CSE 191
 Introduction to Discrete Structures

Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

Predicates and Quantifiers

Recap

- Propositions
- Declarative statements - either TRUE or FALSE
- Can represent them with propositional variables
- Can be combined/modified with logical operators
- Truth tables
- Lists all possible combinations of truth values for the atomics in a compound proposition and the resulting truth value
- Logical Equivalence
- Two compound propositions are logically equivalent if they have the same truth value no matter the truth values of their atomics
- Can be proven with truth tables, or by applying laws of equivalence

Outline

Predicates and Quantifiers

- From Propositions to Predicates
- Quantifiers

From Propositions to Predicates

Consider the statement: " X is even"

- Contains a variable, \boldsymbol{X}, so it is not a proposition
- Given a value for \boldsymbol{X}, we can determine the truth value
- Once we know the \boldsymbol{X}, the statement is TRUE or FALSE, but not both
- Sentences whose truth value is based on variables are predicates

Predicates

A predicate is a function that takes some variable(s) as arguments; it returns either TRUE or FALSE, but never both, depending on the combination of the combination of values passed as arguments.
a proposition can be thought of as a function of 0 variables

Predicates

A predicate is a function that takes some variable(s) as arguments; it returns either TRUE or FALSE, but never both, depending on the combination of the combination of values passed as arguments.

Example: $P(x): x$ is an even number.
\boldsymbol{P} is the function, \boldsymbol{x} is the variable
$\boldsymbol{P}(\boldsymbol{x})$ is the value of the predicate \boldsymbol{P} at \boldsymbol{x}

Predicates

A predicate is a function that takes some variable(s) as arguments; it returns either TRUE or FALSE, but never both, depending on the combination of the combination of values passed as arguments.

Example: $P(x): x$ is an even number.
\boldsymbol{P} is the function, \boldsymbol{x} is the variable
$\boldsymbol{P}(\boldsymbol{x})$ is the value of the predicate \boldsymbol{P} at \boldsymbol{x}
What are the possible values of X ?

Domain of Discourse

Given a predicate, $\boldsymbol{P}(\boldsymbol{x})$, the domain of discourse (often just called the domain) is the set of all possible values for the variable \boldsymbol{x}.

- Predicates with multiple variables may have:
- Multiple domains of discourse (one for each variable)
- A single domain of discourse for all variables

Examples

Example 1

Consider the predicate $Q(x, y)$: y is enrolled in recitation x.

- We can define the domain of discourse of x as $\{C 1, C 2, C 3\}$
- ...and the domain of discourse of \boldsymbol{y} as \{all students in CSE 191\}

Example 2

Consider the predicate $\boldsymbol{R}(x, y)$: x and y are friends.

- We can define the domain of discourse of \boldsymbol{R} as \{all students at UB\}

Examples (Predicate vs Proposition)

Let the predicate $P(x, y)$ be defined by:
$P(x, y): 2 x=y$, where the domain for \boldsymbol{x} is $\{1,2,3\}, y$ is $\{4,5,6\}$

Statement	Is Proposition?	Truth Value
$P(\mathbf{1 , 4) : 2 (1) = 4}$		

Examples (Predicate vs Proposition)

Let the predicate $P(x, y)$ be defined by:
$P(x, y): 2 x=y$, where the domain for \boldsymbol{x} is $\{1,2,3\}, y$ is $\{4,5,6\}$

Statement	Is Proposition?	Truth Value
$\boldsymbol{P}(\mathbf{1 , 4)} \mathbf{: 2 (1) = 4}$	Yes	

Examples (Predicate vs Proposition)

Let the predicate $P(x, y)$ be defined by:
$P(x, y): 2 x=y$, where the domain for \boldsymbol{x} is $\{1,2,3\}, y$ is $\{4,5,6\}$

Statement	Is Proposition?	Truth Value
$\boldsymbol{P}(\mathbf{1 , 4)} \mathbf{: 2 (1) = \mathbf { 4 }}$	Yes	FALSE

Examples (Predicate vs Proposition)

Let the predicate $P(x, y)$ be defined by:
$\boldsymbol{P}(x, y): 2 x=y$, where the domain for \boldsymbol{x} is $\{1,2,3\}, \boldsymbol{y}$ is $\{4,5,6\}$

Statement	Is Proposition?	Truth Value
$P(\mathbf{1 , 4)}: \mathbf{2 (1) = 4}$	Yes	FALSE
$P(\mathbf{2}, \mathbf{4}): \mathbf{2 (2)}=\mathbf{4}$		

Examples (Predicate vs Proposition)

Let the predicate $P(x, y)$ be defined by:
$\boldsymbol{P}(\boldsymbol{x}, \boldsymbol{y}): 2 x=y$, where the domain for \boldsymbol{x} is $\{1,2,3\}, \boldsymbol{y}$ is $\{4,5,6\}$

Statement	Is Proposition?	Truth Value
$\boldsymbol{P}(\mathbf{1}, \mathbf{4}): \mathbf{2 (1)}=\mathbf{4}$	Yes	FALSE
$\boldsymbol{P (2 , 4) : \mathbf { 2 (2) } = \mathbf { 4 }}$	Yes	TRUE

Examples (Predicate vs Proposition)

Let the predicate $P(x, y)$ be defined by:
$\boldsymbol{P}(x, y): 2 x=y$, where the domain for \boldsymbol{x} is $\{1,2,3\}, \boldsymbol{y}$ is $\{4,5,6\}$

