CSE 191 Introduction to Discrete Structures

Dr. Eric Mikida epmikida@buffalo.edu 208 Capen Hall

Propositional Logic

Logic and Proofs

- Logic is the basis of all correct mathematical arguments (proofs)
- Important in all of CS and CEN:
 - Problem solving
 - Software engineering (requirements specification, verification)
 - Databases (relational algebras,SQL)
 - Computer Architecture (logic gates, verification)
 - AI (automated theorem proving,rule-based ML)
 - Security (threat modeling)
 - 0 ...

Outline

Propositional Logic

- Propositions
- Logical Operators
- Truth Tables

- Must be either **TRUE (T)** or **FALSE (F)**
 - Cannot be both...

- Must be either **TRUE (T)** or **FALSE (F)**
 - Cannot be both...
- An opinion of a specific person is a proposition
 - Their opinion would determine the true value

- Must be either **TRUE (T)** or **FALSE (F)**
 - Cannot be both...
- An opinion of a specific person is a proposition
 - Their opinion would determine the true value
- The bits 0/1 are used for F/T
 - Digital logic uses 0/1, LOW/HIGH, or OFF/ON
 - Computers use bits and logic gates for **all** computation

Propositional Logic

Examples of Propositions

Proposition	Truth Value
We are in Talbert 107	TRUE
2 + 2 = 7	FALSE
I love cheesecake	FALSE
1 + 1 = 2	TRUE

Propositional Logic

Examples of Non-Propositions

Non-Proposition	Reason
What time is it?	Questions are not declarations
Do your homework.	Also not a declaration
2+3	Also not a declaration
x + 1 = 2	Neither true nor false; truth depends on x
Wow!	Neither true nor false

Propositions vs Non-Propositions

Propositions

- Declarative statements
- Either TRUE or FALSE
 - Has exactly ONE truth value
 - Can't be both TRUE and FALSE

Non-Propositions

- Questions
- Commands/requests
- Statements with unassigned variables
- Exclamations
- etc

- Commonly used letters are **p**, **q**, **r**, **s**, ...
 - Alternatively, the first letter of what we are trying to represent

- Commonly used letters are **p**, **q**, **r**, **s**, ...
 - Alternatively, the first letter of what we are trying to represent
- May be associated a specific proposition or left as a placeholder for an arbitrary proposition

- Commonly used letters are **p**, **q**, **r**, **s**, ...
 - Alternatively, the first letter of what we are trying to represent
- May be associated a specific proposition or left as a placeholder for an arbitrary proposition
- <u>Compound propositions</u> are formed by using propositional variables and logical operators
 - A compound proposition is itself a proposition

The **truth value** of a proposition is TRUE or FALSE

- **T** for true propositions
- **F** for false propositions

The **truth value** of a proposition is TRUE or FALSE

- **T** for true propositions
- **F** for false propositions

Examples

- **p**: Chicago is the capital of the USA
- **q**: Albany is the capital of NYS

The **truth value** of a proposition is TRUE or FALSE

- **T** for true propositions
- **F** for false propositions

Examples

- **p**: Chicago is the capital of the USA
- **q**. Albany is the capital of NYS

We use a ":" to define a proposition.

The **truth value** of a proposition is TRUE or FALSE

- **T** for true propositions
- **F** for false propositions

Examples

- **p**: Chicago is the capital of the USA
- **q**. Albany is the capital of NYS

We use a ":" to define a proposition.

Now we can ask questions like:

- What is the truth value of **p**?
- What is the truth value of **q**?

What about sentences like:

- *p* and *q*?
- *p* or *q*?

