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Recap

● Propositions
○ Declarative statements – either TRUE or FALSE
○ Can represent them with propositional variables
○ Can be combined/modified with logical operators

● Truth tables
○ Lists all possible combinations of truth values for the atomics in a 

compound proposition and the resulting truth value
● Logical Equivalence

○ Two compound propositions are logically equivalent if they have the same 
truth value no matter the truth values of their atomics

○ Can be proven with truth tables, or by applying laws of equivalence



Outline

Predicates and Quantifiers
- From Propositions to Predicates
- Quantifiers



From Propositions to Predicates

Consider the statement: "X is even"

● Contains a variable, X, so it is not a proposition
○ Given a value for X, we can determine the truth value
○ Once we know the X, the statement is TRUE or FALSE, but not both

● Sentences whose truth value is based on variables are predicates



Predicates

A predicate is a function that takes some variable(s) as arguments; it 
returns either TRUE or FALSE, but never both, depending on the 
combination of the combination of values passed as arguments.

a proposition can be thought of as a function of 0 variables



Predicates

A predicate is a function that takes some variable(s) as arguments; it 
returns either TRUE or FALSE, but never both, depending on the 
combination of the combination of values passed as arguments.

Example: P(x): x is an even number.

P is the function, x is the variable

P(x) is the value of the predicate P at x

What are the possible values of X?



Predicates

A predicate is a function that takes some variable(s) as arguments; it 
returns either TRUE or FALSE, but never both, depending on the 
combination of the combination of values passed as arguments.

Example: P(x): x is an even number.
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P(x) is the value of the predicate P at x
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Domain of Discourse

Given a predicate, P(x), the domain of discourse (often just called the 
domain) is the set of all possible values for the variable x.

● Predicates with multiple variables may have:
○ Multiple domains of discourse (one for each variable)
○ A single domain of discourse for all variables



Examples

Example 1

Consider the predicate Q(x,y): y is enrolled in recitation x.
● We can define the domain of discourse of x as {C1, C2, C3}
● …and the domain of discourse of y as {all students in CSE 191} 

Example 2

Consider the predicate R(x,y): x and y are friends.
● We can define the domain of discourse of R as {all students at UB}



Examples (Predicate vs Proposition)

Let the predicate P(x,y) be defined by:

P(x,y): 2x = y, where the domain for x is {1,2,3}, y is {4,5,6}

Statement Is Proposition? Truth Value

P(1,4): 2(1) = 4
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P(x,y): 2x = y, where the domain for x is {1,2,3}, y is {4,5,6}

Statement Is Proposition? Truth Value

P(1,4): 2(1) = 4 Yes FALSE



Examples (Predicate vs Proposition)

Let the predicate P(x,y) be defined by:

P(x,y): 2x = y, where the domain for x is {1,2,3}, y is {4,5,6}

Statement Is Proposition? Truth Value

P(1,4): 2(1) = 4 Yes FALSE

P(2,4): 2(2) = 4



Examples (Predicate vs Proposition)

Let the predicate P(x,y) be defined by:

P(x,y): 2x = y, where the domain for x is {1,2,3}, y is {4,5,6}

Statement Is Proposition? Truth Value

P(1,4): 2(1) = 4 Yes FALSE

P(2,4): 2(2) = 4 Yes TRUE



Examples (Predicate vs Proposition)

Let the predicate P(x,y) be defined by:

P(x,y): 2x = y, where the domain for x is {1,2,3}, y is {4,5,6}

Statement Is Proposition? Truth Value

P(1,4): 2(1) = 4 Yes FALSE

P(2,4): 2(2) = 4 Yes TRUE

P(x,4): 2(x) = 4



Examples (Predicate vs Proposition)

Let the predicate P(x,y) be defined by:
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Examples (Predicate vs Proposition)

Let the predicate P(x,y) be defined by:

P(x,y): 2x = y, where the domain for x is {1,2,3}, y is {4,5,6}

Statement Is Proposition? Truth Value

P(1,4): 2(1) = 4 Yes FALSE

P(2,4): 2(2) = 4 Yes TRUE

P(x,4): 2(x) = 4 No —

What about P(2,3): 2(2) = 3?