Statement	Is Proposition?	Truth Value
$\boldsymbol{P}(\mathbf{1}, \mathbf{4}): \mathbf{2 (1)}=\mathbf{4}$	Yes	FALSE
$\boldsymbol{P}(\mathbf{2}, \mathbf{4}): \mathbf{2 (2)}=\mathbf{4}$	Yes	TRUE
$\boldsymbol{P}(\mathbf{x}, \mathbf{4}): \mathbf{2 (x)}=\mathbf{4}$		

Examples (Predicate vs Proposition)

Let the predicate $P(x, y)$ be defined by:
$P(x, y): 2 x=y$, where the domain for \boldsymbol{x} is $\{1,2,3\}, \boldsymbol{y}$ is $\{4,5,6\}$

Statement	Is Proposition?	Truth Value
$\boldsymbol{P}(\mathbf{1}, \mathbf{4}): \mathbf{2 (1)}=\mathbf{4}$	Yes	FALSE
$\boldsymbol{P}(\mathbf{2}, \mathbf{4}): \mathbf{2 (2)}=\mathbf{4}$	Yes	TRUE
$\boldsymbol{P}(\mathbf{x}, \mathbf{4}): \mathbf{2 (x)}=\mathbf{4}$	No	-

Examples (Predicate vs Proposition)

Let the predicate $P(x, y)$ be defined by:
$P(x, y): 2 x=y$, where the domain for \boldsymbol{x} is $\{1,2,3\}, \boldsymbol{y}$ is $\{4,5,6\}$

Statement	Is Proposition?	Truth Value
$\boldsymbol{P}(\mathbf{1}, \mathbf{4}): \mathbf{2 (1)}=\mathbf{4}$	Yes	FALSE
$\boldsymbol{P}(\mathbf{2}, \mathbf{4}): \mathbf{2 (2)}=\mathbf{4}$	Yes	TRUE
$\boldsymbol{P}(\mathbf{x}, \mathbf{4}): \mathbf{2 (x)}=\mathbf{4}$	No	-

What about $P(2,3): \mathbf{2 (2)}=\mathbf{3}$?

Examples (Predicate vs Proposition)

Let the predicate $P(x, y)$ be defined by:
$\boldsymbol{P}(\boldsymbol{x}, \boldsymbol{y}): 2 x=y$, where the domain for \boldsymbol{x} is $\{1,2,3\}, \boldsymbol{y}$ is $\{4,5,6\}$

Statement	Is Proposition?	Truth Value
$\boldsymbol{P}(\mathbf{1}, \mathbf{4}): \mathbf{2 (1)}=\mathbf{4}$	Yes	FALSE
$\boldsymbol{P}(\mathbf{2}, \mathbf{4}): \mathbf{2 (2)}=\mathbf{4}$	Yes	TRUE
$\boldsymbol{P}(\mathbf{x}, \mathbf{4}): \mathbf{2 (x)}=\mathbf{4}$	No	-

$\mathbf{P}(2,3)$ is meaningless (in this example). 3 is not in the domain of \boldsymbol{y}.

Examples (Predicate vs Proposition)

Let the predicate $P(x, y)$ be defined by:
$\boldsymbol{P}(\boldsymbol{x}, \boldsymbol{y}): 2 x=y$, where the domain for \boldsymbol{x} is $\{1,2,3\}, \boldsymbol{y}$ is $\{4,5,6\}$

Statement	Is Proposition?	Truth Value
$P(1,4) \vee P(3,6)$		
$P(1,4) \vee \neg P(3,6)$		
$P(2,4) \rightarrow P(2,5)$		
$P(2,4) \wedge P(x, 4)$		

Examples (Predicate vs Proposition)

Let the predicate $P(x, y)$ be defined by:
$\boldsymbol{P}(\boldsymbol{x}, \boldsymbol{y}): 2 x=y$, where the domain for \boldsymbol{x} is $\{1,2,3\}, \boldsymbol{y}$ is $\{4,5,6\}$

Statement	Is Proposition?	Truth Value
$P(\mathbf{1 , 4}) \vee P(\mathbf{3}, \mathbf{6})$	Yes	TRUE
$P(\mathbf{1 , 4)} \vee \neg P(3,6)$		
$P(\mathbf{2}, \mathbf{4}) \rightarrow P(\mathbf{2 , 5})$		
$P(2,4) \wedge P(x, 4)$		

Examples (Predicate vs Proposition)

Let the predicate $P(x, y)$ be defined by:
$\boldsymbol{P}(\boldsymbol{x}, \boldsymbol{y}): 2 \boldsymbol{x}=\boldsymbol{y}$, where the domain for \boldsymbol{x} is $\{1,2,3\}, \boldsymbol{y}$ is $\{4,5,6\}$

Statement	Is Proposition?	Truth Value
$\boldsymbol{P (1 , 4) \vee P (3 , 6)}$	Yes	TRUE
$\boldsymbol{P}(\mathbf{1 , 4)} \vee \neg \boldsymbol{(3 , 6)}$	Yes	FALSE
$\boldsymbol{P}(\mathbf{2}, \mathbf{4}) \rightarrow \boldsymbol{P}(\mathbf{2 , 5})$		
$\boldsymbol{P (2 , 4) \wedge P (x , 4)}$		

Examples (Predicate vs Proposition)

Let the predicate $P(x, y)$ be defined by:
$\boldsymbol{P}(\boldsymbol{x}, \boldsymbol{y}): 2 \boldsymbol{x}=\boldsymbol{y}$, where the domain for \boldsymbol{x} is $\{1,2,3\}, \boldsymbol{y}$ is $\{4,5,6\}$