Outline

Propositional Logic

- Propositions
- Logical Operators
- Truth Tables

Logical Operators allow combining propositions into new ones

- Going forward: combine propositions to form new ones
- Going backward: decompose proposition into atomics

Logical Operators allow combining propositions into new ones

- Going forward: combine propositions to form new ones
- Going backward: decompose proposition into atomics

Example Compound Proposition

If I am at work, then I am wearing sneakers

Logical Operators allow combining propositions into new ones

- Going forward: combine propositions to form new ones
- Going backward: decompose proposition into atomics

Example Compound Proposition

Logical Operators allow combining propositions into new ones

- Going forward: combine propositions to form new ones
- Going backward: decompose proposition into atomics

Example Compound Proposition

If I am at work, then I am wearing sneakers

Logical operator (if ..., then ...)

Negation Operator

Let **p** be a proposition.

The *negation of* p, denoted by $\neg p$ (or sometimes \overline{p}) is the statement:

"It is not the case that **p**"

- ¬p is a new proposition, read as "not p"
- ¬ is referred to as the negation operator. It is a *unary* operator
 - Unary operators only operate on one proposition
- The truth value of $\neg p$ is the opposite of the truth value of p

Let **p** be the following proposition: **p**: CSE116 is a prerequisite for CSE191

Let **p** be the following proposition: **p**: CSE116 is a prerequisite for CSE191

The negation of **p** is therefore:

¬*p*: It is not the case that CSE116 is a prerequisite for CSE191

Let \boldsymbol{p} be the following proposition:

p: CSE116 is a prerequisite for CSE191

The negation of **p** is therefore:

¬*p*: It is not the case that CSE116 is a prerequisite for CSE191

Or more simply:

¬p: CSE116 is not a prerequisite for CSE191

Let **p** be the following proposition:

p: CSE116 is a prerequisite for CSE191

The negation of **p** is therefore:

¬*p*: It is not the case that CSE116 is a prerequisite for CSE191

Or more simply:

¬*p*: CSE116 is not a prerequisite for CSE191

In this case *p* is TRUE, therefore ¬*p* is FALSE

Binary Logical Operators

What other connectives do we have in English?

Binary Logical Operators

What other connectives do we have in English?

... and ...

... or ...

If ..., then ...

... if and only if ...

Unary vs Binary

Unary Operators

- Transform one proposition into another
- ie: **¬**p

Binary Operators

- Combine two propositions into one compound proposition
- ie: **p** and **q**, **p** or **q**, if **p**, then **q**, etc...

Let **p** and **q** be propositions.

The conjunction of **p** and **q**, denoted by $p \land q$ is the statement:

"**p** and **q**"

and is only TRUE when *p* and *q* are both TRUE, and is FALSE otherwise

r: It is rainy *and* windy [conjunction of two propositions]

r: It is rainy *and* windy [conjunction of two propositions]

- **p**: it is rainy
- **q**: it is windy
- $p \land q$: it is rainy and it is windy

r: It is rainy *and* windy [conjunction of two propositions]

- *p*: it is rainy
- **q**: it is windy
- $p \land q$: it is rainy and it is windy
 - Simplified: $p \land q$: it is rainy and windy
 - $p \land q$ and r are interchangeable

NOTE: When converting to English, try to use the most natural wording

r: It is rainy *and* windy [conjunction of two propositions]

- *p*: it is rainy
- q: it is windy
- $p \land q$: it is rainy and it is windy
 - Simplified: $p \land q$: it is rainy and windy
 - $p \land q$ and r are interchangeable

What if today is rainy, but not windy?

NOTE: When converting to English, try to use the most natural wording
r: It is rainy *and* windy [conjunction of two propositions]

- *p*: it is rainy
- **q**: it is windy
- $p \land q$: it is rainy and it is windy
 - Simplified: $p \land q$: it is rainy and windy
 - $p \land q$ and r are interchangeable

What if today is rainy, but not windy?

p is TRUE, **q** is FALSE, therefore $p \land q = T \land F = FALSE$

NOTE: When converting to English, try to use the most natural wording

Let **p** and **q** be propositions.

