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Logic and Proofs

● Logic is the basis of all correct mathematical arguments (proofs)
● Important in all of CS and CEN:

○ Problem solving 
○ Software engineering (requirements specification,verification)
○ Databases (relational algebras,SQL)
○ Computer Architecture (logic gates,verification)
○ AI (automated theorem proving,rule-based ML)
○ Security (threat modeling)
○ …



Outline

Propositional Logic
- Propositions
- Logical Operators
- Truth Tables
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Proposition

Definition: A proposition is a declarative statement

● Must be either TRUE (T) or FALSE (F)
○ Cannot be both…

● An opinion of a specific person is a proposition
○ Their opinion would determine the true value

● The bits 0/1 are used for F/T
○ Digital logic uses 0/1, LOW/HIGH, or OFF/ON
○ Computers use bits and logic gates for all computation



Propositional Logic

Examples of Propositions

Proposition Truth Value

We are in Talbert 107 TRUE

2 + 2 = 7 FALSE

I love cheesecake FALSE

1 + 1 = 2 TRUE



Propositional Logic

Examples of Non-Propositions

Non-Proposition Reason

What time is it? Questions are not declarations

Do your homework. Also not a declaration…

2+3 Also not a declaration…

x + 1 = 2 Neither true nor false; truth depends on x

Wow! Neither true nor false



Propositions vs Non-Propositions

Propositions

● Declarative statements
● Either TRUE or FALSE

○ Has exactly ONE truth value
○ Can't be both TRUE and FALSE

Non-Propositions

● Questions
● Commands/requests
● Statements with unassigned 

variables
● Exclamations
● etc
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Propositional Variables

Propositional variables are variables that represent propositions
● Commonly used letters are p, q, r, s, …

○ Alternatively, the first letter of what we are trying to represent
● May be associated a specific proposition or left as a placeholder for 

an arbitrary proposition
● Compound propositions are formed by using propositional variables 

and logical operators
○ A compound proposition is itself a proposition
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Propositional Variables

The truth value of a proposition is TRUE or FALSE
● T for true propositions
● F for false propositions

Examples
● p: Chicago is the capital of the USA
● q: Albany is the capital of NYS

We use a ":" to define a proposition.

Now we can ask questions like:
● What is the truth value of p?
● What is the truth value of q?

What about sentences like:
● p and q?
● p or q?



Outline

Propositional Logic
- Propositions
- Logical Operators
- Truth Tables
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Atomic propositions



Logical Operators

Logical Operators allow combining propositions into new ones
● Going forward: combine propositions to form new ones
● Going backward: decompose proposition into atomics

Example Compound Proposition

If I am at work, then I am wearing sneakers

Logical operator (if …, then …)



Negation Operator

Let p be a proposition.

The negation of p, denoted by ￢p (or sometimes p) is the statement: 

"It is not the case that p"

● ￢p is a new proposition, read as "not p"
● ￢ is referred to as the negation operator. It is a unary operator

○ Unary operators only operate on one proposition
● The truth value of ￢p is the opposite of the truth value of p



Negation Operator Example

Let p be the following proposition:
p: CSE116 is a prerequisite for CSE191
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Negation Operator Example

Let p be the following proposition:
p: CSE116 is a prerequisite for CSE191

The negation of p is therefore:
￢p: It is not the case that CSE116 is a prerequisite for CSE191

Or more simply:
￢p: CSE116 is not a prerequisite for CSE191

In this case p is TRUE, therefore ￢p is FALSE
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… and …

… or …

If …, then …

… if and only if …



Binary Logical Operators

What other connectives do we have in English?

… and …

… or …

If …, then …

… if and only if …



Unary vs Binary

Unary Operators 
● Transform one proposition into another
● ie: ￢p

Binary Operators 
● Combine two propositions into one compound proposition
● ie: p and q, p or q, if p, then q, etc…



Let p and q be propositions.

The conjunction of p and q, denoted by p ∧ q is the statement: 

"p and q"

and is only TRUE when p and q are both TRUE, and is FALSE otherwise

Binary Logical Operators: Conjunction
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r: It is rainy and windy [conjunction of two propositions]
● p: it is rainy
● q: it is windy
● p ∧ q: it is rainy and it is windy

○ Simplified: p ∧ q: it is rainy and windy 
○ p ∧ q and r are interchangeable

What if today is rainy, but not windy?

NOTE: When converting to English, 
try to use the most natural wording



Binary Logical Operators: Conjunction

r: It is rainy and windy [conjunction of two propositions]
● p: it is rainy
● q: it is windy
● p ∧ q: it is rainy and it is windy

○ Simplified: p ∧ q: it is rainy and windy 
○ p ∧ q and r are interchangeable

What if today is rainy, but not windy?

p is TRUE, q is FALSE, therefore p ∧ q = T ∧ F = FALSE

NOTE: When converting to English, 
try to use the most natural wording



Let p and q be propositions.

