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What are Graphs?



What are Graphs?



What are Graphs?

Source: https://xkcd.com/688/, https://en.wikipedia.org/wiki/Graph_of_a_function, http://stackoverflow.com/questions/23261760/how-to-generate-3-d-bar-graph-in-r
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What are Graphs?

Graphs model relationships between pairs of objects
● Each object is represented as a node or vertex in the graph
● Relationships between objects are represented as edges



What are Graphs?

Graphs model relationships between pairs of objects
● Each object is represented as a node or vertex in the graph
● Relationships between objects are represented as edges

What kinds of things can we represent as graphs?



What are Graphs?

The flight map for JetBlue is a graph

● Cities are vertices
● Edges represent direct flights that 

JetBlue makes



What are Graphs?

All kinds of aspects of social media can 
be represented as graphs

● Vertices can represent users, posts, 
images, comments, etc

● Edge can represent likes, 
interactions, friendships, etc



What are Graphs

Computer networks can be represented as a graph (...the internet as well)

● Vertices might represent devices
● Edges represent channels through which devices could communicate



What are Graphs?

The buildings on UB North Campus… Jarvis

Furnas

Bell
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What are Graphs?

The buildings on UB North Campus…

…and the tunnels connecting them

Jarvis

Furnas

Bell

Knox

NSC

O'Brian Baldy Lockwood

Davis

Bonner Student 
Union

Norton

Talbert Capen



What are Graphs?

More Examples

● Maps (ie google maps)
● The internet (webpages are nodes, links are edges)
● Interactions between molecules
● Dependencies among tasks (ie GNU make)
● Moves in a game (ie Chess)
● Many, many, ….many more



Why Care About Graphs?

Once we have represented our objects in graph form there are many 
algorithms we can use to learn about relations between these objects

● Find out if two nodes are related (is there an edge between them)
● Find out if two nodes are connected via some path

○ If they are, can we find the cheapest/shortest path between them
■ What the fastest I can get to Wegmans?
■ What is the cheapest way to fly from Buffalo to California

● Find vulnerabilities/weak points
● Paths that go through a set of nodes

○ ie schedule the stops for a UPS driver



Why Care About Graphs?

Once we have represented our objects in graph form there are many 
algorithms we can use to learn about relations between these objects

● Find out if two nodes are related (is there an edge between them)
● Find out if two nodes are connected via some path

○ If they are, can we find the cheapest/shortest path between them
■ What the fastest I can get to Wegmans?
■ What is the cheapest way to fly from Buffalo to California

● Find vulnerabilities/weak points
● Paths that go through a set of nodes

○ ie schedule the stops for a UPS driver …and yes, many more



Graph Definition

An (undirected) graph G = (V, E) consists of V, a nonempty set of vertices 
(or nodes) and a set of edges.
● Each edge has one or two vertices associated with it, called endpoints
● An edge, {u, v} is said to connect its endpoints u and v

1 3

42

Vertices (V)
Edges (E)



Graph Definition

An (undirected) graph G = (V, E) consists of V, a nonempty set of vertices 
(or nodes) and a set of edges.
● Each edge has one or two vertices associated with it, called endpoints
● An edge, {u, v} is said to connect its endpoints u and v

1 3

42

Vertices (V)
Edges (E)

{1,3}

{3,4}

{2,4}

{1,2}



Undirected vs Directed

Undirected Edge: {u, v} represented as a set
● Order doesn't matter ({u, v} = {v, u})
● Represents a symmetric relationship

Directed Edge: (u, v) represented as a tuple
● Order does matter, (u, v) and (v, u) are not the same
● Both edges may not exist
● Represents an asymmetric relationship (ie a one-way street)



Simple Graph

A Simple Graph is a graph in which every edge connects two different 
vertices and where no two edges connect the same pair of vertices

San Francisco

Denver

Los Angeles

Chicago

Washington

New York
Detroit

A graph representing a network of data centers 
and the communication links between them



Detroit

San Francisco

Denver

Los Angeles

Chicago

Washington

New York

Multigraph

A graph that may have multiple edges connected the same vertices are 
called multigraphs. 
● When there are m different edges associated with the same pair of 

vertices, {u, v}, we say that edge {u, v} has multiplicity m.

A network graph with multiple links between computers



Graphs with Loops

The edges that connect a given vertex to itself are called loops or 
sometimes self-loops.
● Graphs that may include loops and/or multiple edges between the 

same pair of vertices are sometimes called pseudographs.

Detroit

San Francisco

Denver

Los Angeles

Chicago

Washington

New York

A network graph with diagnostic links connecting each data center to itself



Directed Graph

A directed graph (or digraph) (V, E) consists of a nonempty set of vertices 
V and a set of directed edges (or arcs) E.
● Each directed edge is associated with an ordered pair of vertices
● The directed edge (u, v) is said to start at u and end at v

Detroit

San Francisco

Denver

Los Angeles

Chicago

Washington

New York

A network graph with one-way communication links



Graph Drawing

Note: One graph can be drawn in many ways. How we decide to draw the 
graph can help to convey important information clearly.

We can always draw a graph G = (V, E) on a plane
● Place every vertex as a point
● Place every edge as an arc connecting 

its endpoints

Recall our graph of campus buildings →
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Graph Examples

Let G1 = (V1, Eq) be the following graph:

What are the vertices of G1 (what is V1)?

What are the edges of G1 (what is E1)?