The *disjunction* of **p** and **q**, denoted by **p** \lor **q** is the statement:

"**p** or **q**"

and is TRUE when **p** is TRUE, **q** is TRUE, or both are TRUE

p **V** *q* is FALSE only when both *p* and *q* are FALSE

r: the playing card is a Queen or a Heart [disjunction of two propositions]

r: the playing card is a Queen or a Heart [disjunction of two propositions]

- **p**: the playing card is a Queen
- **q**: the playing card is a Heart
- $p \lor q$: the playing card is a Queen or the playing card is a Heart
 - Simplified: *p* V *q* the playing card is a Queen or a Heart
 - *r* and *p* V *q* are interchangeable

What is the value of *r* if the playing card in question is:

The Ace of Spades?

What is the value of **r** if the playing card in question is: The Ace of Spades? **p** is FALSE, **q** is FALSE, so $p \lor q = F \lor F = FALSE$

What is the value of **r** if the playing card in question is: The Ace of Spades? **p** is FALSE, **q** is FALSE, so $p \lor q = F \lor F = FALSE$ The 2 of Hearts?

What is the value of *r* if the playing card in question is: The Ace of Spades? *p* is FALSE, *q* is FALSE, so $p \lor q = F \lor F = FALSE$ The 2 of Hearts? *p* is FALSE, *q* is TRUE, so $p \lor q = F \lor T = TRUE$

What is the value of *r* if the playing card in question is: The Ace of Spades? *p* is FALSE, *q* is FALSE, so $p \lor q = F \lor F = FALSE$ The 2 of Hearts? *p* is FALSE, *q* is TRUE, so $p \lor q = F \lor T = TRUE$ The Queen of Clubs?

What is the value of *r* if the playing card in question is: The Ace of Spades? *p* is FALSE, *q* is FALSE, so $p \lor q = F \lor F = FALSE$ The 2 of Hearts? *p* is FALSE, *q* is TRUE, so $p \lor q = F \lor T = TRUE$ The Queen of Clubs? *p* is TRUE, *q* is FALSE, so $p \lor q = T \lor F = TRUE$

What is the value of **r** if the playing card in question is:

The Ace of Spades? **p** is FALSE, **q** is FALSE, so $p \lor q = F \lor F = FALSE$

The 2 of Hearts? **p** is FALSE, **q** is TRUE, so $p \lor q = F \lor T = TRUE$

The Queen of Clubs? **p** is TRUE, **q** is FALSE, so $p \lor q = T \lor F = TRUE$

The Queen of Hearts?

What is the value of *r* if the playing card in question is: The Ace of Spades? *p* is FALSE, *q* is FALSE, so $p \lor q = F \lor F = FALSE$ The 2 of Hearts? *p* is FALSE, *q* is TRUE, so $p \lor q = F \lor T = TRUE$ The Queen of Clubs? *p* is TRUE, *q* is FALSE, so $p \lor q = T \lor F = TRUE$ The Queen of Hearts? *p* is TRUE, *q* is TRUE, so $p \lor q = T \lor T = TRUE$

What is the value of *r* if the playing card in question is: The Ace of Spades? *p* is FALSE, *q* is FALSE, so $p \lor q = F \lor F = FALSE$ The 2 of Hearts? *p* is FALSE, *q* is TRUE, so $p \lor q = F \lor T = TRUE$ The Queen of Clubs? *p* is TRUE, *q* is FALSE, so $p \lor q = T \lor F = TRUE$ The Queen of Hearts? *p* is TRUE, *q* is TRUE, so $p \lor q = T \lor T = TRUE$

Note: This is referred to as inclusive or

Let **p** and **q** be propositions.

The exclusive or of **p** and **q**, denoted by **p** \oplus **q** (read XOR) is the statement:

"**p** or **q**, but not both"

and is TRUE when exactly one of *p* and *q* is TRUE, and FALSE otherwise

r: the playing card is a Queen or a Heart (but not both)

- **p**: the playing card is a Queen
- **q**: the playing card is a Heart
- $p \oplus q$: the playing card is a Queen or the playing card is a Heart

What is the value of *r* if the playing card in question is:

The Ace of Spades?