Examples (Predicate vs Proposition)

Let the predicate P(x,y) be defined by:

P(x,y): 2x = y, where the domain for x is {1,2,3}, y is {4,5,6}

Statement Is Proposition? Truth Value

P(1,4): 2(1) = 4 Yes FALSE

P(2,4): 2(2) = 4 Yes TRUE

P(x,4): 2(x) = 4 No —

P(2,3) is meaningless (in this example). 3 is not in the domain of y.



Examples (Predicate vs Proposition)

Let the predicate P(x,y) be defined by:

P(x,y): 2x = y, where the domain for x is {1,2,3}, y is {4,5,6}

Statement Is Proposition? Truth Value

P(1,4) ∨ P(3,6)

P(1,4) ∨ ￢P(3,6)

P(2,4) → P(2,5)

P(2,4) ∧ P(x,4)
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Examples (Predicate vs Proposition)

Let the predicate P(x,y) be defined by:

P(x,y): 2x = y, where the domain for x is {1,2,3}, y is {4,5,6}

Statement Is Proposition? Truth Value

P(1,4) ∨ P(3,6) Yes TRUE

P(1,4) ∨ ￢P(3,6) Yes FALSE

P(2,4) → P(2,5) Yes FALSE

P(2,4) ∧ P(x,4) No —



More Examples

Let the predicate Q(x,y) be 
defined by:

Q(x,y): x + y > 4, where the 
domain for x and y is all integers

Which of the following are 
predicates? Propositions?
● Q(1,2)
● Q(x,2)
● Q(1000,y)
● Q(1000,2)
● Q(x,y)



More Examples

Let the predicate Q(x,y) be 
defined by:

Q(x,y): x + y > 4, where the 
domain for x and y is all integers

Which of the following are 
predicates? Propositions?
● Q(1,2) proposition
● Q(x,2) predicate
● Q(1000,y) predicate
● Q(1000,2) proposition
● Q(x,y) predicate



Outline

Predicates and Quantifiers
- From Propositions to Predicates
- Quantifiers



Quantifiers

Quantification expresses the extent to which a predicate is true over a 
range of elements. For example, in English: all, some, none, many, few, …



Universal Quantification

Suppose P(x) is a predicate on some domain, D.

The universal quantification of P(x) is the proposition:

"P(x) is true for all x in the domain of discourse D."

Written as: ∀x, P(x)
Read as: "For all x, P(x)" or "For every x, P(x)"

∀x, P(x) is TRUE if P(x) is TRUE for every x in D.
∀x, P(x) is FALSE if P(x) is FALSE for some x in D.



Universal Quantification Example

P(x): x + 2 = 5, where the domain of discourse is {1,2,3}

∀x, P(x) means: "for all x in {1,2,3}, x + 2 = 5
∀x, P(x) ≡ P(1) ∧ P(2) ∧ P(3)

≡ (1 + 2 = 5) ∧ (2 + 2 = 5) ∧ (3 + 2 = 5)
≡ F ∧ F ∧ T

∴∀x, P(x) is FALSE (since 1 + 2 = 5 and 2 + 2 = 5 are FALSE)
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Note that ∴ denotes "therefore"
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Note that ∴ denotes "therefore"

An input to that causes a 
universally quantified 

statement to evaluate to false 
is called a counterexample



Universal Quantification Example

P(x): x + 2 = 5, where the domain of discourse is {1,2,3}

∀x, P(x) means: "for all x in {1,2,3}, x + 2 = 5
∀x, P(x) ≡ P(1) ∧ P(2) ∧ P(3)

≡ (1 + 2 = 5) ∧ (2 + 2 = 5) ∧ (3 + 2 = 5)
≡ F ∧ F ∧ T

∴∀x, P(x) is FALSE (since 1 + 2 = 5 and 2 + 2 = 5 are FALSE)
Note that ∴ denotes "therefore"

An input to that causes a 
universally quantified 

statement to evaluate to false 
is called a counterexample

What if the domain of discourse was {3}?