1 3

42



Graph Examples

Let G1 = (V1, Eq) be the following graph:

What are the vertices of G1 (what is V1)? {1, 2, 3, 4 }

What are the edges of G1 (what is E1)? {{1,2}, {1,3}, {2,4}, {3,4}}

1 3

42



Graph Examples

Let G2 = (V2, E2) be the following graph:

V2 = {A, B, C, D, E}

E2 = {{A,B}, {A,C}, {B,C}, {B,D}, {C,E}, {D,E}}

Draw G2



Graph Examples

Let G2 = (V2, E2) be the following graph:

V2 = {A, B, C, D, E}

E2 = {{A,B}, {A,C}, {B,C}, {B,D}, {C,E}, {D,E}}

Draw G2

B C

ED

A



More Terminology

In an undirected graph:

Two vertices are adjacent (or neighbors) if they are endpoints of an edge

An edge is incident with (or connecting) its endpoints

The degree of a vertex is v, denoted by deg(v) is the number of edges 
incident with v

Note: A loop is an edge of the form {v,v}, and it adds to the degree of v twice



More Terminology

The set of all neighbors of a vertex v of G = (V, E), denoted by N(v), is 
called the neighborhood of v

If A is a subset of V, then the neighborhood of A, or N(A) is the set of all 
vertices that are adjacent to at least one vertex in A. So N(A) = ⋃v∈AN(v)



Graph Examples

Recall G1:

What are the neighbors of 1?

What is N({1,4})?

What is N({1,3})?

What vertices are incident to edge {2,4}?

What is the degree of 4?

1 3

42



Graph Examples

Recall G1:

What are the neighbors of 1? 2 and 3

What is N({1,4})? {2,3} 

What is N({1,3})? {1,2,3,4}

What vertices are incident to edge {2,4}? 2 and 4

What is the degree of 4? deg(4) = 2

1 3

42



Graph Examples

Recall G1:

What are the neighbors of 1? 2 and 3

What is N({1,4})? {2,3} 

What is N({1,3})? {1,2,3,4}

What vertices are incident to edge {2,4}? 2 and 4

What is the degree of 4? deg(4) = 2

1 3

42
These are sets of 

vertices



Graph Examples

Recall G1:

What are the neighbors of 1? 2 and 3

What is N({1,4})? {2,3} 

What is N({1,3})? {1,2,3,4}

What vertices are incident to edge {2,4}? 2 and 4

What is the degree of 4? deg(4) = 2

1 3

42

This is an edge



Graph Examples

Recall G2

What is the neighborhood of B?

What is N(E)?

Is vertex B adjacent to vertex E?

What is the degree of vertex C?

B C

ED

A



Graph Examples

Recall G2

What is the neighborhood of B? {A, C, D}

What is N(E)? {C, D}

Is vertex B adjacent to vertex E? No

What is the degree of vertex C? deg(C) = 3

B C

ED

A



Graph Examples

Let G3 = (V3, E3):

What are the neighbors of i?

What are the neighbors of k?

What is the degree of vertex i?

Is G3 a simple graph? j k

i



Graph Examples

Let G3 = (V3, E3):

What are the neighbors of i? i, j, and k

What are the neighbors of k? i and j

What is the degree of vertex i? deg(i) = 4

Is G3 a simple graph? No, there is a loop j k

i



More Graph Terminology

In a graph with directed edges

The in-degree of a vertex v, denoted by deg-(v), is the number of edges 
with v as their terminal (or ending) vertex

The out-degree of a vertex v, denoted by deg+(v), is the number of edges 
with v as their initial (or starting) vertex

Note: A loop at vertex v contributes 1 to both the in and out degree of v



Graph Examples

Let G4 = (V4, E4):

deg-(A) deg+(A)

deg-(B) deg+(B)

deg-(C) deg+(C)

deg-(D) deg+(D)

deg-(E) deg+(E)

B C

ED

A



Graph Examples

Let G4 = (V4, E4):

deg-(A) 2 deg+(A) 0

deg-(B) 2 deg+(B) 1

deg-(C) 1 deg+(C) 3

deg-(D) 0 deg+(D) 3

deg-(E) 2 deg+(E) 0

B C

ED

A



Special Simple Graphs

A complete graph on n vertices, denoted by Kn, is a simple graph that 
contains exactly one edge between each pair of distinct vertices.

K1 K2 K3 K4 K5



Special Simple Graphs

A cycle, Cn, n ≥ 3, consists of n vertices v1, v2, …, vn and edges {v1, v2},       
{v2, v3}, …, {vn-1, vn}, {vn, v1}

C3 C4
C5



Subgraphs

A subgraph of a graph G=(V,E) is a graph H=(W,F) where W ⊆ V and F ⊆ 
E. 

A subgraph, H of G is a proper subgraph of G if H ≄ G.

A spanning subgraph is a subgraph in which W = V

K5 A subgraph of K5
A spanning subgraph of K5
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Adjacency List

In the Adjacency List representation of a graph, each vertex has a list of all 
of its neighbors.

Note: if the graph is undirected, then if a is in b's list of neighbors, b must 
also be in a's list of neighbors

A B

DE

C

Vertex Adjacent Vertices

A B,D,E

B A,D,C

C B,D

D A,B,C,E

E A,D



Adjacency List

In the Adjacency List representation of a graph, each vertex has a list of all 
of its neighbors.