What is the value of **r** if the playing card in question is: The Ace of Spades? **p** is FALSE, **q** is FALSE, so $p \oplus q = F \oplus F = FALSE$

What is the value of r if the playing card in question is: The Ace of Spades? p is FALSE, q is FALSE, so $p \oplus q = F \oplus F = FALSE$ The 2 of Hearts? p is FALSE, q is TRUE, so $p \oplus q = F \oplus T = TRUE$ The Queen of Clubs? p is TRUE, q is FALSE, so $p \oplus q = T \oplus F = TRUE$

What is the value of *r* if the playing card in question is: The Ace of Spades? *p* is FALSE, *q* is FALSE, so $p \oplus q = F \oplus F = FALSE$ The 2 of Hearts? *p* is FALSE, *q* is TRUE, so $p \oplus q = F \oplus T = TRUE$ The Queen of Clubs? *p* is TRUE, *q* is FALSE, so $p \oplus q = T \oplus F = TRUE$ The Queen of Hearts? *p* is TRUE, *q* is TRUE, so $p \oplus q = T \oplus T = FALSE$

Let **p** and **q** be propositions.

The *implication of* \boldsymbol{p} on \boldsymbol{q} , denoted by $\boldsymbol{p} \rightarrow \boldsymbol{q}$ is the statement:

"**p** implies **q**" or "if **p**, then **q**"

and is FALSE when **p** is TRUE, **q** is FALSE, and TRUE otherwise

p is called the hypothesis or antecedent or precedent

q is called the <u>conclusion</u> or <u>consequence</u>

r: If I'm at work, then I'm wearing sneakers

- *p*: I'm at work
- **q**: I'm wearing sneakers
- $p \rightarrow q$: If I'm at work, then I'm wearing sneakers
 - Sometimes called a conditional statement

What if I'm at work but I'm not wearing sneakers?

What if I'm at work but I'm not wearing sneakers? **p** is TRUE, **q** is FALSE, $\mathbf{p} \rightarrow \mathbf{q}$ is T \rightarrow F, which is FALSE

What if I'm at work but I'm not wearing sneakers? **p** is TRUE, **q** is FALSE, $\mathbf{p} \rightarrow \mathbf{q}$ is T \rightarrow F, which is FALSE

What if I'm not at work but I'm wearing sneakers?

What if I'm at work but I'm not wearing sneakers? **p** is TRUE, **q** is FALSE, $\mathbf{p} \rightarrow \mathbf{q}$ is T \rightarrow F, which is FALSE

What if I'm not at work but I'm wearing sneakers? **p** is FALSE, **q** is TRUE, $\mathbf{p} \rightarrow \mathbf{q}$ is $\mathbf{F} \rightarrow \mathbf{T}$, which is TRUE

What if I'm at work but I'm not wearing sneakers? **p** is TRUE, **q** is FALSE, $\mathbf{p} \rightarrow \mathbf{q}$ is T \rightarrow F, which is FALSE

What if I'm not at work but I'm wearing sneakers? **p** is FALSE, **q** is TRUE, $\mathbf{p} \rightarrow \mathbf{q}$ is F \rightarrow T, which is TRUE

If the hypothesis is FALSE, we know nothing about the conclusion

Terminology for Implication

Implication statements can be expressed in many ways.

Some common expressions of $p \rightarrow q$:

- if **p**, then **q**
- **q** if **p**
- *q* when *p*
- q unless not p
- *p* implies *q*
- *p* only if *q*
- **q** whenever **p**
- **p** is sufficient for **q**
- **q** is necessary for **p**
- **q** follows from **p**

<u>Converse</u> of $p \rightarrow q$: $q \rightarrow p$ <u>Contrapositive</u> of $p \rightarrow q$: $\neg q \rightarrow \neg p$ <u>Inverse</u> of $p \rightarrow q$: $\neg p \rightarrow \neg q$

- $r: p \rightarrow q$: If I am drawing, then I am happy
 - *p***:** I am drawing, *q*: I am happy