The disjunction of p and q, denoted by p ∨ q is the statement: 

"p or q"

and is TRUE when p is TRUE, q is TRUE, or both are TRUE

p ∨ q is FALSE only when both p and q are FALSE

Binary Logical Operators: Disjunction



Binary Logical Operators: Disjunction

r: the playing card is a Queen or a Heart    [disjunction of two propositions]



Binary Logical Operators: Disjunction

r: the playing card is a Queen or a Heart   [disjunction of two propositions]
● p: the playing card is a Queen
● q: the playing card is a Heart
● p ∨ q: the playing card is a Queen or the playing card is a Heart

○ Simplified: p ∨ q the playing card is a Queen or a Heart
○ r and p ∨ q are interchangeable



Binary Logical Operators: Disjunction

What is the value of r if the playing card in question is:

The Ace of Spades?
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Binary Logical Operators: Disjunction

What is the value of r if the playing card in question is:

The Ace of Spades? p is FALSE, q is FALSE, so p ∨ q = F ∨ F = FALSE

The 2 of Hearts? p is FALSE, q is TRUE, so p ∨ q = F ∨ T = TRUE

The Queen of Clubs? p is TRUE, q is FALSE, so p ∨ q = T ∨ F = TRUE

The Queen of Hearts? p is TRUE, q is TRUE, so p ∨ q = T ∨ T = TRUE

Note: This is referred to as inclusive or



Let p and q be propositions.

The exclusive or of p and q, denoted by p ⨁ q (read XOR) is the statement: 

"p or q, but not both"

and is TRUE when exactly one of p and q is TRUE, and FALSE otherwise

Binary Logical Operators: Exclusive Or



Binary Logical Operators: Exclusive Or

r: the playing card is a Queen or a Heart (but not both)    
● p: the playing card is a Queen
● q: the playing card is a Heart
● p ⨁ q: the playing card is a Queen or the playing card is a Heart



Binary Logical Operators: Exclusive Or

What is the value of r if the playing card in question is:

The Ace of Spades?



Binary Logical Operators: Exclusive Or

What is the value of r if the playing card in question is:

The Ace of Spades? p is FALSE, q is FALSE, so p ⨁ q = F ⨁ F = FALSE



Binary Logical Operators: Exclusive Or

What is the value of r if the playing card in question is:

The Ace of Spades? p is FALSE, q is FALSE, so p ⨁ q = F ⨁ F = FALSE

The 2 of Hearts? p is FALSE, q is TRUE, so p ⨁ q = F ⨁ T = TRUE

The Queen of Clubs? p is TRUE, q is FALSE, so p ⨁ q = T ⨁ F = TRUE



Binary Logical Operators: Exclusive Or

What is the value of r if the playing card in question is:

The Ace of Spades? p is FALSE, q is FALSE, so p ⨁ q = F ⨁ F = FALSE

The 2 of Hearts? p is FALSE, q is TRUE, so p ⨁ q = F ⨁ T = TRUE

The Queen of Clubs? p is TRUE, q is FALSE, so p ⨁ q = T ⨁ F = TRUE

The Queen of Hearts? p is TRUE, q is TRUE, so p ⨁ q = T ⨁ T = FALSE



Let p and q be propositions.

The implication of p on q, denoted by p → q is the statement: 

"p implies q" or "if p, then q"

and is FALSE when p is TRUE, q is FALSE, and TRUE otherwise

p is called the hypothesis or antecedent or precedent

q is called the conclusion or consequence

Binary Logical Operators: Implication



Binary Logical Operators: Implication

r: If I'm at work, then I'm wearing sneakers
● p: I'm at work
● q: I'm wearing sneakers
● p → q: If I'm at work, then I'm wearing sneakers

○ Sometimes called a conditional statement



Binary Logical Operators: Implication

What if I'm at work but I'm not wearing sneakers?



Binary Logical Operators: Implication

What if I'm at work but I'm not wearing sneakers?

p is TRUE, q is FALSE, p → q is T → F, which is FALSE

 



Binary Logical Operators: Implication
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Binary Logical Operators: Implication

What if I'm at work but I'm not wearing sneakers?

p is TRUE, q is FALSE, p → q is T → F, which is FALSE

What if I'm not at work but I'm wearing sneakers?

p is FALSE, q is TRUE, p → q is F → T, which is TRUE



Binary Logical Operators: Implication

What if I'm at work but I'm not wearing sneakers?

p is TRUE, q is FALSE, p → q is T → F, which is FALSE

What if I'm not at work but I'm wearing sneakers?

p is FALSE, q is TRUE, p → q is F → T, which is TRUE

If the hypothesis is FALSE, we know nothing about the conclusion 



Terminology 
for 

Implication
Implication statements 

can be expressed in many 
ways.