Statement	Is Proposition?	Truth Value
$\boldsymbol{P}(\mathbf{1}, \mathbf{4}) \vee \boldsymbol{P}(\mathbf{3}, \mathbf{6})$	Yes	TRUE
$\boldsymbol{P}(\mathbf{1 , 4)} \vee \neg \boldsymbol{(3 , 6)}$	Yes	FALSE
$\boldsymbol{P}(\mathbf{2}, \mathbf{4}) \rightarrow \boldsymbol{P}(\mathbf{2 , 5})$	Yes	FALSE
$\boldsymbol{P}(\mathbf{2}, \mathbf{4}) \wedge \boldsymbol{P}(\mathbf{x}, \mathbf{4})$		

Examples (Predicate vs Proposition)

Let the predicate $P(x, y)$ be defined by:
$\boldsymbol{P}(\boldsymbol{x}, \boldsymbol{y}): 2 \boldsymbol{x}=\boldsymbol{y}$, where the domain for \boldsymbol{x} is $\{1,2,3\}, \boldsymbol{y}$ is $\{4,5,6\}$

Statement	Is Proposition?	Truth Value
$\boldsymbol{P}(\mathbf{1}, \mathbf{4}) \vee \boldsymbol{P}(\mathbf{3}, \mathbf{6})$	Yes	TRUE
$\boldsymbol{P}(\mathbf{1 , 4}) \vee \neg \boldsymbol{(3 , 6)}$	Yes	FALSE
$\boldsymbol{P}(\mathbf{2}, \mathbf{4}) \rightarrow \boldsymbol{P}(\mathbf{2 , 5})$	Yes	FALSE
$\boldsymbol{P}(\mathbf{2}, \mathbf{4}) \wedge \boldsymbol{P}(\boldsymbol{x}, \mathbf{4})$	No	-

More Examples

Let the predicate $Q(x, y)$ be defined by:
$Q(x, y): x+y>4$, where the domain for \boldsymbol{x} and \boldsymbol{y} is all integers

Which of the following are predicates? Propositions?

- $Q(1,2)$
- $Q(x, 2)$
- $Q(1000, y)$
- $Q(1000,2)$
- $Q(x, y)$

More Examples

Let the predicate $Q(x, y)$ be defined by:
$Q(x, y): x+y>4$, where the domain for \boldsymbol{x} and \boldsymbol{y} is all integers

Which of the following are predicates? Propositions?

- $Q(1,2)$ proposition
- $Q(x, 2)$ predicate
- $Q(\mathbf{1 0 0 0}, \boldsymbol{y})$ predicate
- $Q(1000,2)$ proposition
- $Q(x, y)$ predicate

Outline

Predicates and Quantifiers

- From Propositions to Predicates
- Quantifiers

Quantifiers

Quantification expresses the extent to which a predicate is true over a range of elements. For example, in English: all, some, none, many, few, ...

Universal Quantification

Suppose $P(x)$ is a predicate on some domain, \boldsymbol{D}.
The universal quantification of $\boldsymbol{P}(\boldsymbol{x})$ is the proposition:
" $P(x)$ is true for all x in the domain of discourse \boldsymbol{D}."
Written as: $\forall \mathrm{x}, \boldsymbol{P (x)}$
Read as: "For all $\boldsymbol{x}, \mathbf{P}(\mathbf{x})$ " or "For every $\boldsymbol{x}, \mathbf{P}(\mathbf{x})$ "
$\forall x, P(x)$ is TRUE if $P(x)$ is TRUE for every x in D.
$\forall x, P(x)$ is FALSE if $P(x)$ is FALSE for some x in D.

Universal Quantification Example

$P(x): x+2=5$, where the domain of discourse is $\{1,2,3\}$
$\forall x, P(x)$ means: "for all x in $\{1,2,3\}, x+2=5$
$\forall x, P(x) \quad \equiv P(1) \wedge P(2) \wedge P(3)$
$\equiv(1+2=5) \wedge(2+2=5) \wedge(3+2=5)$
$\equiv \mathrm{F} \wedge \mathrm{F} \wedge \mathrm{T}$
$\therefore \forall x, P(x)$ is FALSE (since $1+2=5$ and $2+2=5$ are FALSE)

Universal Quantification Example

$P(x): x+2=5$, where the domain of discourse is $\{1,2,3\}$
$\forall x, P(x)$ means: "for all x in $\{1,2,3\}, x+2=5$
$\forall x, P(x) \quad \equiv P(1) \wedge P(2) \wedge P(3)$
$\equiv(1+2=5) \wedge(2+2=5) \wedge(3+2=5)$
三 F ^ F \wedge T
$\therefore \forall x, P(x)$ is FALSE (since $1+2=5$ and $2+2=5$ are FALSE)
Note that \therefore denotes "therefore"

Universal Quantification Example

$P(x): x+2=5$, where the domain of discourse is $\{1,2,3\}$

$\forall x, P(x)$ means: "for all x in $\{1,2,3\}, x+2=5$
$\forall x, P(x) \quad \equiv P(1) \wedge P(2) \wedge P(3)$
$\equiv(1+2=5) \wedge(2+2=5) \wedge(3+2=5)$
$\equiv \mathrm{F} \wedge \mathrm{F} \wedge \mathrm{T}$
$\therefore \forall \mathrm{x}, P(\mathrm{x})$ is FALSE (since $1+2=5$ and $2+2=5$ are FALSE)
Note that.\therefore denotes "therefore"

Universal Quantification Example

$P(x): x+2=5$, where the domain of discourse is $\{1,2,3\}$
$\forall x, P(x)$ means: "for all x in $\{1,2,3\}, x+2=5$
$\forall x, P(x) \quad \equiv P(1) \wedge P(2) \wedge P(3)$
$\equiv(1+2=5) \wedge(2+2=5) \wedge(3+2=5)$
$\equiv \mathrm{F} \wedge \mathrm{F} \wedge \mathrm{T}$
$\therefore \forall \mathrm{x}, P(\mathrm{x})$ is FALSE (since $\mathbf{1}+2=5$ and $\mathbf{2}+2=5$ are FALSE)
Note that.\therefore denotes "therefore"