- $r: p \rightarrow q$: If I am drawing, then I am happy
 - *p***:** I am drawing, *q*: I am happy
- Converse:

- $r: p \rightarrow q$: If I am drawing, then I am happy
 - *p*: I am drawing, *q*: I am happy
- Converse: If I am happy, then I am drawing

- $r: p \rightarrow q$: If I am drawing, then I am happy
 - *p*: I am drawing, *q*: I am happy
- Converse: If I am happy, then I am drawing
- Contrapositive:

- $r: p \rightarrow q$: If I am drawing, then I am happy
 - *p*: I am drawing, *q*: I am happy
- Converse: If I am happy, then I am drawing
- Contrapositive: If I am not happy, then I am not drawing

- $r: p \rightarrow q$: If I am drawing, then I am happy
 - *p*: I am drawing, *q*: I am happy
- Converse: If I am happy, then I am drawing
- Contrapositive: If I am not happy, then I am not drawing
- Inverse:

- $r: p \rightarrow q$: If I am drawing, then I am happy
 - *p*: I am drawing, *q*: I am happy
- Converse: If I am happy, then I am drawing
- Contrapositive: If I am not happy, then I am not drawing
- Inverse: If I am not drawing, then I am not happy

Example

- $r: p \rightarrow q$: If I am drawing, then I am happy
 - *p*: I am drawing, *q*: I am happy
- Converse: If I am happy, then I am drawing
- Contrapositive: If I am not happy, then I am not drawing
- Inverse: If I am not drawing, then I am not happy

Which of these three is equivalent to **r**? (equivalent propositions have the same truth value)
Converse, Contrapositive, and Inverse

Example

- $r: p \rightarrow q$: If I am drawing, then I am happy
 - *p*: I am drawing, *q*: I am happy
- Converse: If I am happy, then I am drawing
- Contrapositive: If I am not happy, then I am not drawing
- Inverse: If I am not drawing, then I am not happy

Which of these three is equivalent to **r**? (equivalent propositions have the same truth value)

Binary Logical Operators: Bidirectional Implication

Let **p** and **q** be propositions.

The *bidirectional implication of* p on q, denoted by $p \Leftrightarrow q$ is the statement:

"**p** if and only if **q**"

and is only TRUE when *p* and *q* have same truth value, FALSE otherwise

Binary Logical Operators: Bidirectional Implication

Example

- You can take the flight if and only if you buy a ticket
 - **p**: you can take the flight
 - *q*: you buy a ticket
 - $p \Leftrightarrow q$: you can take the flight if and only if you buy a ticket

Terminology for Bidirectional Implication

Common expressions for $p \Leftrightarrow q$:

- **p** if and only if **q**
- **p** is necessary and sufficient for **q**
- if **p** then **q**, and conversely
- *p* iff *q*

Outline

Propositional Logic

- Propositions
- Logical Operators
- Truth Tables

Truth Tables

How can we formally specify the behavior of an operator? How can we show the results of applying an operator to one or more propositions?

Truth Tables

How can we formally specify the behavior of an operator?

How can we show the results of applying an operator to one or more propositions?

Truth Tables!

Truth Table

A <u>**Truth Table</u>** lists all possible combinations of truth values of the operands, as well as the resulting truth value in the rightmost column</u>

Truth Tables: Negation Operator

- The negation operator has a single operand
 - \circ $\,$ This operand can either be TRUE or FALSE $\,$
- The truth value of ¬p is the opposite of the truth value of p

р	¬р
F	Т
Т	F

Truth table for negation

Truth Tables: Binary Logical Operators

р	q	p∧q
F	F	F
F	Т	F
Т	F	F
Т	Т	Т

Conjunction/AND

Truth Tables: Binary Logical Operators

p	q	$p \lor q$
F	F	F
F	Т	Т
Т	F	Т
Т	Т	Т

р	q	p ⊕ q
F	F	F
F	Т	Т
Т	F	Т
Т	Т	F

Disjunction/OR

Exclusive Or/XOR

Truth Tables: Binary Logical Operators

p	q	$oldsymbol{p} ightarrow oldsymbol{q}$
F	F	Т
F	Т	Т
Т	F	F
Т	Т	Т

Implication/If ..., then ...