Note: if the graph is directed, then the adjacency list shows which vertices 
we can get to from a given vertex

A B

DE

C

Vertex Adjacent Vertices

A E

B A, D

C B, C

D A, C

E D



Adjacency Matrix

The Adjacency Matrix for a graph M with n vertices is an n by n matrix, 
whose entries are 0 or 1, indicating if an edge is present.
● Mi,j = 1 iff {i, j} is an edge in the graph
● The vertices of M are labeled with integers in the range 1 to n
● If M is undirected, Mi,j = Mj,i because edge {i,  j) = edge {j, i}

1 2

45

3

1 2 3 4 5
1 0 1 0 1 1
2 1 0 1 1 0
3 0 1 0 1 0
4 1 1 1 0 1
5 1 0 0 1 0



Adjacency Matrix

The Adjacency Matrix for a graph M with n vertices is an n by n matrix, 
whose entries are 0 or 1, indicating if an edge is present.
● Mi,j = 1 iff (i, j) is an edge in the graph
● The vertices of M are labeled with integers in the range 1 to n
● If M is directed, Mi,j does not necessarily equal Mj,i

1 2

45

3

1 2 3 4 5
1 0 0 0 1 1
2 1 0 0 1 0
3 0 1 1 1 0
4 0 0 0 0 0
5 0 0 0 1 0



Adjacency Matrix

The Adjacency Matrix for a graph M with n vertices is an n by n matrix, 
whose entries are 0 or 1, indicating if an edge is present.
● Mi,j = 1 iff (i, j) is an edge in the graph
● The vertices of M are labeled with integers in the range 1 to n
● If M is directed, Mi,j does not necessarily equal Mj,i

1 2

45

3

1 2 3 4 5
1 0 0 0 1 1
2 1 0 0 1 0
3 0 1 1 1 0
4 0 0 0 0 0
5 0 0 0 1 0

Row 3 shows the edges coming FROM 3



Adjacency Matrix

The Adjacency Matrix for a graph M with n vertices is an n by n matrix, 
whose entries are 0 or 1, indicating if an edge is present.
● Mi,j = 1 iff (i, j) is an edge in the graph
● The vertices of M are labeled with integers in the range 1 to n
● If M is directed, Mi,j does not necessarily equal Mj,i

1 2

45

3

1 2 3 4 5
1 0 0 0 1 1
2 1 0 0 1 0
3 0 1 1 1 0
4 0 0 0 0 0
5 0 0 0 1 0

Column 4 shows the edges pointing TO 4



Draw the graph:

Graph Representation Examples

Write out the adjacency matrix:

1 2

43

1 2 3 4
1 0 1 1 0
2 1 0 0 1
3 1 0 0 1
4 0 1 1 0



Draw the graph:

Graph Representation Examples

Write out the adjacency matrix:

1 2

43

1 2 3 4
1 0 1 1 0
2 1 0 0 1
3 1 0 0 1
4 0 1 1 0

1 2 3 4
1 0 1 1 1
2 1 0 1 0
3 1 1 0 0
4 1 0 0 0

1 2

43
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Handshake Theorem

Theorem

For any undirected graph, G = (V, E):

Note: If V = {v1, v2, …, vn} then 



Handshake Theorem

Consider this graph, G, with 3 vertices and 4 edges:

According to the handshake theorem, 2|E| = deg(i) + deg(j) + deg(k)

j k

i



Handshake Theorem

Consider putting 2 dots on every edge

How many dots are there?

j k

i



Handshake Theorem

Consider putting 2 dots on every edge

How many dots are there? 2 dots * 4 edges = 8 (aka 2|E|)

j k

i



Handshake Theorem

Now move each dot to the incident vertices

j k

i



Handshake Theorem

Now move each dot to the incident vertices

j k

i



Handshake Theorem

Now move each dot to the incident vertices

j k

i



Handshake Theorem

Now move each dot to the incident vertices

j k

i



Handshake Theorem

Now move each dot to the incident vertices

j k

i



Handshake Theorem

Now move each dot to the incident vertices

How many dots now?

j k

i



Handshake Theorem

Now move each dot to the incident vertices

How many dots now? Still 8

j k

i



Handshake Theorem

Now move each dot to the incident vertices

How many dots now? Still 8

How many touch i?

How many touch j?

How many touch k? j k

i



Handshake Theorem

Now move each dot to the incident vertices

How many dots now? Still 8

How many touch i? 4

How many touch j? 2

How many touch k? 2 j k

i



Handshake Theorem

Depending on how the dots are arranged we associate them differently

j k

i

j k

i



Handshake Theorem

Depending on how the dots are arranged we associate them differently

j k

i

j k

i



Handshake Theorem Proof Sketch

This is a sketch for the complete proof of the handshake theorem
● We only demonstrated it for a single graph
● The full/general proof follows the same kind of idea

○ Proof by induction on the number of edges in the graph
● Useful application: Runtime analysis for graph algorithms



Handshake Theorem Application

What could a graph with vertices of degrees 2, 2, 2, and 4 look like?



Handshake Theorem Application

What could a graph with vertices of degrees 2, 2, 2, and 4 look like?