Universal Quantification Example

Consider:

$$
\begin{aligned}
& A(x): x \text { is even } \\
& B(x): x^{2}>0 \\
& C(x): x<2
\end{aligned}
$$

where the domain of $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$ is $\{0,1,2,3\}$

True or False?
$\forall x,(C(x) \rightarrow A(x))$
$\forall x,(B(x) \vee C(x))$

Universal Quantification Example

Consider:
$A(x): x$ is even
$B(x): x^{2}>0$
$C(x): x<2$
where the domain of $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$ is $\{0,1,2,3\}$

True or False?
$\forall \mathrm{x},(C(x) \rightarrow A(x))$
FALSE, counterexample is $x=1$
$\forall x,(B(x) \vee C(x))$

Universal Quantification Example

Consider:
$A(x): x$ is even
$B(x): x^{2}>0$
$C(x): x<2$
where the domain of $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$ is $\{0,1,2,3\}$

True or False?
$\forall \mathrm{x},(C(x) \rightarrow A(x))$
FALSE, counterexample is $\boldsymbol{x}=1$
$\forall x,(B(x) \vee C(x))$
TRUE

\boldsymbol{x}	$\boldsymbol{B}(\boldsymbol{x})$	$\boldsymbol{C}(\boldsymbol{x})$
0	F	T
1	T	T
2	T	F
3	T	F

Universal Quantification Example

Consider:
$\boldsymbol{S}(\boldsymbol{x}): \mathbf{x}$ is a student in CSE 191
$T(x): x$ is a CSE major
where the domain for S and T is
\{all students enrolled in CSE 191\}

True or False?
$\forall x, S(x)$
$\forall x, T(x)$
$\forall x,(S(x) \rightarrow T(x))$
$\forall x,(T(x) \rightarrow S(x))$

Universal Quantification Example

Consider:
$\boldsymbol{S}(\boldsymbol{x}): \mathbf{x}$ is a student in CSE 191
$T(x): x$ is a CSE major
where the domain for S and T is \{all students enrolled in CSE 191\}

True or False?
$\forall x, S(x) \quad$ TRUE
$\forall x, T(x)$
FALSE
$\forall x,(S(x) \rightarrow T(x)) \quad$ FALSE
$\forall x,(T(x) \rightarrow S(x)) \quad$ TRUE

Existential Quantification

Suppose $\boldsymbol{P}(\boldsymbol{x})$ is a predicate on some domain, \boldsymbol{D}.
The existential quantification of $\boldsymbol{P}(\boldsymbol{x})$ is the proposition:
" $P(x)$ is true for some x in the domain of discourse $D . "$
Written as: $\boldsymbol{\exists x} \mathbf{x} \boldsymbol{P (x)}$
Read as: "There exists an \boldsymbol{x} such that, $\boldsymbol{P}(\mathbf{x})$ " or "For some $\boldsymbol{x}, \boldsymbol{P}(\mathbf{x})$ "
$\exists x, P(x)$ is TRUE if $P(x)$ is TRUE for some x in D.
$\boldsymbol{\exists x}, \boldsymbol{P}(\mathbf{x})$ is FALSE if $\boldsymbol{P}(\boldsymbol{x})$ is FALSE for every \boldsymbol{x} in \boldsymbol{D}.

Existential Quantification Example

$P(x): x+2=5$, where the domain of discourse is $\{1,2,3\}$
$\exists x, P(x)$ means: "for some x in $\{1,2,3\}, x+2=5$

$$
\begin{aligned}
\exists \mathrm{x}, P(\mathrm{x}) \quad & \equiv P(1) \vee P(2) \vee P(3) \\
& \equiv(1+2=5) \vee(2+2=5) \vee(3+2=5) \\
& \equiv \mathrm{F} \vee \mathrm{FV} \mathrm{~T}
\end{aligned}
$$

$\therefore \exists \mathrm{x}, P(x)$ is TRUE (because $3+2=5$ is TRUE)

Existential Quantification Example

$P(x): x+2=5$, where the domain of discourse is $\{1,2,3\}$
$\exists x, P(x)$ means: "for some x in $\{1,2,3\}, x+2=5$

$$
\begin{aligned}
\exists \mathrm{x}, P(\mathrm{x}) \quad & \equiv P(1) \vee P(2) \vee P(3) \\
& \equiv(1+2=5) \vee(2+2=5) \vee(3+2=5) \\
& \equiv \mathrm{F} \vee \mathrm{~F} \vee \mathrm{~T}
\end{aligned}
$$

$\therefore \exists \mathrm{x}, P(x)$ is TRUE (because $3+2=5$ is TRUE)

Existential Quantification Example

Consider:

$$
\begin{aligned}
& A(x): x=1 \\
& B(x): x>5 \\
& C(x): x<5
\end{aligned}
$$

where the domain of $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$ is $\{1,2,3\}$

True or False?
$\exists \mathrm{x},(C(x) \rightarrow A(x))$
$\exists x, B(x)$

Existential Quantification Example

Consider:

$$
\begin{aligned}
& A(x): x=1 \\
& B(x): x>5 \\
& C(x): x<5
\end{aligned}
$$

where the domain of $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$ is $\{1,2,3\}$

True or False?