p	q	$p \Leftrightarrow q$
F	F	Т
F	Т	F
Т	F	F
Т	т	Т

Bidirectional Implication/IFF

- Need 2ⁿ rows, where n is the number of propositional variables
 - For $\neg p$ we have 1 variable, therefore $2^1 = 2$ rows
 - For *p* \bigvee *q* we have 2 variables so we need 2² = 4

- We need a row for **every** possible combination of truth values
 - Fill the first half of the first column with F, second half with T

- We need a row for **every** possible combination of truth values
 - Fill the first half of the first column with F, second half with T
 - For the second column: fill the first half of each group of rows with F, second half with T
 - ...continue for additional columns as needed (other than the last column)

- We need a row for every possible combination of truth values
 - Fill the first half of the first column with F, second half with T
 - For the second column: fill the first half of each *group* of rows with F, second half with T
 - ...continue for additional columns as needed (other than the last column)
- Determine the truth value of the new proposition in the last column

- 3 variables = 2^3 = 8 rows
- (optional) Add additional columns to handle partial results
 - In this case, we can evaluate it as (p V q) V r

p	q	r	p∨q	$p \lor q \lor r$

- 3 variables = 2^3 = 8 rows
- (optional) Add additional columns to handle partial results
 - In this case, we can evaluate it as (p V q) V r

р	q	r	p∨q	$p \lor q \lor r$
F				
F				
F				
F				
Т				
Т				
Т				
–				

- 3 variables = $2^3 = 8$ rows
- (optional) Add additional columns to handle partial results
 - In this case, we can evaluate it as (p V q) V r

р	q	r	p∨q	$p \lor q \lor$ r
F	F			
F	F			
F	Т			
F	Т			
Т	F			
Т	F			
Т	Т			
–	–			

- 3 variables = $2^3 = 8$ rows
- (optional) Add additional columns to handle partial results
 - In this case, we can evaluate it as (p V q) V r

р	q	r	p∨q	$p \lor q \lor r$
F	F	F		
F	F	Т		
F	Т	F		
F	Т	Т		
Т	F	F		
Т	F	Т		
Т	Т	F		
–	–	–		

- 3 variables = 2^3 = 8 rows
- (optional) Add additional columns to handle partial results
 - In this case, we can evaluate it as (p V q) V r

р	q	r	p∨q	$p \lor q \lor r$
F	F	F	F	
F	F	Т	F	
F	Т	F	Т	
F	Т	Т	Т	
т	F	F	Т	
т	F	Т	Т	
Т	Т	F	Т	
–	–	–	–	

- 3 variables = 2^3 = 8 rows
- (optional) Add additional columns to handle partial results
 - In this case, we can evaluate it as (p V q) V r

р	q	r	p∨q	$p \lor q \lor r$
F	F	F	F	F
F	F	Т	F	Т
F	Т	F	Т	Т
F	Т	Т	Т	Т
Т	F	F	Т	Т
Т	F	Т	Т	Т
Т	Т	F	Т	т
–		-		–

Compound Propositions

A **<u>compound proposition</u>** is created by using one or more logical operators

Suppose *p* and *q* are propositions.

- Compound proposition: $(p \lor q) \land \neg (p \land q)$
- This new proposition is formed using AND, OR, and NOT

Let **p**: Jim eats pie, **q**: Jim eats cake. What is the above proposition in natural language (ie English)?

Compound Propositions

A **<u>compound proposition</u>** is created by using one or more logical operators

Suppose *p* and *q* are propositions.