Universal Quantification Example

Consider:
A(x): x is even
B(x): x2 > 0
C(x): x < 2

where the domain of A, B, C is {0,1,2,3}

True or False?

∀x, (C(x) → A(x))

∀x, (B(x) ∨ C(x))



Universal Quantification Example

Consider:
A(x): x is even
B(x): x2 > 0
C(x): x < 2

where the domain of A, B, C is {0,1,2,3}

True or False?

∀x, (C(x) → A(x)) 
FALSE, counterexample is x = 1

∀x, (B(x) ∨ C(x))



Universal Quantification Example

Consider:
A(x): x is even
B(x): x2 > 0
C(x): x < 2

where the domain of A, B, C is {0,1,2,3}

True or False?

∀x, (C(x) → A(x)) 
FALSE, counterexample is x = 1

∀x, (B(x) ∨ C(x))
TRUE x B(x) C(x)

0 F T
1 T T
2 T F
3 T F



Universal Quantification Example

Consider:
S(x): x is a student in CSE 191
T(x): x is a CSE major

where the domain for S and T is   
{all students enrolled in CSE 191}

True or False?

∀x, S(x)

∀x, T(x)

∀x, (S(x) → T(x))

∀x, (T(x) → S(x))



Universal Quantification Example

Consider:
S(x): x is a student in CSE 191
T(x): x is a CSE major

where the domain for S and T is   
{all students enrolled in CSE 191}

True or False?

∀x, S(x) TRUE

∀x, T(x) FALSE

∀x, (S(x) → T(x)) FALSE

∀x, (T(x) → S(x)) TRUE



Existential Quantification

Suppose P(x) is a predicate on some domain, D.

The existential quantification of P(x) is the proposition:

"P(x) is true for some x in the domain of discourse D."

Written as: ∃x, P(x)
Read as: "There exists an x such that, P(x)" or "For some x, P(x)"

∃x, P(x) is TRUE if P(x) is TRUE for some x in D.
∃x, P(x) is FALSE if P(x) is FALSE for every x in D.



Existential Quantification Example

P(x): x + 2 = 5, where the domain of discourse is {1,2,3}

∃x, P(x) means: "for some x in {1,2,3}, x + 2 = 5
∃x, P(x) ≡ P(1) ∨ P(2) ∨ P(3)

≡ (1 + 2 = 5) ∨ (2 + 2 = 5) ∨ (3 + 2 = 5)
≡ F ∨ F ∨ T

∴∃x, P(x) is TRUE (because 3 + 2 = 5 is TRUE)



Existential Quantification Example

P(x): x + 2 = 5, where the domain of discourse is {1,2,3}

∃x, P(x) means: "for some x in {1,2,3}, x + 2 = 5
∃x, P(x) ≡ P(1) ∨ P(2) ∨ P(3)

≡ (1 + 2 = 5) ∨ (2 + 2 = 5) ∨ (3 + 2 = 5)
≡ F ∨ F ∨ T

∴∃x, P(x) is TRUE (because 3 + 2 = 5 is TRUE)

An input to that causes a 
predicate to evaluate to true is 
called a satisfying assignment



Existential Quantification Example

Consider:
A(x): x = 1
B(x): x > 5
C(x): x < 5

where the domain of A, B, C is {1,2,3}

True or False?

∃x, (C(x) → A(x))

∃x, B(x)



Existential Quantification Example

Consider:
A(x): x = 1
B(x): x > 5
C(x): x < 5

where the domain of A, B, C is {1,2,3}

True or False?

∃x, (C(x) → A(x))
TRUE, satisfying assignment x=1

∃x, B(x)
FALSE
P(1) ∨ P(2) ∨ P(3) = F ∨ F ∨ F 
= F

Note: The existential and universal quantifiers have higher precedence than all logical operators



Existential Quantification Example

Consider:
S(x): x is a student in CSE 191
T(x): x is a CSE major

where the domain for S and T is   
{all students enrolled in CSE 191}

True or False?

∃x, S(x) TRUE

∃x, T(x) TRUE

∃x, (S(x) → T(x)) TRUE

∃x, (T(x) → S(x)) TRUE



Quantifier Example

True or False?