$\exists \mathrm{x},(C(x) \rightarrow A(x))$
TRUE, satisfying assignment $\mathrm{x}=1$

ヨx, $B(x)$

FALSE
$P(1) \vee P(2) \vee P(3)=F \vee F \vee F$
= F

Note: The existential and universal quantifiers have higher precedence than all logical operators

Existential Quantification Example

Consider:
$\boldsymbol{S}(\boldsymbol{x}): \mathbf{x}$ is a student in CSE 191
$T(x): x$ is a CSE major
where the domain for S and \boldsymbol{T} is \{all students enrolled in CSE 191\}

> True or False? $\begin{array}{lr}\exists \mathrm{x}, \boldsymbol{S}(\mathrm{x}) & \text { TRUE } \\ \exists \mathrm{x}, \boldsymbol{T}(\mathrm{x}) & \text { TRUE } \\ \exists \mathrm{x},(S(x) \rightarrow \boldsymbol{T}(x)) & \text { TRUE } \\ \exists \mathrm{x},(\boldsymbol{(x)} \boldsymbol{(x)} \boldsymbol{S (x))} & \text { TRUE }\end{array}$

Quantifier Example

Consider:

$$
\begin{aligned}
& P(x): x^{2}>9 \\
& Q(x): x^{2} \geq 0
\end{aligned}
$$

where the domain is all integers

Quantifier Example

Consider:

$$
\begin{aligned}
& P(x): x^{2}>9 \\
& Q(x): x^{2} \geq 0
\end{aligned}
$$

where the domain is all integers

True or False?
$\forall \mathrm{x}, \boldsymbol{P}(\mathrm{x}) \quad$ FALSE, consider: $\mathrm{x}=2$
$\boldsymbol{\exists x}, \mathbf{P}(\mathbf{x}) \quad$ TRUE, consider: $\mathrm{x}=5$
$\forall x, Q(x) \quad$ TRUE, consider...math
$\exists \mathrm{x}, \mathrm{Q}(\mathrm{x}) \quad$ TRUE

Binding Variables

The occurrence of a variable, \boldsymbol{x}, is said to be bound when a quantifier is used on that variable.

The occurrence of a variable, \boldsymbol{x}, is said to be free when it is not bound by a quantifier or set to a particular variable.

The part of a logical expression to which a quantifier is applied is called the scope of this quantifier.

Note: A variable is free if it is outside of the scope of all quantifiers in the formula that specify this variable.

Binding Example

Consider: $\exists \mathrm{x},(\mathrm{x}+\mathrm{y}=1)$

- The variable \boldsymbol{x} is bound by the existential quantifier $\boldsymbol{\exists x}$
- y is free

Consider: $\forall \mathrm{x},(\mathrm{x}<9) \mathrm{V}(\mathrm{x}>9)$

- The variable x is bound in $(x<9)$ by $\forall x$
- The variable x is free in $(x>9)$

Binding Example

Consider: $\exists \mathrm{x},(\mathrm{x}+\mathrm{y}=1)$

- The variable \boldsymbol{x} is bound by the existential quantifier $\exists x$
- y is free

Consider: $\forall x,(x<9) \vee(x>9)$

- The variable x is bound in $(x<9)$ by $\forall x$
- The variable x is free in $(x>9)$

The precedence of \forall and \exists is higher than logical operators

Quantified Statements and English

Consider:

$$
L(x, y): x \text { loves } y
$$

where the domain of \boldsymbol{x} is \{all students enrolled in CSE 191\} and where the domain of \boldsymbol{y} is \{all courses offered by UB CSE\}
$\exists x,(L(x$, CSE 191) $\wedge L(x$, CSE 250 $))$

Quantified Statements and English

Consider:

$$
L(x, y): x \text { loves } y
$$

where the domain of \boldsymbol{x} is \{all students enrolled in CSE 191\} and where the domain of \boldsymbol{y} is \{all courses offered by UB CSE\}
$\exists x,(L(x, \operatorname{CSE} 191) \wedge L(x$, CSE 250 $))$
A CSE 191 student loves both CSE 191 and CSE 250

Quantified Statements and English

Consider:

$$
L(x, y): x \text { loves } y
$$

where the domain of \boldsymbol{x} is \{all students enrolled in CSE 191\} and where the domain of \boldsymbol{y} is \{all courses offered by UB CSE\}

$$
\exists x \exists y \forall z,((x \neq y) \wedge(L(x, z) \rightarrow L(y, z)))
$$

Quantified Statements and English

Consider:

$$
L(x, y): x \text { loves } y
$$

where the domain of \boldsymbol{x} is \{all students enrolled in CSE 191\} and where the domain of \boldsymbol{y} is \{all courses offered by UB CSE\}

$$
\exists x \exists y \forall z,((x \neq y) \wedge(L(x, z) \rightarrow L(y, z)))
$$

There are 2 different students, \boldsymbol{x} and \boldsymbol{y}, in CSE 191 such that if \boldsymbol{x} loves a CSE course, then so does y.