A B

DC

A B

DC

A B

DC



Handshake Theorem Application

Suppose G = (V, E) is a simple, connected graph, with |V| = 5

1. Is it possible for Σv∈Vdeg(v) = 5?

2. Is it possible for Σv∈Vdeg(v) = 20?

3. If Σv∈Vdeg(v) = 14, what is the smallest value deg(v) can have for any 
vertex v ∈ V?

4. How many edges are there in a graph that has 10 vertices, with each 
vertex having degree 6?



Handshake Theorem Application

Suppose G = (V, E) is a simple, connected graph, with |V| = 5

1. Is it possible for Σv∈Vdeg(v) = 5?

2. Is it possible for Σv∈Vdeg(v) = 20?

3. If Σv∈Vdeg(v) = 14, what is the smallest value deg(v) can have for any 
vertex v ∈ V?

4. How many edges are there in a graph that has 10 vertices, with each 
vertex having degree 6?

A connected graph is one where every vertex 
has a path of edges leading to every other 
vertex



Handshake Theorem Application

Suppose G = (V, E) is a simple, connected graph, with |V| = 5

1. Is it possible for Σv∈Vdeg(v) = 5?

2. Is it possible for Σv∈Vdeg(v) = 20?

3. If Σv∈Vdeg(v) = 14, what is the smallest value deg(v) can have for any 
vertex v ∈ V?

4. How many edges are there in a graph that has 10 vertices, with each 
vertex having degree 6?



Handshake Theorem Application

Suppose G = (V, E) is a simple, connected graph, with |V| = 5

1. Is it possible for Σv∈Vdeg(v) = 5? No. Σv∈Vdeg(v) = 2 |E|...can't be odd

2. Is it possible for Σv∈Vdeg(v) = 20?

3. If Σv∈Vdeg(v) = 14, what is the smallest value deg(v) can have for any 
vertex v ∈ V?

4. How many edges are there in a graph that has 10 vertices, with each 
vertex having degree 6?



Handshake Theorem Application

Suppose G = (V, E) is a simple, connected graph, with |V| = 5

1. Is it possible for Σv∈Vdeg(v) = 5? No. Σv∈Vdeg(v) = 2 |E|...can't be odd

2. Is it possible for Σv∈Vdeg(v) = 20? Yes. If |E| = 10, Σv∈Vdeg(v) = 20

3. If Σv∈Vdeg(v) = 14, what is the smallest value deg(v) can have for any 
vertex v ∈ V?

4. How many edges are there in a graph that has 10 vertices, with each 
vertex having degree 6?



Handshake Theorem Application

Suppose G = (V, E) is a simple, connected graph, with |V| = 5

1. Is it possible for Σv∈Vdeg(v) = 5? No. Σv∈Vdeg(v) = 2 |E|...can't be odd

2. Is it possible for Σv∈Vdeg(v) = 20? Yes. If |E| = 10, Σv∈Vdeg(v) = 20

3. If Σv∈Vdeg(v) = 14, what is the smallest value deg(v) can have for any 
vertex v ∈ V? 1. |E| = 7, degrees could be 1, 3, 3, 3, 4 for example

4. How many edges are there in a graph that has 10 vertices, with each 
vertex having degree 6?



Handshake Theorem Application

Suppose G = (V, E) is a simple, connected graph, with |V| = 5

1. Is it possible for Σv∈Vdeg(v) = 5? No. Σv∈Vdeg(v) = 2 |E|...can't be odd

2. Is it possible for Σv∈Vdeg(v) = 20? Yes. If |E| = 10, Σv∈Vdeg(v) = 20

3. If Σv∈Vdeg(v) = 14, what is the smallest value deg(v) can have for any 
vertex v ∈ V? 1. |E| = 7, degrees could be 1, 3, 3, 3, 4 for example

4. How many edges are there in a graph that has 10 vertices, with each 
vertex having degree 6? Σv∈Vdeg(v) = 60 = 2|E|. |E| = 30
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Isomorphism of Graphs

The simple graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there 
exists a one-to-one and onto function 𝒇 from V1 to V2 with the property that  
a and b are adjacent in G1 if and only if 𝒇(a) and 𝒇(b) are adjacent in G2 for 
all a and b in V1

● Such a function is called an isomorphism
● Two simple graphs that are not isomorphic are called nonisomorphic



Isomorphism of Graphs

A property is said to be preserved under isomorphism if whenever two 
graphs are isomorphic, one graph has the property iff the other graph also 
has that property.

A property preserved by isomorphism of graphs is called a graph invariant

Isomorphic simple graphs must also have:
● The same number of vertices
● The same number of edges
● The same degree for all vertices



Isomorphism Examples

Are these graphs isomorphic?

A B

DC

1 2

43



Isomorphism Examples

Are these graphs isomorphic?

Yes. A possible isomorphism: {(A,1), (D,2), (C,3), (B,4)}

A B

DC

1 2

43



Isomorphism Examples

Are these graphs isomorphic?

A B

DC

1 2

43

E 5



Isomorphism Examples

Are these graphs isomorphic?

No. The left graph has a vertex with degree 4, the right does not…

A B

DC

1 2

43

E 5



Isomorphism Examples

Are these graphs isomorphic?

A B

DC

1 2

43

E 5



Isomorphism Examples

Are these graphs isomorphic?

No. They don't have the same number of edges

A B

DC

1 2

43

E 5



Isomorphism Examples

Are these graphs isomorphic?

A B

DC

1 2

4

E 5



Isomorphism Examples

Are these graphs isomorphic?

No. They don't have the same number of vertices (or edges, or degrees)

A B

DC

1 2

4

E 5



Isomorphism Examples

Are these graphs isomorphic?