∀x, P(x)

∃x, P(x)

∀x, Q(x)

∃x, Q(x)

Consider:
P(x): x2 > 9
Q(x): x2 ≥ 0

where the domain is all integers



Quantifier Example

True or False?

∀x, P(x) FALSE, consider: x = 2

∃x, P(x) TRUE, consider: x = 5

∀x, Q(x) TRUE, consider…math

∃x, Q(x) TRUE

Consider:
P(x): x2 > 9
Q(x): x2 ≥ 0

where the domain is all integers



Binding Variables

The occurrence of a variable, x, is said to be bound when a quantifier is 
used on that variable.

The occurrence of a variable, x, is said to be free when it is not bound by a 
quantifier or set to a particular variable.

The part of a logical expression to which a quantifier is applied is called 
the scope of this quantifier.

Note: A variable is free if it is outside of the scope of all quantifiers in the 
formula that specify this variable.



Binding Example

Consider: ∃x,(x + y = 1)
● The variable x is bound by the existential quantifier ∃x
● y is free

Consider: ∀x,(x < 9) ∨ (x > 9)
● The variable x is bound in (x < 9) by ∀x
● The variable x is free in (x > 9)



Binding Example

Consider: ∃x,(x + y = 1)
● The variable x is bound by the existential quantifier ∃x
● y is free

Consider: ∀x,(x < 9) ∨ (x > 9)
● The variable x is bound in (x < 9) by ∀x
● The variable x is free in (x > 9)

The precedence of ∀ and ∃ 
is higher than logical 
operators



Quantified Statements and English

∃x, (L(x, CSE 191) ∧ L(x, CSE 250))

Consider:
L(x,y): x loves y

where the domain of x is {all students enrolled in CSE 191} and
where the domain of y is {all courses offered by UB CSE}



Quantified Statements and English

∃x, (L(x, CSE 191) ∧ L(x, CSE 250))

A CSE 191 student loves both CSE 191 and CSE 250

Consider:
L(x,y): x loves y

where the domain of x is {all students enrolled in CSE 191} and
where the domain of y is {all courses offered by UB CSE}



Quantified Statements and English

∃x ∃y ∀z, ((x ≠ y) ∧ (L(x, z) → L(y, z)))

Consider:
L(x,y): x loves y

where the domain of x is {all students enrolled in CSE 191} and
where the domain of y is {all courses offered by UB CSE}



Quantified Statements and English

∃x ∃y ∀z, ((x ≠ y) ∧ (L(x, z) → L(y, z)))
There are 2 different students, x and y, in CSE 191 such that if x loves a 

CSE course, then so does y.

Consider:
L(x,y): x loves y

where the domain of x is {all students enrolled in CSE 191} and
where the domain of y is {all courses offered by UB CSE}



Quantified Statements and English

Every CSE course is loved by some CSE 191 student

Consider:
L(x,y): x loves y

where the domain of x is {all students enrolled in CSE 191} and
where the domain of y is {all courses offered by UB CSE}



Quantified Statements and English

Every CSE course is loved by some CSE 191 student

∀y ∃x, L(x, y)

Consider:
L(x,y): x loves y

where the domain of x is {all students enrolled in CSE 191} and
where the domain of y is {all courses offered by UB CSE}



Quantified Statements and English

All UB students are CSE 191 students

Consider:
A(x): x lives in Amherst B(x): x is a CSE 191 student
C(x): x has a good GPA D(x): x majors in CSE

Domain of discourse: all UB students



Quantified Statements and English

All UB students are CSE 191 students

∀x, B(x)

Consider:
A(x): x lives in Amherst B(x): x is a CSE 191 student
C(x): x has a good GPA D(x): x majors in CSE

Domain of discourse: all UB students



Quantified Statements and English

All CSE 191 students have a good GPA

Consider:
A(x): x lives in Amherst B(x): x is a CSE 191 student
C(x): x has a good GPA D(x): x majors in CSE

Domain of discourse: all UB students



Quantified Statements and English

All CSE 191 students have a good GPA

∀x, (B(x) → C(x))