Quantified Statements and English

Consider:

$$
L(x, y): x \text { loves } y
$$

where the domain of \boldsymbol{x} is \{all students enrolled in CSE 191\} and where the domain of \boldsymbol{y} is \{all courses offered by UB CSE\}

Every CSE course is loved by some CSE 191 student

Quantified Statements and English

Consider:

$$
L(x, y): x \text { loves } y
$$

where the domain of \boldsymbol{x} is \{all students enrolled in CSE 191\} and where the domain of \boldsymbol{y} is \{all courses offered by UB CSE\}

Every CSE course is loved by some CSE 191 student

$$
\forall y \exists x, L(x, y)
$$

Quantified Statements and English

Consider:

$$
\begin{array}{ll}
\boldsymbol{A}(x): x \text { lives in Amherst } & \boldsymbol{B}(x): x \text { is a CSE } 191 \text { student } \\
\boldsymbol{C}(x): x \text { has a good GPA } & \boldsymbol{D}(x): x \text { majors in CSE }
\end{array}
$$

Domain of discourse: all UB students
All UB students are CSE 191 students

Quantified Statements and English

Consider:

$$
\begin{array}{ll}
\boldsymbol{A}(\mathbf{x}): x \text { lives in Amherst } & \boldsymbol{B}(\mathbf{x}): x \text { is a CSE } 191 \text { student } \\
\boldsymbol{C}(\mathbf{x}): x \text { has a good GPA } & \boldsymbol{D}(\boldsymbol{x}): x \text { majors in CSE }
\end{array}
$$

Domain of discourse: all UB students
All UB students are CSE 191 students

$$
\forall x, B(x)
$$

Quantified Statements and English

Consider:

$$
\begin{array}{ll}
\boldsymbol{A}(\mathbf{x}): x \text { lives in Amherst } & \boldsymbol{B}(\mathbf{x}): x \text { is a CSE } 191 \text { student } \\
\boldsymbol{C}(\mathbf{x}): x \text { has a good GPA } & \boldsymbol{D}(\boldsymbol{x}): x \text { majors in CSE }
\end{array}
$$

Domain of discourse: all UB students
All CSE 191 students have a good GPA

Quantified Statements and English

Consider:

$$
\begin{array}{ll}
\boldsymbol{A}(x): x \text { lives in Amherst } & \boldsymbol{B}(x): x \text { is a CSE } 191 \text { student } \\
\boldsymbol{C}(x): x \text { has a good GPA } & \boldsymbol{D}(x): x \text { majors in CSE }
\end{array}
$$

Domain of discourse: all UB students
All CSE 191 students have a good GPA

$$
\forall x,(B(x) \rightarrow C(x))
$$

Quantified Statements and English

Consider:

$$
\begin{array}{ll}
\boldsymbol{A}(\mathbf{x}): x \text { lives in Amherst } & \boldsymbol{B}(\mathbf{x}): x \text { is a CSE } 191 \text { student } \\
\boldsymbol{C}(\mathbf{x}): x \text { has a good GPA } & \boldsymbol{D}(\boldsymbol{x}): x \text { majors in CSE }
\end{array}
$$

Domain of discourse: all UB students
CSE 191 students not living in Amherst major in CSE

Quantified Statements and English

Consider:

$$
\begin{array}{ll}
\boldsymbol{A}(x): x \text { lives in Amherst } & \boldsymbol{B}(x): x \text { is a CSE } 191 \text { student } \\
\boldsymbol{C}(x): x \text { has a good GPA } & \boldsymbol{D}(x): x \text { majors in CSE }
\end{array}
$$

Domain of discourse: all UB students
CSE 191 students not living in Amherst major in CSE

$$
\forall x,((B(x) \wedge \neg A(x)) \rightarrow D(x))
$$

Quantified Statements and English

Consider:

$$
\begin{array}{ll}
\boldsymbol{A}(x): x \text { lives in Amherst } & \boldsymbol{B}(x): x \text { is a CSE } 191 \text { student } \\
\boldsymbol{C}(x): x \text { has a good GPA } & \boldsymbol{D}(x): x \text { majors in CSE }
\end{array}
$$

Domain of discourse: all UB students
No CSE 191 student lives in Amherst

Quantified Statements and English

Consider:

$$
\begin{array}{ll}
\boldsymbol{A}(x): x \text { lives in Amherst } & \boldsymbol{B}(x): x \text { is a CSE } 191 \text { student } \\
\boldsymbol{C}(x): x \text { has a good GPA } & \boldsymbol{D}(x): x \text { majors in CSE }
\end{array}
$$

Domain of discourse: all UB students
No CSE 191 student lives in Amherst

$$
\forall x,(B(x) \rightarrow \neg A(x))
$$

Exercise

Translate the following theorems to quantified statements
If \boldsymbol{x} is an even number, then $\boldsymbol{x} \boldsymbol{+ 1}$ is odd Every even number is a multiple of 2

Exercise

Translate the following theorems to quantified statements
If \boldsymbol{x} is an even number, then $\boldsymbol{x} \boldsymbol{+ 1}$ is odd Every even number is a multiple of 2
First we must define domain/predicates

Exercise

Translate the following theorems to quantified statements
If \boldsymbol{x} is an even number, then $\boldsymbol{x} \boldsymbol{+ 1}$ is odd Every even number is a multiple of 2
First we must define domain/predicates

- Domain: all integers
- $\boldsymbol{P}(\mathbf{x}): \mathbf{x}$ is an even number
- $Q(x): x$ is an odd number

Exercise

Translate the following theorems to quantified statements
If \boldsymbol{x} is an even number, then $\boldsymbol{x}+\mathbf{1}$ is odd
Every even number is a multiple of 2
First we must define domain/predicates

- Domain: all integers
- $\boldsymbol{P}(\mathbf{x}): \mathbf{x}$ is an even number
- $Q(x): x$ is an odd number

$$
\forall x,(P(x) \rightarrow Q(x+1))
$$

Exercise

Translate the following theorems to quantified statements

If \boldsymbol{x} is an even number, then $\boldsymbol{x}+\mathbf{1}$ is odd
First we must define domain/predicates

- Domain: all integers
- $\boldsymbol{P}(\mathbf{x}): \mathbf{x}$ is an even number
- $Q(x): x$ is an odd number

$$
\forall x,(P(x) \rightarrow Q(x+1))
$$

Every even number is a multiple of 2
Domain and predicates:

