sk = 10 - k for 1 ≤ k ≤ 10 is decreasing (and non-increasing)

tk = -2k for k ≥ 1 is decreasing (and non-increasing)

uk = 2-k for k ≥ 0 is decreasing (and non-increasing)

What about the sequence {vhk } = 3, 2, 2, 2, 1? Non-Increasing



Geometric Sequences

A geometric sequence is a sequence formed by successively multiplying 
the initial term by a fixed number called the common ratio.

Examples:
{ak} is 1, -1, 1, -1, 1, -1, 1, -1, … → ak = a0・rk = 1・(-1)k for all k ≥ 0
{bk} is 1, ½, ¼, ⅛, … → bk = b0・rk = 1・(½)k for all k ≥ 0

What are the explicit formulas for the above sequences?
For any geometric sequence {sk} with initial term s0 and common ratio r:

sk = s0・rk, for k ≥ 0



Arithmetic Sequences

An arithmetic sequence is a sequence formed by successively adding a 
fixed number, called the common difference, to the initial term.

Examples:
{ak} is 5, 15, 25, 35, 45, … → ak = a0・kd = 5 + 10・k for all k ≥ 0
{bk} is 49, 42, 35, 28, 21, … → bk = b0・kd = 49 + (-7)k for all k ≥ 0

What are the explicit formulas for the above sequences?
For any arithmetic sequence {sk} with initial term s0 and common diff d:

sk = s0 + kd, for k ≥ 0



Summations

Summation notation is used to express the sum of terms in a numerical 
sequence

Consider the sequence: a0, a1, a2, a3, …, ak

We can express the sum of all elements in the sequence as:

What this represents is:



Sequences: Recurrence Relations

A recurrence relation for the sequence {an} is an equation that expresses 
an in terms of one or more of the previous terms (ao, a1, a2, … an-1), for all 
integers n with n ≥ n0, where n0 is a nonnegative integer.

● A recurrence relation is said to recursively define a sequence
● It may have one or more initial terms
● A sequence is called a solution of a recurrence relation if its terms 

satisfy the recurrence relation



Mathematical Induction

Principle of Mathematical Induction:

Let P(n) be a statement defined for any n ∈ ℕ. If the following hold:
● P(1) is true
● For all k ∈ ℕ, P(k) → P(k + 1)

Then P(n) is true for all n ∈ ℕ

Note: We can relax this to apply to any domain D of consecutive integers

To prove the inductive step, assume P(k), then derive P(k + 1)



Strong Induction

Principle of Strong Mathematical Induction

Let a, b be integers with a ≤ b

Let P(n) be a statement defined for any integer n ≥ a

Then P(n) is true for all n ≥ a if the following two conditions hold:

1. P(a), P(a + 1), …, P(b) are all individually true (the base cases)
2. For all k ≥ b, P(a) ∧ P(a + 1) ∧ … ∧ P(k) → P(k + 1) (the inductive 

case) 



Proof Template

To formally prove something via strong induction, you must do all of the following:

1. Express the statement being proved in the form "∀n ≥ a, P(n) for a fixed 
integer a

2. Prove the Base Cases: show that P(a), P(a + 1), …, P(b) are all true.
3. Prove the Inductive Case

a. Inductive Hypothesis: Assume  P(i) is true for all i, where a ≤ i ≤ k for an arbitrary 
k ≥ b

b. State what must be proved under this assumption; write out P(k + 1)
c. Prove the statement P(k + 1) is true by using the inductive assumption
d. Clearly identify the conclusion

4. Now that you have proven the Base Case and Inductive Case, conclude that 
P(n) is true for all n ≥ a by the principle of strong mathematical induction



Counting
[Chapter 6.1-6.3]



Product Rule

The Product Rule

Suppose that a procedure can be broken down into a sequence of 2 tasks.

If there are n1 ways to do the first task, and for each of these ways of doing 
the first task, there are n2 ways to do the second task, then there are n1· n2 
ways to do the procedure.

The product rule can be phrased in terms of sets:

Let A1, A2, …, An be finite sets. Then |A1 ⨉ A2 ⨉ … ⨉ An| = |A1| · |A2| · … · |An|



Sum Rule

The Sum Rule

If a task can be done either in one of n1 ways OR in one of n2 ways, where 
none of the of n1 ways is the same as any of the n2 ways, then there are        
n1 + n2 ways to do the task.