Some common expressions of p → q:

● if p, then q
● q if p
● q when p
● q unless not p
● p implies q
● p only if q
● q whenever p
● p is sufficient for q
● q is necessary for p
● q follows from p



Converse, Contrapositive, and Inverse

Converse of p → q: q → p

Contrapositive of p → q: ￢q → ￢p

Inverse of p → q: ￢p → ￢q
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● r: p → q: If I am drawing, then I am happy
○ p: I am drawing, q: I am happy
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Converse, Contrapositive, and Inverse

Example

● r: p → q: If I am drawing, then I am happy
○ p: I am drawing, q: I am happy

● Converse: If I am happy, then I am drawing
● Contrapositive: If I am not happy, then I am not drawing



Converse, Contrapositive, and Inverse

Example

● r: p → q: If I am drawing, then I am happy
○ p: I am drawing, q: I am happy
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● Contrapositive: If I am not happy, then I am not drawing
● Inverse:
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● r: p → q: If I am drawing, then I am happy
○ p: I am drawing, q: I am happy
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● Inverse: If I am not drawing, then I am not happy
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Converse, Contrapositive, and Inverse

Example

● r: p → q: If I am drawing, then I am happy
○ p: I am drawing, q: I am happy

● Converse: If I am happy, then I am drawing
● Contrapositive: If I am not happy, then I am not drawing
● Inverse: If I am not drawing, then I am not happy

Which of these three is equivalent to r?
(equivalent propositions have the same truth value)



Let p and q be propositions.

The bidirectional implication of p on q, denoted by p ⇔ q is the statement: 

"p if and only if q"

and is only TRUE when p and q have same truth value, FALSE otherwise

Binary Logical Operators: Bidirectional Implication



Binary Logical Operators: Bidirectional Implication

Example
● You can take the flight if and only if you buy a ticket

○ p: you can take the flight
○ q: you buy a ticket
○ p ⇔ q: you can take the flight if and only if you buy a ticket



Terminology for Bidirectional Implication

Common expressions for p ⇔ q:

● p if and only if q
● p is necessary and sufficient for q
● if p then q, and conversely
● p iff q



Outline

Propositional Logic
- Propositions
- Logical Operators
- Truth Tables
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How can we show the results of applying an operator to one or more 
propositions?
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How can we formally specify the behavior of an operator?

How can we show the results of applying an operator to one or more 
propositions?

Truth Tables!



Truth Table

A Truth Table lists all possible combinations of truth values of the 
operands, as well as the resulting truth value in the rightmost column



Truth Tables: Negation Operator

● The negation operator has a single operand
○ This operand can either be TRUE or FALSE

● The truth value of ￢p is the opposite of the truth value of p

p ￢p

F T

T F

Truth table for negation



Truth Tables: Binary Logical Operators

p q p ∧ q

F F F

F T F

T F F

T T T

Conjunction/AND



Truth Tables: Binary Logical Operators

p q p ∨ q

F F F

F T T

T F T

T T T

Disjunction/OR

p q p ⊕ q

F F F

F T T

T F T

T T F

Exclusive Or/XOR



Truth Tables: Binary Logical Operators

p q p → q

F F T

F T T

T F F

T T T

Implication/If …, then …

p q p ⇔ q

F F T

F T F

T F F

T T T

Bidirectional Implication/IFF



How do we construct a truth table?

● Need 2n rows, where n is the number of 
propositional variables
○ For ￢p we have 1 variable, therefore 21 = 2 rows
○ For p ∨ q we have 2 variables so we need 22 = 4

p q p ∨ q

F F F

F T T

T F T

T T T

Disjunction/OR



How do we construct a truth table?

● We need a row for every possible combination 
of truth values
○ Fill the first half of the first column with F, 

second half with T
○ For the second column: fill the first half of each 

group of rows with F, second half with T

p q p ∨ q

F F F

F T T
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Disjunction/OR
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How do we construct a truth table?

● We need a row for every possible combination 
of truth values
○ Fill the first half of the first column with F, 

second half with T
○ For the second column: fill the first half of each 

group of rows with F, second half with T
○ …continue for additional columns as needed 

(other than the last column)
● Determine the truth value of the new 

proposition in the last column

p q p ∨ q

F F F

F T T

T F T

T T T

Disjunction/OR
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How do we construct a truth table?