Consider:
A(x): x lives in Amherst B(x): x is a CSE 191 student
C(x): x has a good GPA D(x): x majors in CSE

Domain of discourse: all UB students



Quantified Statements and English

CSE 191 students not living in Amherst major in CSE

Consider:
A(x): x lives in Amherst B(x): x is a CSE 191 student
C(x): x has a good GPA D(x): x majors in CSE

Domain of discourse: all UB students



Quantified Statements and English

CSE 191 students not living in Amherst major in CSE

∀x, ((B(x) ∧ ￢A(x)) → D(x))

Consider:
A(x): x lives in Amherst B(x): x is a CSE 191 student
C(x): x has a good GPA D(x): x majors in CSE

Domain of discourse: all UB students



Quantified Statements and English

No CSE 191 student lives in Amherst

Consider:
A(x): x lives in Amherst B(x): x is a CSE 191 student
C(x): x has a good GPA D(x): x majors in CSE

Domain of discourse: all UB students



Quantified Statements and English

No CSE 191 student lives in Amherst

∀x, (B(x) → ￢A(x))

Consider:
A(x): x lives in Amherst B(x): x is a CSE 191 student
C(x): x has a good GPA D(x): x majors in CSE

Domain of discourse: all UB students



Exercise

If x is an even number, then x + 1 is odd Every even number is a multiple of 2

Translate the following theorems to quantified statements



Exercise

If x is an even number, then x + 1 is odd

First we must define domain/predicates

Every even number is a multiple of 2

Translate the following theorems to quantified statements



Exercise

If x is an even number, then x + 1 is odd

First we must define domain/predicates
● Domain: all integers
● P(x): x is an even number
● Q(x): x is an odd number

Every even number is a multiple of 2

Translate the following theorems to quantified statements



Exercise

If x is an even number, then x + 1 is odd

First we must define domain/predicates
● Domain: all integers
● P(x): x is an even number
● Q(x): x is an odd number

∀x, (P(x) → Q(x + 1))

Every even number is a multiple of 2

Translate the following theorems to quantified statements



Exercise

If x is an even number, then x + 1 is odd

First we must define domain/predicates
● Domain: all integers
● P(x): x is an even number
● Q(x): x is an odd number

∀x, (P(x) → Q(x + 1))

Every even number is a multiple of 2

Domain and predicates:
● Domain: all integers
● R(y): y is an even number
● S(y): y is a multiple of 2

Translate the following theorems to quantified statements



Exercise

If x is an even number, then x + 1 is odd

First we must define domain/predicates
● Domain: all integers
● P(x): x is an even number
● Q(x): x is an odd number

∀x, (P(x) → Q(x + 1))

Every even number is a multiple of 2

Domain and predicates:
● Domain: all integers
● R(y): y is an even number
● S(y): y is a multiple of 2

∀y, (R(y) → S(y))

Translate the following theorems to quantified statements



Exercise

If x is an even number, then x + 1 is odd

First we must define domain/predicates
● Domain: all integers
● P(x): x is an even number
● Q(x): x is an odd number

∀x, (P(x) → Q(x + 1))

Every even number is a multiple of 2

Domain and predicates:
● Domain: all integers
● R(y): y is an even number
● S(y): y is a multiple of 2

∀y, (R(y) → S(y))

Translate the following theorems to quantified statements

How can we do this differently?                   
With one predicate?



Exercise

If x is an even number, then x + 1 is odd

First we must define domain/predicates
● Domain: all integers
● P(x): x is an even number
● Q(x): x is an odd number

∀x, (P(x) → Q(x + 1))

Every even number is a multiple of 2

Domain and predicates:
● Domain: all even integers
● T(z): z is a multiple of 2

∀z,T(z)

Translate the following theorems to quantified statements



Quantifier Negation

Consider the following:
Not every UB student majors in 

computer science.

Some UB students do not major 
in computer science.

Consider:
D(x): x majors in CSE

Domain of discourse:
all UB students



Quantifier Negation

Consider the following:
Not every UB student majors in 

computer science.
￢∀x, D(x)

Some UB students do not major 
in computer science.