The sum rule can be phrased in terms of sets:

Let A1, A2, …, An be mutually disjoint. Then |A1⋃A2⋃…⋃An| = |A1|+|A2|+…+|An|



Permutations

A permutation of a set of distinct objects is an ordered arrangement of 
these objects.

An ordered arrangement of r elements of a set is called an r-permutation. 
The number of r-permutations of a set with n elements is denoted by 
P(n,r) or nPr.



Factorial

Let n ≥ 0 be an integer. The factorial of n, denoted by n! is defined by:

n! = n · (n - 1) · (n - 2) · (n - 3) · … · 2 · 1

Note: For convenience, we define 0! = 1.

We can also write it as a recurrence relation:

a0 = 1

an = n · an-1 for n > 0



Permutations and Factorial

Theorem

If n is a positive integer, and r is an integer s.t. 1 ≤ r ≤ n, then there are

P(n,r) = n · (n - 1) · (n - 2) · (n - 3) · … · (n - r + 1)

r-permutations of a set with n distinct elements



Combinations

A combination of a set of distinct objects is an unordered arrangement of 
these objects. An r-combination is simply a subset with r elements

The number of r-combinations of a set with n elements is denoted by 

C(n,r) or nCr or           . Sometimes referred to as n choose r. 



Combinations

Theorem

For any non-negative integers n and r s.t. 0 ≤ r ≤ n:

…Therefore C(5,3) = 5!/(3!2!) = 120 / (6*2) = 10



Pigeonhole Principle

Pigeonhole Principle: If you put k pigeons into n pigeonholes, with k > n, 
then at least one pigeonhole contains at least two pigeons.

In terms of functions: If 𝒇: A → B where the codomain has size |B| = n and 
the domain |A| = k where k > n, then 𝒇 must map at least 2 domain items to 
the same codomain element.



Pigeonhole Principle

Generalized Pigeonhole Principle:

If you put k objects into n boxes, then at least one box contains at least 
⌈k/n⌉ objects.

Basically, you cannot put a fraction of an item in a box (or more 
gruesomely…you cannot split up one pigeon into multiple boxes).

The fractional item gets rounded up (ceiling function)



Contrapositive Pigeonhole Principle

Contrapositive of the generalized pigeonhole principle:

Suppose you have k elements and n boxes. In order to guarantee that there 
is a box that contains at least b items, k must be at least n*(b-1) + 1.



Graphs
[Chapter 10.1 - 10.5, 10.8, 11.1]



Graph Definition

An (undirected) graph G = (V, E) consists of V, a nonempty set of vertices 
(or nodes) and a set of edges.
● Each edge has one or two vertices associated with it, called endpoints
● An edge, {u, v} is said to connect its endpoints u and v

1 3

42

Vertices (V)
Edges (E)

{1,3}

{3,4}

{2,4}

{1,2}



Undirected vs Directed

Undirected Edge: {u, v} represented as a set
● Order doesn't matter ({u, v} = {v, u})
● Represents a symmetric relationship

Directed Edge: (u, v) represented as a tuple
● Order does matter, (u, v) and (v, u) are not the same
● Both edges may not exist
● Represents an asymmetric relationship (ie a one-way street)



Simple Graph

A Simple Graph is a graph in which every edge connects two different 
vertices and where no two edges connect the same pair of vertices

San Francisco

Denver

Los Angeles

Chicago

Washington

New York
Detroit

A graph representing a network of data centers 
and the communication links between them



Detroit

San Francisco

Denver

Los Angeles

Chicago

Washington

New York

Multigraph

A graph that may have multiple edges connected the same vertices are 
called multigraphs. 
● When there are m different edges associated with the same pair of 

vertices, {u, v}, we say that edge {u, v} has multiplicity m.

A network graph with multiple links between computers



Graphs with Loops

The edges that connect a given vertex to itself are called loops or 
sometimes self-loops.
● Graphs that may include loops and/or multiple edges between the 

same pair of vertices are sometimes called pseudographs.