What if we have more than 2 
variables? ie: p ∨ q ∨ r

● 3 variables = 23 = 8 rows
● (optional) Add additional 

columns to handle partial 
results
○ In this case, we can 

evaluate it as (p ∨ q) ∨ r 

p q r p ∨ q p ∨ q ∨ 
r

F F F F F

F F T F T

F T F T T

F T T T T

T F F T T

T F T T T

T T F T T

T T T T T



Compound Propositions

A compound proposition is created by using one or more logical operators

Suppose p and q are propositions.
● Compound proposition: (p ∨ q) ∧ ￢(p ∧ q)
● This new proposition is formed using AND, OR, and NOT

Let p: Jim eats pie, q: Jim eats cake. What is the above proposition in 
natural language (ie English)?



Compound Propositions

A compound proposition is created by using one or more logical operators

Suppose p and q are propositions.
● Compound proposition: (p ∨ q) ∧ ￢(p ∧ q)
● This new proposition is formed using AND, OR, and NOT

Let p: Jim eats pie, q: Jim eats cake. What is the above proposition in 
natural language (ie English)?

r: Jim eats pie or cake but Jim doesn't eat pie and cake



How to construct 
compound 
propositions?

1. Identify atomic propositions
p: Jim eats pie, q: Jim eats cake

Consider how we built r 
from p and q
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How to construct 
compound 
propositions?

1. Identify atomic propositions
p: Jim eats pie, q: Jim eats cake

2. Build up intermediate results
(p ∨ q): Jim eats pie or cake

(p ∧ q): Jim eats pie and cake

3. Negate the second piece
￢(p ∧ q): Jim doesn't eat pie and 

cake

4. Finally, put it all together

Consider how we built r 
from p and q

(p ∨ q)  ∧ ￢(p ∧ q): Jim eats pie or cake but Jim doesn't eat pie and cake

Notice how AND becomes but…



Examples

Let p: The window is closed; q: It is raining; r: I will run the air conditioner

1. ￢p: ???
2. p ∨ ￢q: ???
3. It is raining but the window is not closed: ???
4. If it is not raining then the window is open: ???
5. p ⇔ q: ???
6. q ∧ ￢p → ￢r: ???



Examples

Let p: The window is closed; q: It is raining; r: I will run the air conditioner

1. ￢p: The window is open
2. p ∨ ￢q: The window is closed or it isn't raining
3. It is raining but the window is not closed: q ∧ ￢p
4. If it is not raining then the window is open: ￢q →￢p 
5. p ⇔ q: The window is closed if and only if it is raining
6. q ∧ ￢p → ￢r: If it is raining but the window not closed, then I will not run the 

AC



How to evaluate compound propositions?

Remember: Each logical operator creates a new proposition
● The outcome is a new proposition
● Therefore the outcome must be TRUE or FALSE

We have two ways to view a compound proposition
● Start with the smaller propositions and build up to the larger one
● Start with the larger proposition and decompose



How to evaluate compound propositions?

Let's say we want to know if "r: Jim eats pie or cake but Jim doesn't eat pie 
and cake" is true.

Scenario 1: Let's say we know:

● Jim eats cake and Jim eats pie
are both true.

● We can evaluate r from the
ground up as a function of p and q



How to evaluate compound propositions?

Let's say we want to know if "r: Jim eats pie or cake but Jim doesn't eat pie 
and cake" is true.

Scenario 1: Let's say we know:

● Jim eats cake and Jim eats pie
are both true.

● We can evaluate r from the
ground up as a function of p and q

We have that p = T, q = T

Therefore:
(p ∨ q) and (p ∧ q) are both T

￢(p ∧ q) is F

Finally, (p ∨ q) ∧ ￢( p ∧ q) is T ∧ F 
= F

Therefore r is FALSE. 



How to evaluate compound propositions?

What if we don't know anything about the atomics that form r?
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p q (p ∨ q) (p ∧ q) ￢(p ∧ 
q)

(p ∨ q) ∧ ￢( p ∧ 
q)

F F
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How to evaluate compound propositions?
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Scenario 2: r is TRUE and p is TRUE. What is the truth value of q?



How to evaluate compound propositions?

p q (p ∨ q) (p ∧ q) ￢(p ∧ q) (p ∨ q) ∧ ￢( p ∧ 
q)

F F F F T F

F T T F T T

T F T F T T

T T T T F F

Scenario 2: r is TRUE and p is TRUE. What is the truth value of q? FALSE



Operator Precedence

Examples

￢p ∧ q   means   (￢p) ∧ q

p ∧ q → r   means   (p ∧ q) → r

p ∨ q ∧ r ⇔ p → q ⊕ r
means

(p ∨ (q ∧ r)) ⇔ (p → (q ⊕ r))

Operator Precedence

() 0

￢ 1

∧ 2

∨ 3

⊕ 4

→ 5

⇔ 6
When in doubt, use parenthesis!