A B

DC 1 2

4

3



Isomorphism Examples

Are these graphs isomorphic?

Yes. A possible isomorphism: {(A,1), (B,2), (C,3), (D,4)}

A B

DC 1 2

4

3



Isomorphism Examples

Are these graphs isomorphic?

A B

ED 6 4

2

C

F

1 3

5



Isomorphism Examples

Are these graphs isomorphic?
No. Same number of vertices, edges, and same degrees…but no bijective 
function that preserves adjacency

A B

ED 6 4

2

C

F

1 3

5
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Paths

Consider a graph with nodes representing locations, and edges 
representing whether or not you can walk between two locations…

A common question we may ask is can we walk from point A to point B?



Paths

Recall our map of North Campus Jarvis

Furnas

Bell

Knox

NSC

O'Brian Baldy Lockwood

Davis

Bonner Student 
Union

Norton

Talbert Capen



Paths

Can I go from Capen to Davis indoors? Jarvis

Furnas

Bell

Knox

NSC

O'Brian Baldy Lockwood

Davis

Bonner Student 
Union

Norton

Talbert Capen



Paths

Can I go from Capen to Davis indoors?
● No, no path exists
● Furthermore, Davis is not 

connected to anything

Jarvis

Furnas

Bell

Knox

NSC

O'Brian Baldy Lockwood

Davis

Bonner Student 
Union

Norton

Talbert Capen



Paths

Can I go from NSC to Bell indoors? Jarvis

Furnas

Bell

Knox

NSC

O'Brian Baldy Lockwood

Davis

Bonner Student 
Union

Norton

Talbert Capen



Paths

Can I go from NSC to Bell indoors?
● Yes, there's a path from NSC to Bell
● NSC → Talbert → Capen →  Norton 

→ Knox → SU → Bell

Jarvis

Furnas

Bell

Knox

NSC

O'Brian Baldy Lockwood

Davis

Bonner Student 
Union

Norton

Talbert Capen



Paths

What if I want to go from Norton to 
Capen, but stop in Bonner first?

Jarvis

Furnas

Bell

Knox

NSC

O'Brian Baldy Lockwood

Davis

Bonner Student 
Union

Norton

Talbert Capen



Paths

What if I want to go from Talbert to 
Capen, but need to stop in NSC first?
● Talbert → NSC → Talbert → Capen
● This is called a walk

Jarvis

Furnas

Bell

Knox

NSC

O'Brian Baldy Lockwood

Davis

Bonner Student 
Union

Norton

Talbert Capen



Walks, Trails, and Paths

A walk from s to t is a sequence of vertices s, v1, v2, …, vk, t such that there 
is an edge between any two consecutive vertices in the list
● If the first and last vertices are different it's an open walk
● If they are the same, then it's a closed walk

A trail from s to t is an open walk that has no repeated edges

A path from s to t is a trail from s to t where all vertices are unique
● Note that a path is a special case of a trail



Circuits and Cycles

A circuit is a closed walk that has no repeated edges

A cycle is a circuit with length at least three such that there are no 
repeated vertices other than the first and the last.
● A closed path is a cycle



Example

Is the following a walk, trail, path, cycle, and/or circuit?

A, B, D, A

A B

DC

E

F



Example

Is the following a walk, trail, path, cycle, and/or circuit?

A, B, D, A

None of the above (there is no edge from D to A)

A B

DC

E

F



Example

Is the following a walk, trail, path, cycle, and/or circuit?

A, B, A, C, B

A B

DC

E

F



Example

Is the following a walk, trail, path, cycle, and/or circuit?

A, B, A, C, B

It is a walk

(not a trail, we take {A,B} twice)

(not a cycle or circuit because it doesn't A ≠ B)

A B

DC

E

F



Example

Is the following a walk, trail, path, cycle, and/or circuit?

E, B, A, E, F

A B

DC

E

F



Example

Is the following a walk, trail, path, cycle, and/or circuit?

E, B, A, E, F

walk and trail

(not a path, it visits E twice)

(not a cycle or circuit, E ≠ F)

A B

DC

E

F



Example

Is the following a walk, trail, path, cycle, and/or circuit?

F, E, B, C, A

A B

DC

E

F



Example

Is the following a walk, trail, path, cycle, and/or circuit?

F, E, B, C, A

walk, trail, and path

(not a circuit or cycle, F ≠ A)A B

DC

E

F



Example

Is the following a walk, trail, path, cycle, and/or circuit?

E, B, C, A, B, E

A B

DC

E

F



Example

Is the following a walk, trail, path, cycle, and/or circuit?

E, B, C, A, B, E

a closed walk

(not a trail, because it is closed)

(not a circuit because {B,E} repeats)

(not a path or cycle because B repeats)

A B

DC

E

F



Example

Is the following a walk, trail, path, cycle, and/or circuit?

E, B, D, C, B, A, E

A B

DC

E

F



Example

Is the following a walk, trail, path, cycle, and/or circuit?

E, B, D, C, B, A, E

a closed walk, and a circuit (no repeated edges)

(not a trail, because it is closed)

(not a path or cycle because B repeats)

A B

DC

E

F



Example

Is the following a walk, trail, path, cycle, and/or circuit?

A, B, C, A

A B

DC

E

F



Example

Is the following a walk, trail, path, cycle, and/or circuit?