Detroit

San Francisco

Denver

Los Angeles

Chicago

Washington

New York

A network graph with diagnostic links connecting each data center to itself



Directed Graph

A directed graph (or digraph) (V, E) consists of a nonempty set of vertices 
V and a set of directed edges (or arcs) E.
● Each directed edge is associated with an ordered pair of vertices
● The directed edge (u, v) is said to start at u and end at v

Detroit

San Francisco

Denver

Los Angeles

Chicago

Washington

New York

A network graph with one-way communication links



More Terminology

In an undirected graph:

Two vertices are adjacent (or neighbors) if they are endpoints of an edge

An edge is incident with (or connecting) its endpoints

The degree of a vertex is v, denoted by deg(v) is the number of edges 
incident with v

Note: A loop is an edge of the form {v,v}, and it adds to the degree of v twice



More Terminology

The set of all neighbors of a vertex v of G = (V, E), denoted by N(v), is 
called the neighborhood of v

If A is a subset of V, then the neighborhood of A, or N(A) is the set of all 
vertices that are adjacent to at least one vertex in A. So N(A) = ⋃v∈AN(v)



More Graph Terminology

In a graph with directed edges

The in-degree of a vertex v, denoted by deg-(v), is the number of edges 
with v as their terminal (or ending) vertex

The out-degree of a vertex v, denoted by deg+(v), is the number of edges 
with v as their initial (or starting) vertex

Note: A loop at vertex v contributes 1 to both the in and out degree of v



Special Simple Graphs

A complete graph on n vertices, denoted by Kn, is a simple graph that 
contains exactly one edge between each pair of distinct vertices.

K1 K2 K3 K4 K5



Subgraphs

A subgraph of a graph G=(V,E) is a graph H=(W,F) where W ⊆ V and F ⊆ 
E. 

A subgraph, H of G is a proper subgraph of G if H ≄ G.

A spanning subgraph is a subgraph in which W = V

K5 A subgraph of K5
A spanning subgraph of K5



Adjacency List

In the Adjacency List representation of a graph, each vertex has a list of all 
of its neighbors.

Note: if the graph is undirected, then if a is in b's list of neighbors, b must 
also be in a's list of neighbors

A B

DE

C

Vertex Adjacent Vertices

A B,D,E

B A,D,C

C B,D

D A,B,C,E

E A,D



Adjacency Matrix

The Adjacency Matrix for a graph M with n vertices is an n by n matrix, 
whose entries are 0 or 1, indicating if an edge is present.
● Mi,j = 1 iff {i, j} is an edge in the graph
● The vertices of M are labeled with integers in the range 1 to n
● If M is undirected, Mi,j = Mj,i because edge {i,  j) = edge {j, i}

1 2

45

3

1 2 3 4 5
1 0 1 0 1 1
2 1 0 1 1 0
3 0 1 0 1 0
4 1 1 1 0 1
5 1 0 0 1 0



Handshake Theorem

Theorem

For any undirected graph, G = (V, E):

Note: If V = {v1, v2, …, vn} then 



Isomorphism of Graphs

The simple graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there 
exists a one-to-one and onto function 𝒇 from V1 to V2 with the property that  
a and b are adjacent in G1 if and only if 𝒇(a) and 𝒇(b) are adjacent in G2 for 
all a and b in V1

● Such a function is called an isomorphism
● Two simple graphs that are not isomorphic are called nonisomorphic



Walks, Trails, and Paths

A walk from s to t is a sequence of vertices s, v1, v2, …, vk, t such that there 
is an edge between any two consecutive vertices in the list
● If the first and last vertices are different it's an open walk
● If they are the same, then it's a closed walk

A trail from s to t is an open walk that has no repeated edges

A path from s to t is a trail from s to t where all vertices are unique
● Note that a path is a special case of a trail



Circuits and Cycles

A circuit is a closed walk that has no repeated edges

A cycle is a circuit with length at least three such that there are no 
repeated vertices other than the first and the last.
● A closed path is a cycle



Euler Trail and Circuit

An Euler circuit in a graph G is a simple circuit containing every edge of G

An Euler trail in a graph G is a trail that visits every edge of G exactly once

Theorem

A connected multigraph with at least two vertices has an Euler circuit if 
and only if each of its vertices has an even degree



Hamiltonian Path and Cycle

A path in a graph G that passes through every vertex exactly once is called 
a Hamiltonian path.