Consider:
D(x): x majors in CSE

Domain of discourse:
all UB students



Quantifier Negation

Consider the following:
Not every UB student majors in 

computer science.
￢∀x, D(x)

Some UB students do not major 
in computer science.

∃x,￢ D(x)

Consider:
D(x): x majors in CSE

Domain of discourse:
all UB students



Quantifier Negation Rule

Quantifier Negation

In general we have, for any predicate P(x):

￢∀x, P(x) ≡ ∃x,￢ P(x) and ￢∃x, P(x) ≡ ∀x,￢ P(x)

De Morgan's Law for Quantifiers

Negation Equivalent 
statement

Negation is TRUE 
when…

Negation is FALSE 
when…

￢∃x, P(x) ∀x,￢ P(x) For every x, P(x) is 
FALSE

There is an x where 
P(x) is TRUE

￢∀x, P(x) ∃x,￢ P(x) There is an x where 
P(x) is FALSE P(x) is true for every x



Quantifier Negation Examples

∃x,(P(x) → ￢Q(x)) ∀x, (P(x) → ∃y(P(y) ∨ Q(y)))

Negate the following statements and simplify



Quantifier Negation Examples

∃x,(P(x) → ￢Q(x))
￢∃x,(P(x) → ￢Q(x))
∀x,￢(P(x) → ￢Q(x))
∀x,￢(￢P(x) ∨ ￢Q(x))
∀x,(￢￢P(x) ∧ ￢￢Q(x))

∀x,(P(x) ∧ Q(x))

∀x, (P(x) → ∃y(P(y) ∨ Q(y)))
￢∀x, (P(x) → ∃y(P(y) ∨ Q(y)))
∃x, ￢(P(x) → ∃y(P(y) ∨ Q(y)))
∃x, ￢(￢P(x) ∨ ∃y(P(y) ∨ 

Q(y)))
∃x, (￢￢P(x) ∧ ￢∃y(P(y) ∨ 

Q(y)))
∃x, (P(x) ∧ ∀y￢(P(y) ∨ Q(y)))

∃x, (P(x) ∧ ∀y(￢P(y) ∧ 
￢Q(y)))

Negate the following statements and simplify



Nested Quantifiers

A logical expression with more than one quantifier that bind different 
variables in the same predicate is said to have nested quantifiers.

In order to evaluate them we must consider their ordering and scope



Nested Quantifiers: Ordering

The order of the quantifiers is important
(unless they are all universal or all existential quantifiers)

Example

Q(x,y): x + y = 0, where the domain is all real numbers
● ∃y∀xQ(x,y): there is a  real number y, such that for every real number x, x + y = 

0. 
● ∀x∃yQ(x,y): for every real number x, there is a real number y such that x + y = 

0. 



Nested Quantifiers: Ordering

The order of the quantifiers is important
(unless they are all universal or all existential quantifiers)

Example

Q(x,y): x + y = 0, where the domain is all real numbers
● ∃y∀xQ(x,y): there is a  real number y, such that for every real number x, x + y = 

0. 
● ∀x∃yQ(x,y): for every real number x, there is a real number y such that x + y = 

0. 

In general, we cannot switch the ordering and guarantee equivalence

TRUE

FALSE



Nested Quantifiers: Ordering

Consecutive quantifiers of the same type can be reordered while 
maintaining equivalence

Consider predicate Q(i,j,k)

∀i∀j∀kQ(i,j,k) ≡∀j∀k∀iQ(i,j,k) ≡∀j∀i∀kQ(i,j,k) ≡∀i∀k∀jQ(i,j,k) 
…

∃i∃j∃kQ(i,j,k) ≡∃j∃k∃iQ(i,j,k) ≡∃j∃i∃kQ(i,j,k) ≡∃i∃k∃jQ(i,j,k) 
…

Note: The order that the variables enter Q(...) doesn't change



Nested Quantifiers: Ordering

We can simplify consecutive variables with the same quantifier

∀i∀j∀kQ(i,j,k) ≡∀i,j,k,Q(i,j,k)
∃i∃j∃kQ(i,j,k) ≡∃i, j, k,Q(i,j,k)