A, B, C, A

a closed walk, circuit, path, cycle

(not a trail, because it is closed)A B

DC

E

F



Example

What's the longest path in this graph?

A B

DC

E

F



Example

What's the longest path in this graph?

F, E, A, C, B, D (others possible too)

A B

DC

E

F



Example

What's the longest path in this graph?

F, E, A, C, B, D (others possible too)

What's the largest cycle?

A B

DC

E

F



Example

What's the longest path in this graph?

F, E, A, C, B, D (others possible too)

What's the largest cycle?

E, B, D, C, A, E (others possible too)A B

DC

E

F



Euler Trail and Circuit

Can we cross every bridge exactly once?

By Bogdan Giuşcă - Public domain (PD),based on the image, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=851840, By Jakob Emanuel Handmann - Kunstmuseum Basel,Public Domain, https://commons.wikimedia.org/w/index.php?curid=893656

https://commons.wikimedia.org/w/index.php?curid=851840
https://commons.wikimedia.org/w/index.php?curid=893656


Euler Trail and Circuit

Can we cross every bridge exactly once? NO!

By Bogdan Giuşcă - Public domain (PD),based on the image, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=851840, By Jakob Emanuel Handmann - Kunstmuseum Basel,Public Domain, https://commons.wikimedia.org/w/index.php?curid=893656

https://commons.wikimedia.org/w/index.php?curid=851840
https://commons.wikimedia.org/w/index.php?curid=893656


Euler Trail and Circuit

Can we cross every bridge exactly once? NO!

Solved by Swiss mathematician Leonhard Euler in 1736 (laid foundation of Graph Theory!)
By Bogdan Giuşcă - Public domain (PD),based on the image, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=851840, By Jakob Emanuel Handmann - Kunstmuseum Basel,Public Domain, https://commons.wikimedia.org/w/index.php?curid=893656

https://commons.wikimedia.org/w/index.php?curid=851840
https://commons.wikimedia.org/w/index.php?curid=893656


Euler Trail and Circuit

An Euler circuit in a graph G is a simple circuit containing every edge of G

An Euler trail in a graph G is a trail that visits every edge of G exactly once



Euler Trail and Circuit

An Euler circuit in a graph G is a simple circuit containing every edge of G

An Euler trail in a graph G is a trail that visits every edge of G exactly once

Theorem

A connected multigraph with at least two vertices has an Euler circuit if 
and only if each of its vertices has an even degree



Euler Trail and Circuit

Find an Euler circuit in each graph, or state why there isn't one

A B

DC

E
A B

DC

E
A B

DC

E



Euler Trail and Circuit

Find an Euler circuit in each graph, or state why there isn't one

A B

DC

E
A B

DC

E
A B

DC

E

None (deg(C), deg(D) = 3 A,C,D,B,C,E,D,A A,A,C,E,D,B,B,E,A



Hamiltonian Path and Cycle

A path in a graph G that passes through every vertex exactly once is called 
a Hamiltonian path.

A cycle in a graph G that passes through every vertex exactly once is called 
a Hamiltonian cycle.

A

B D

C

E

Path: a,b,c,d,e

A

B D

C

E Cycle: a,b,c,e,d,a
Path: a,b,c,d,e



Connectivity

A node s is connected to t if there is a path from s to t

A node s is isolated if there is no other vertex connected to s



Connectivity

Davis is isolated

All other buildings are connected

What if we grouped them into sets…?

Furnas

Bell

Knox

NSC

O'Brian Baldy Lockwood

Davis

Bonner Student 
Union

Norton

Talbert Capen



Connected Components

A set of vertices in a graph is connected if every pair of vertices in the set 
is connected

A graph is said to be connected if the entire set of vertices is connected

A graph that is not connected is disconnected

A connected component is a maximal set of connected vertices

Note: A disconnected graph can be split into more than one connected component



Connected Components

{NSC, Talbert, Norton} is connected

It is NOT a connected component

(it is not maximal…we can add more to it without 
breaking connectivity, ie Capen)

Furnas

Bell

Knox

NSC

O'Brian Baldy Lockwood

Davis

Bonner Student 
Union

Norton

Talbert Capen



Connected Components

This graph has 2 connected 
components Furnas

Bell

Knox

NSC

O'Brian Baldy Lockwood

Davis

Bonner Student 
Union

Norton

Talbert Capen



Connected Components

How many connected components 
does this graph have?

Is {A,B,C} connected?

Is it a connected component?

Is {D} a connected component?

A
BD

C

E

F H

G



Connected Components

How many connected components 
does this graph have? 3

Is {A,B,C} connected? Yes

Is it a connected component? No

Is {D} a connected component? Yes

A
BD

C

E

F H

G



Outline

- What are graphs?
- Graph Examples
- Graph Representation
- Handshake Theorem
- Graph Isomorphism
- Connectivity
- Graph Coloring
- Trees



Graph Coloring

Suppose we want to schedule final exams for the following seven courses 
such that students are not taking two exams at the same time:

CSE115, CSE116, CSE191, MTH141, CSE241, CSE305, CSE396



Graph Coloring

Suppose we want to schedule final exams for the following seven courses 
such that students are not taking two exams at the same time:

CSE115, CSE116, CSE191, MTH141, CSE241, CSE305, CSE396

The following pairs are pairs of courses with common students

(CSE115, CSE191), (CSE115, MTH141), (CSE115, CSE241), (CSE115, CSE305), 
(CSE116, CSE191), (CSE116, CSE241), (CSE116, CSE305), (CSE116, CSE396), 