- Domain: all integers
- $R(y): y$ is an even number
- $S(y): y$ is a multiple of 2

Exercise

Translate the following theorems to quantified statements

If \boldsymbol{x} is an even number, then $\boldsymbol{x}+\mathbf{1}$ is odd
First we must define domain/predicates

- Domain: all integers
- $\boldsymbol{P}(\mathbf{x}): \mathbf{x}$ is an even number
- $Q(x): x$ is an odd number

$$
\forall x,(P(x) \rightarrow Q(x+1))
$$

Every even number is a multiple of 2
Domain and predicates:

- Domain: all integers
- $R(y): y$ is an even number
- $S(y): y$ is a multiple of 2
$\forall y,(R(y) \rightarrow S(y))$

Exercise

Translate the following theorems to quantified statements

If \boldsymbol{x} is an even number, then $\boldsymbol{x}+\mathbf{1}$ is odd
First we must define domain/predicates

- Domain: all integers
- $\boldsymbol{P}(\mathbf{x}): \mathbf{x}$ is an even number
- $Q(x): x$ is an odd number

$$
\forall x,(P(x) \rightarrow Q(x+1))
$$

Every even number is a multiple of 2
Domain and predicates:

- Domain: all integers
- $R(y): y$ is an even number
- $S(y): y$ is a multiple of 2
$\forall y,(R(y) \rightarrow S(y))$
How can we do this differently?
With one predicate?

Exercise

Translate the following theorems to quantified statements

If \boldsymbol{x} is an even number, then $\boldsymbol{x}+\mathbf{1}$ is odd
First we must define domain/predicates

- Domain: all integers
- $\boldsymbol{P}(\mathbf{x}): \mathbf{x}$ is an even number
- $Q(x): x$ is an odd number

$$
\forall x,(P(x) \rightarrow Q(x+1))
$$

Every even number is a multiple of 2
Domain and predicates:

- Domain: all even integers
- $T(z): z$ is a multiple of 2

$$
\forall z, T(z)
$$

Quantifier Negation

Consider:

$$
D(x): x \text { majors in CSE }
$$

Domain of discourse: all UB students

Consider the following:
Not every UB student majors in computer science.

Some UB students do not major in computer science.

Quantifier Negation

Consider:

$$
D(x): x \text { majors in CSE }
$$

Domain of discourse: all UB students

Consider the following:
Not every UB student majors in computer science.

$$
\neg \forall x, D(x)
$$

Some UB students do not major in computer science.

Quantifier Negation

Consider:

$$
D(x): x \text { majors in CSE }
$$

Domain of discourse: all UB students

Consider the following:
Not every UB student majors in computer science.

$$
\neg \forall x, D(x)
$$

Some UB students do not major in computer science.

$$
\exists x, \neg D(x)
$$

Quantifier Negation Rule

Quantifier Negation

In general we have, for any predicate $P(x)$:

$$
\neg \forall x, P(x) \equiv \exists x, \neg P(x) \text { and } \neg \exists x, P(x) \equiv \forall x, \neg P(x)
$$

De Morgan's Law for Quantifiers

Negation	Equivalent statement	Negation is TRUE when...	Negation is FALSE when...
$\neg \exists x, P(x)$	$\forall x, \neg P(x)$	For every $x, P(x)$ is FALSE	There is an x where $P(x)$ is TRUE
$\neg \forall x, P(x)$	$\exists x, \neg P(x)$	There is an x where $P(x)$ is FALSE	$P(x)$ is true for every x

Quantifier Negation Examples

Negate the following statements and simplify

$$
\exists x,(P(x) \rightarrow \neg Q(x)) \quad \forall x,(P(x) \rightarrow \exists y(P(y) \vee Q(y)))
$$

Quantifier Negation Examples

Negate the following statements and simplify

$$
\begin{gathered}
\exists x,(P(x) \rightarrow \neg Q(x)) \\
\neg \exists x,(P(x) \rightarrow \neg Q(x)) \\
\forall x, \neg(P(x) \rightarrow \neg Q(x)) \\
\forall x, \neg(\neg P(x) \vee \neg Q(x)) \\
\forall x,(\neg \neg P(x) \wedge \neg \neg Q(x)) \\
\forall x,(P(x) \wedge Q(x))
\end{gathered}
$$

$$
\begin{gathered}
\forall x,(P(x) \rightarrow \exists y(P(y) \vee Q(y))) \\
\neg \forall x,(P(x) \rightarrow \exists y(P(y) \vee Q(y))) \\
\exists x, \neg(P(x) \rightarrow \exists y(P(y) \vee Q(y))) \\
\exists x, \neg(\neg P(x) \vee \exists y(P(y) \vee \\
Q(y))) \\
\exists x,(\neg \neg P(x) \wedge \neg \exists y(P(y) \vee \\
Q(y)))
\end{gathered}
$$

$\exists x(P(x) \wedge \forall v \neg(P(v) \vee 0(v)))$

Nested Quantifiers

A logical expression with more than one quantifier that bind different variables in the same predicate is said to have nested quantifiers.

In order to evaluate them we must consider their ordering and scope

Nested Quantifiers: Ordering

The order of the quantifiers is important (unless they are all universal or all existential quantifiers)

Example

$Q(x, y): x+y=0$, where the domain is all real numbers

- $\exists y \forall x Q(x, y)$: there is a real number y, such that for every real number $x, x+y=$ 0.
- $\forall x \exists y Q(x, y)$: for every real number x, there is a real number y such that $x+y=$ 0.