…but do so carefully and make sure you don't accidentally mix quantifiers



Nested Quantifiers: Scope

The portion of the formula a quantifier covers is called the scope
● The scope of the quantifier is the predicate immediately following
● Precedence is just below parenthesis
● Any variable not covered by any quantifier is a free variable

Consider the following formula:

∀i ∃j, (P(i,j) →  ∀k, Q(k,j))



Nested Quantifiers: Scope

The portion of the formula a quantifier covers is called the scope
● The scope of the quantifier is the predicate immediately following
● Precedence is just below parenthesis
● Any variable not covered by any quantifier is a free variable

Consider the following formula:

∀i ∃j, (P(i,j) →  ∀k, Q(k,j))

The scope of ∀i is the entire formula



Nested Quantifiers: Scope

The portion of the formula a quantifier covers is called the scope
● The scope of the quantifier is the predicate immediately following
● Precedence is just below parenthesis
● Any variable not covered by any quantifier is a free variable

Consider the following formula:

∀i ∃j, (P(i,j) →  ∀k, Q(k,j))

The scope of ∃j is the entire formula (other than ∀i)



Nested Quantifiers: Scope

The portion of the formula a quantifier covers is called the scope
● The scope of the quantifier is the predicate immediately following
● Precedence is just below parenthesis
● Any variable not covered by any quantifier is a free variable

Consider the following formula:

∀i ∃j, (P(i,j) →  ∀k, Q(k,j))

The scope of ∀k is the limited to Q(k,j)



Nested Quantifiers: Scope

The portion of the formula a quantifier covers is called the scope
● The scope of the quantifier is the predicate immediately following
● Precedence is just below parenthesis
● Any variable not covered by any quantifier is a free variable

Consider the following formula:

∀i ∃j, (P(i,j) →  ∀k, Q(k,j))



Nested Quantifiers: Scope

Quantifiers can move as long as their scope doesn't encompass 
additional quantifiers of a different type

∀i ∃j, (P(i,j) →  ∀k, Q(k,j))

vs

∀i ∃j ∀k, (P(i,j) →  Q(k,j))



Nested Quantifiers: Scope

Quantifiers can move as long as their scope doesn't encompass 
additional quantifiers of a different type

∀i ∃j, (P(i,j) →  ∀k, Q(k,j))

vs

∀i ∃j ∀k, (P(i,j) →  Q(k,j))



Nested Quantifiers: Scope

Quantifiers can move as long as their scope doesn't encompass 
additional quantifiers of a different type

∀i ∃j, (P(i,j) →  ∀k, Q(k,j))

vs

∀i ∃j ∀k, (P(i,j) →  Q(k,j))

Notice how each qualifier 
covers the exact same 
variables in either case



Nested Quantifiers: Scope

Ensure that any reordering doesn't free variables that were originally 
bound

∀i ∃j, (P(i,j) →  ∀k, Q(k,j))

vs

∀i ∃j, (∀k,P(i,j) →  Q(k,j))



Nested Quantifiers: Scope

Ensure that any reordering doesn't free variables that were originally 
bound

∀i ∃j, (P(i,j) →  ∀k, Q(k,j))

vs

∀i ∃j, (∀k,P(i,j) →  Q(k,j))



Nested Quantifiers: Scope

Ensure that any reordering doesn't free variables that were originally 
bound

∀i ∃j, (P(i,j) →  ∀k, Q(k,j))

vs

∀i ∃j, (∀k,P(i,j) →  Q(k,j))

Notice how k is no longer 
bound by a quantifier in 
the second equation



Nested Quantifiers: Scope

Ensure that any reordering doesn't free variables that were originally 
bound

∀i ∃j, (P(i,j) →  ∀k, Q(k,j))

vs

∀i ∃j, (∀k,P(i,j) →  Q(k,j))

Notice how k is no longer 
bound by a quantifier in 
the second equation

These two statements are NOT equivalent. The first is a proposition, and the 
second is a predicate with a free variable, k