(CSE191, MTH141), (CSE191, CSE241), (CSE241, MTH141), (CSE241, CSE396), 
(CSE305, MTH141), (CSE305, CSE396), (CSE396, MTH141)



Graph Coloring

Suppose we want to schedule final exams for the following seven courses 
such that students are not taking two exams at the same time:

CSE115, CSE116, CSE191, MTH141, CSE241, CSE305, CSE396

The following pairs are pairs of courses with common students

(CSE115, CSE191), (CSE115, MTH141), (CSE115, CSE241), (CSE115, CSE305), 
(CSE116, CSE191), (CSE116, CSE241), (CSE116, CSE305), (CSE116, CSE396), 

(CSE191, MTH141), (CSE191, CSE241), (CSE241, MTH141), (CSE241, CSE396), 
(CSE305, MTH141), (CSE305, CSE396), (CSE396, MTH141)

How can we relate this to graphs?



Graph Coloring

Let the courses be the vertices, and the pairs be edges

Two course are adjacent if they have 
common students

Color the vertices so that no two 
adjacent vertices have the same color

Colors = Time Slots

115

191

396
116

241

305

141



Graph Coloring

Let the courses be the vertices, and the pairs be edges

Two course are adjacent if they have 
common students

Color the vertices so that no two 
adjacent vertices have the same color

Colors = Time Slots

115

191

396
116

241

305

141



Graph Coloring

Let the courses be the vertices, and the pairs be edges

Thus a possible scheduling is:

1. CSE115, CSE116
2. CSE191, CSE396
3. CSE305, CSE241
4. MTH141

Can we have fewer time slots (colors)?

115

191

396
116

241

305

141



Graph Coloring

Let the courses be the vertices, and the pairs be edges

Thus a possible scheduling is:

1. CSE115, CSE116
2. CSE191, CSE396
3. CSE305, CSE241
4. MTH141

Can we have fewer time slots (colors)?

115

191

396
116

241

305

141

115, 141, 191, and 241 are all 
adjacent to each other, so no we 
cannot color this graph with less 
than 4 colors



Graph Coloring

Let G = (V, E) be an undirected graph and C be a finite set of colors. A valid 
coloring of G is a function c: V → C such that for ∀ {x, y} ∈ E, c(x) ≠c(y)
● If |C| = k, then c is a k-coloring of G

B

C E

D

A

A valid coloring An invalid coloring 
(but still a coloring)

B

C E

D

A



Graph Coloring

The chromatic number of a graph G (denoted χ(G)) is the smallest k such 
that there is a valid k-coloring of G

Theorem

Let G be an undirected graph. Let Δ(G) be the maximum degree of any 
vertex in G. Then χ(G) ≤ Δ(G) + 1



Graph Coloring

What are the chromatic numbers of these graphs?

A

B C

F E

DG A

B C

F E

DG



Graph Coloring

What are the chromatic numbers of these graphs?

A

B C

F E

DG A

B C

F E

DG

χ(G) = 3



Graph Coloring

What are the chromatic numbers of these graphs?

A

B C

F E

DG A

B C

F E

DG

χ(G) = 3 χ(G) = 4



Graph Coloring

Greedy Coloring Algorithm

1. Number the set of possible colors (assume there is a large supply of 
possible colors, even if not all get used)

2. Consider each vertex v (in arbitrary order)
a. Assign v a color that is different from the colors of v's. Use the lowest 

numbered color possible.



Greedy Graph Coloring Example

1. Red
2. Blue
3. Yellow
4. Purple
5. Green
6. Orange
7. …

Vertex Order: A C E B D J H F G

A

B C

F E

DG

J

H



Greedy Graph Coloring Example

1. Red
2. Blue
3. Yellow
4. Purple
5. Green
6. Orange
7. …

Vertex Order: A C E B D J H F G

A

B C

F E

DG

J

H



Greedy Graph Coloring Example

1. Red
2. Blue
3. Yellow
4. Purple
5. Green
6. Orange
7. …

Vertex Order: A C E B D J H F G

A

B C

F E

DG

J

H



Greedy Graph Coloring Example

1. Red
2. Blue
3. Yellow
4. Purple
5. Green
6. Orange
7. …

Vertex Order: A C E B D J H F G

A

B C

F E

DG

J

H



Greedy Graph Coloring Example

1. Red
2. Blue
3. Yellow
4. Purple
5. Green
6. Orange
7. …

Vertex Order: A C E B D J H F G

A

B C

F E

DG

J

H



Greedy Graph Coloring Example

1. Red
2. Blue
3. Yellow
4. Purple
5. Green
6. Orange
7. …

Vertex Order: A C E B D J H F G

A

B C

F E

DG

J

H



Greedy Graph Coloring Example

1. Red
2. Blue
3. Yellow
4. Purple
5. Green
6. Orange
7. …

Vertex Order: A C E B D J H F G

A

B C

F E

DG

J

H



Greedy Graph Coloring Example

1. Red
2. Blue
3. Yellow
4. Purple
5. Green
6. Orange
7. …

Vertex Order: A C E B D J H F G

A

B C

F E

DG

J

H



Greedy Graph Coloring Example

1. Red
2. Blue
3. Yellow
4. Purple
5. Green
6. Orange
7. …

Vertex Order: A C E B D J H F G

A

B C

F E

DG

J

H



Greedy Graph Coloring Example

1. Red
2. Blue
3. Yellow
4. Purple
5. Green
6. Orange
7. …

Vertex Order: A C E B D J H F G

A

B C

F E

DG

J

H



Greedy Graph Coloring Example

1. Red
2. Blue
3. Yellow
4. Purple
5. Green
6. Orange
7. …

Vertex Order: A C E B D J H F G

A

B C

F E

DG

J

H

Does the greedy 
algorithm find the 

chromatic number?