Nested Quantifiers: Ordering

The order of the quantifiers is important (unless they are all universal or all existential quantifiers)

Example

$Q(x, y): x+y=0$, where the domain is all real numbers
FALSE

- $\exists y \forall x Q(x, y)$: there is a real number y, such that for every real number $x, x+y=$ 0.
- $\forall x \exists y Q(x, y)$: for every real number x, there is a real number y such that $x+y^{\text {TRDE }}$ 0.

In general, we cannot switch the ordering and guarantee equivalence

Nested Quantifiers: Ordering

Consecutive quantifiers of the same type can be reordered while maintaining equivalence

Consider predicate $\mathbf{Q}(\mathbf{i}, \mathbf{j}, \mathbf{k})$
$\forall i \forall j \forall k Q(i, j, k) \equiv \forall j \forall k \forall i Q(i, j, k) \equiv \forall j \forall i \forall k Q(i, j, k) \equiv \forall i \forall k \forall j Q(i, j, k)$
$\exists i \exists j \exists k Q(i, j, k) \equiv \exists j \exists k \exists i Q(i, j, k) \equiv \exists j \exists i \exists k Q(i, j, k) \equiv \exists i \exists k \exists j Q(i, j, k)$

Nested Quantifiers: Ordering

We can simplify consecutive variables with the same quantifier

$$
\begin{aligned}
& \forall i \forall j \forall k Q(i, j, k) \equiv \forall i, j, k, Q(i, j, k) \\
& \exists i \exists j \exists k Q(i, j, k) \equiv \exists i, j, k, Q(i, j, k)
\end{aligned}
$$

...but do so carefully and make sure you don't accidentally mix quantifiers

Nested Quantifiers: Scope

The portion of the formula a quantifier covers is called the scope

- The scope of the quantifier is the predicate immediately following
- Precedence is just below parenthesis
- Any variable not covered by any quantifier is a free variable

Consider the following formula:

$$
\forall i \exists j,(P(i, j) \rightarrow \quad \forall k, Q(k, j))
$$

Nested Quantifiers: Scope

The portion of the formula a quantifier covers is called the scope

- The scope of the quantifier is the predicate immediately following
- Precedence is just below parenthesis
- Any variable not covered by any quantifier is a free variable

Consider the following formula:

$$
\forall i \widehat{\exists j,(\vec{P}(i, j) \rightarrow \forall k, Q(k, j)), ~}
$$

The scope of $\forall i$ is the entire formula

Nested Quantifiers: Scope

The portion of the formula a quantifier covers is called the scope

- The scope of the quantifier is the predicate immediately following
- Precedence is just below parenthesis
- Any variable not covered by any quantifier is a free variable

Consider the following formula:

$$
\forall i \exists j,(P(i, j) \rightarrow \forall k, Q(k, j))
$$

The scope of $\exists j$ is the entire formula (other than $\forall i$)

Nested Quantifiers: Scope

The portion of the formula a quantifier covers is called the scope

- The scope of the quantifier is the predicate immediately following
- Precedence is just below parenthesis
- Any variable not covered by any quantifier is a free variable

Consider the following formula:

$$
\forall i \exists j,(P(i, j) \rightarrow \forall k, Q(k, j))
$$

The scope of $\forall k$ is the limited to $Q(k, j)$

Nested Quantifiers: Scope

The portion of the formula a quantifier covers is called the scope

- The scope of the quantifier is the predicate immediately following
- Precedence is just below parenthesis
- Any variable not covered by any quantifier is a free variable

Consider the following formula:

$$
\forall i \exists j,(P(i, j) \rightarrow \forall k, Q(k, i))
$$

Nested Quantifiers: Scope

Quantifiers can move as long as their scope doesn't encompass additional quantifiers of a different type

$$
\forall i \exists j,(P(i, j) \rightarrow \quad \forall k, Q(k, j))
$$

VS

$$
\forall i \exists j \quad \forall k,(P(i, j) \rightarrow Q(k, j))
$$

Nested Quantifiers: Scope

Quantifiers can move as long as their scope doesn't encompass additional quantifiers of a different type

$$
\forall i \exists j,(P(i, j) \rightarrow \forall k, Q(k, j))
$$

vs

$$
\forall i \quad \exists j \forall k,(P(i, j) \rightarrow Q(k, j))
$$

Nested Quantifiers: Scope

Quantifiers can move as long as their scope doesn't encompass additional quantifiers of a different type

VS

$$
\forall i \exists \forall \quad \forall k,(P(i, j) \rightarrow Q(k, j)
$$

Notice how each qualifier covers the exact same variables in either case

Nested Quantifiers: Scope

Ensure that any reordering doesn't free variables that were originally bound

$$
\forall i \exists j,(P(i, j) \rightarrow \quad \forall k, Q(k, j))
$$

vs

$$
\forall i \exists j,(\forall k, P(i, j) \rightarrow Q(k, j))
$$

Nested Quantifiers: Scope

Ensure that any reordering doesn't free variables that were originally bound

VS
$\forall i \quad \exists j, \forall k, P(i, j) \rightarrow Q(k, j))$

Nested Quantifiers: Scope

Ensure that any reordering doesn't free variables that were originally bound

VS

$$
\forall i \exists j, \forall k, P(i, j) \rightarrow Q(k, j))
$$

Notice how \boldsymbol{k} is no longer bound by a quantifier in the second equation

Nested Quantifiers: Scope

Ensure that any reordering doesn't free variables that were originally bound

$$
\forall i \exists j,(P(i, j) \rightarrow \forall k, Q(k, j)
$$

VS

$$
\forall i \exists j, \forall k, P(i, j) \rightarrow Q(k, j))
$$

Notice how \boldsymbol{k} is no longer bound by a quantifier in the second equation

These two statements are NOT equivalent. The first is a proposition, and the second is a predicate with a free variable, k