A cycle in a graph G that passes through every vertex exactly once is called 
a Hamiltonian cycle.

A

B D

C

E

Path: a,b,c,d,e

A

B D

C

E Cycle: a,b,c,e,d,a
Path: a,b,c,d,e



Connectivity

A node s is connected to t if there is a path from s to t

A node s is isolated if there is no other vertex connected to s



Connected Components

A set of vertices in a graph is connected if every pair of vertices in the set 
is connected

A graph is said to be connected if the entire set of vertices is connected

A graph that is not connected is disconnected

A connected component is a maximal set of connected vertices

Note: A disconnected graph can be split into more than one connected component



Graph Coloring

Let G = (V, E) be an undirected graph and C be a finite set of colors. A valid 
coloring of G is a function c: V → C such that for ∀ {x, y} ∈ E, c(x) ≠c(y)
● If |C| = k, then c is a k-coloring of G

B

C E

D

A

A valid coloring An invalid coloring 
(but still a coloring)

B

C E

D

A



Graph Coloring

The chromatic number of a graph G (denoted χ(G)) is the smallest k such 
that there is a valid k-coloring of G

Theorem

Let G be an undirected graph. Let Δ(G) be the maximum degree of any 
vertex in G. Then χ(G) ≤ Δ(G) + 1



Trees

A tree is an undirected graph that is connected and has no cycles

a

b

c d e

f

/

home bin tmp

Eric Admin

Documents

File 
#1

File 
#2

File 
#3

File 
#4

File 
#5

A free tree has no organization 
of vertices and edges

A rooted tree has a designated 
root at the top
 (ie the "/" and "a" vertices →)

A free tree can be made rooted 
by choosing a root



Rooted Tree Terminology

Depth of a vertex: Distance from the root to that vertex

Height of a tree: maximum depth of any vertex

Parent of a vertex: the node above that vertex (towards the root)
● When u is the parent of v, then v is a child of u
● Vertices with the same parent are called siblings

Leaf: a vertex with no children



Rooted Tree Terminology

The ancestors of a vertex (other than the root) are the vertices in the path 
from the root to the vertex (including the root, but excluding the vertex). 
The root has no ancestors.

The descendants of a vertex, v, are all vertices that have v as an ancestor

If a is a vertex in a tree, the subtree rooted at a is the subgraph of the tree 
consisting of a, all of its descendants, and all edges incident to those 
descendants



Finite State Machines 
[13.2-13.4]



Finite Automata - Finite State Machines (with no output)

A (deterministic) finite automaton M is a 5-tuple (Q, Σ, δ, q0, F) where:
● The set of states Q is finite and non-empty
● The input alphabet Σ is finite and non-empty
● The transition function δ: Q ⨉ Σ → Q
● The starting state q0 ∈ Q
● The set of final states F



Finite Automata

Let this automata be M1 = (Q1, Σ1, δ1, S1, F1)

Q1 = { A, B, C, D, INVALID }

Σ1 = { $3, $5, $10 }

S1 = A

F1 = { D }

δ1 = { ((A, $3), INVALID), ((A, $5), B), … }

A

B
C

D

$5

$5

$3
$3

$10
$10

INVALID

$5$3,$5$3,$10
$10

$3,$5,$10



Finite Automata

A string x is recognized or accepted by the machine M if it takes the 
starting state q0 to a final state.

The language that is recognized or accepted by the machine M, denoted by 
L(M) is the set of strings recognized by M.

L(M) = { x ∈ Σ* | δ(q0, x) ∈ F }



Regular Expressions

A regular expression, or regex, r over alphabet Σ = { c1, c2, …, ck } is:
● r = ci for some i ∈ { 1, …, k }
● r = ∅
● r = λ

or, given regular expressions r1 and r2, we can build up a new regex r:
● r = (r1 | r2) ← r1 OR r2, also sometimes written (r1 ⋃ r2)

● r = (r1r2) ← r1 concatenated with r2

● r = (r1)* ← kleene closure (0 or more repetitions)