Greedy Graph Coloring Exercise

Use the greedy algorithm to color these two isomorphic graphs in ascending order

1 5

2 6

3 7

4 8

1 2

3 4

5 6

7 8



Greedy Graph Coloring Exercise

Use the greedy algorithm to color these two isomorphic graphs in ascending order

1 5

2 6

3 7

4 8

1 2

3 4

5 6

7 8

Does the greedy 
algorithm find the 

chromatic number?

No :(



Outline

- What are graphs?
- Graph Examples
- Graph Representation
- Handshake Theorem
- Graph Isomorphism
- Connectivity
- Graph Coloring
- Trees



Trees

A tree is an undirected graph that is connected and has no cycles

a

b

c d e

f

/

home bin tmp

Eric Admin

Documents

File 
#1

File 
#2

File 
#3

File 
#4

File 
#5

A free tree has no organization 
of vertices and edges

A rooted tree has a designated 
root at the top
 (ie the "/" and "a" vertices →)

A free tree can be made rooted 
by choosing a root



Tree Examples

a b

cd

fe

A free tree, T1



Tree Examples

a b

cd

fe

a

b c

d

f

e

A free tree, T1 A rooted tree, T2, which 
is T1 rooted at a



Tree Examples

a b

cd

fe

a

b c

d

f

e

a b c

d

f

e

A free tree, T1 A rooted tree, T2, which 
is T1 rooted at a

A rooted tree, T3, which 
is T1 rooted at d



Rooted Tree Terminology

Depth of a vertex: Distance from the root to that vertex

Height of a tree: maximum depth of any vertex

Parent of a vertex: the node above that vertex (towards the root)
● When u is the parent of v, then v is a child of u
● Vertices with the same parent are called siblings

Leaf: a vertex with no children



Rooted Tree Terminology

The ancestors of a vertex (other than the root) are the vertices in the path 
from the root to the vertex (including the root, but excluding the vertex). 
The root has no ancestors.

The descendants of a vertex, v, are all vertices that have v as an ancestor

If a is a vertex in a tree, the subtree rooted at a is the subgraph of the tree 
consisting of a, all of its descendants, and all edges incident to those 
descendants



Rooted Tree Examples

For T2 and T3:

Height?

Ancestors of f?

Descendants of f?

Siblings of f?

Leaves?

a

b c

d

f

e

a b c

d

f

e

T2 T3



Rooted Tree Examples

For T2 and T3:

Height? 3 and 2

Ancestors of f?

Descendants of f?

Siblings of f?

Leaves?

a

b c

d

f

e

a b c

d

f

e

T2 T3

3 2



Rooted Tree Examples

For T2 and T3:

Height? 3 and 2

Ancestors of f? {d, a} and {d}

Descendants of f?

Siblings of f?

Leaves?

a

b c

d

f

e

a b c

d

f

e

T2 T3



Rooted Tree Examples

For T2 and T3:

Height? 3 and 2

Ancestors of f? {d, a} and {d}

Descendants of f? {e} and {e}

Siblings of f?

Leaves?

a

b c

d

f

e

a b c

d

f

e

T2 T3



Rooted Tree Examples

For T2 and T3:

Height? 3 and 2

Ancestors of f? {d, a} and {d}

Descendants of f? {e} and {e}

Siblings of f? {c, b} and {a,b,c}

Leaves?

a

b c

d

f

e

a b c

d

f

e

T2 T3



Rooted Tree Examples

For T2 and T3:

Height? 3 and 2

Ancestors of f? {d, a} and {d}

Descendants of f? {e} and {e}

Siblings of f? {c, b} and {a,b,c}

Leaves? {b,c,e} and {a,b,c,e}

a

b c

d

f

e

a b c

d

f

e

T2 T3



Tree Properties

Theorem

There is a unique path of vertices between every pair of nodes in a tree



Tree Properties

Theorem

There is a unique path of vertices between every pair of nodes in a tree

Proof by contradiction

Assume there is a pair of nodes with two different 
paths between them

Because of this, there must be a cycle

Therefore the graph is not a tree (contradiction)

S T

…

… …

path 1

path 2

cycle… …

…



Theorem

A tree with n nodes has n - 1 edges

Tree Properties



Theorem

A tree with n nodes has n - 1 edges

Tree Properties

Proof by induction…



Proof by Induction

Property: P(n): A tree with n nodes has n - 1 edges

Base Case: P(1): A tree with 1 node has 0 edges ✔

Inductive Case:
● Assume "P(k): A tree with k nodes has k-1 edges" is true for k ≥ 1
● Want to prove "P(k + 1): A tree with k + 1 nodes has k edges" is true

○ Let T be a tree with k + 1 vertices, and let v be a leaf in T
○ Remove v and the edge to its parent, we now have a tree with k vertices
○ By our inductive assumption, this means it has k - 1 edges
○ Since we removed one edge then our original tree must have k edges ✔