- Compound proposition: $(p \lor q) \land \neg (p \land q)$
- This new proposition is formed using AND, OR, and NOT

Let **p**: Jim eats pie, **q**: Jim eats cake. What is the above proposition in natural language (ie English)?

r: Jim eats pie or cake but Jim doesn't eat pie and cake

Consider how we built **r** from **p** and **q**

Identify atomic propositions
 p: Jim eats pie, *q*: Jim eats cake

Consider how we built **r** from **p** and **q**

- Identify atomic propositions
 p: Jim eats pie, *q*: Jim eats cake
- 2. Build up intermediate results $(p \lor q)$: Jim eats pie or cake

 $(p \land q)$: Jim eats pie and cake

Consider how we built **r** from **p** and **q**

- Identify atomic propositions
 p: Jim eats pie, *q*: Jim eats cake
- 2. Build up intermediate results $(p \lor q)$: Jim eats pie or cake

 $(p \land q)$: Jim eats pie and cake

3. Negate the second piece $\neg(p \land q)$: Jim doesn't eat pie and cake

Consider how we built **r** from **p** and **q**

- Identify atomic propositions
 p: Jim eats pie, *q*: Jim eats cake
- 2. Build up intermediate results $(p \lor q)$: Jim eats pie or cake

 $(p \land q)$: Jim eats pie and cake

- 3. Negate the second piece $\neg(p \land q)$: Jim doesn't eat pie and cake
- 4. Finally, put it all together

 $(p \lor q) \land \neg (p \land q)$: Jim eats pie or cake but Jim doesn't eat pie and cake

Consider how we built **r** from **p** and **q**

- Identify atomic propositions
 p: Jim eats pie, *q*: Jim eats cake
- 2. Build up intermediate results $(p \lor q)$: Jim eats pie or cake

 $(p \land q)$: Jim eats pie and cake

3. Negate the second piece $\neg(p \land q)$: Jim doesn't eat pie and cake

4. Finally, put it all together Notice how AND becomes but...

 $(p \lor q) \land \neg (p \land q)$: Jim eats pie or cake but Jim doesn't eat pie and cake

Examples

Let **p**: The window is closed; **q**: It is raining; **r**: I will run the air conditioner

- 1. **¬p**: ???
- 2. *p* ∨ ¬*q*:???
- 3. It is raining but the window is not closed: ???
- 4. If it is not raining then the window is open: ???
- 5. **p ⇔ q:** ???
- 6. *q* ∧ ¬*p* → ¬*r*: ???

Examples

Let **p**: The window is closed; **q**: It is raining; **r**: I will run the air conditioner

- 1. **¬***p*: The window is open
- 2. $p \lor \neg q$: The window is closed or it isn't raining
- 3. It is raining but the window is not closed: $q \land \neg p$
- 4. If it is not raining then the window is open: $\neg q \rightarrow \neg p$
- 5. $p \Leftrightarrow q$: The window is closed if and only if it is raining
- 6. $q \land \neg p \rightarrow \neg r$: If it is raining but the window not closed, then I will not run the AC

Remember: Each logical operator creates a new proposition

- The outcome is a new proposition
- Therefore the outcome must be TRUE or FALSE

We have two ways to view a compound proposition

- Start with the smaller propositions and build up to the larger one
- Start with the larger proposition and decompose

Let's say we want to know if "*r*: Jim eats pie or cake but Jim doesn't eat pie and cake" is true.

Scenario 1: Let's say we know:

- Jim eats cake and Jim eats pie are both true.
- We can evaluate *r* from the ground up as a function of *p* and *q*

Let's say we want to know if "*r*: Jim eats pie or cake but Jim doesn't eat pie and cake" is true.

Scenario 1: Let's say we know:

- Jim eats cake and Jim eats pie are both true.
- We can evaluate **r** from the ground up as a function of **p** and **q**

We have that p = T, q = T

Therefore: $(p \lor q)$ and $(p \land q)$ are both T

¬(p ∧ q) is F

Finally, $(p \lor q) \land \neg (p \land q)$ is $\top \land F$ = F

Therefore *r* is FALSE.

What if we don't know anything about the atomics that form **r**?
What if we don't know anything about the atomics that form **r**? Consider the general case, AKA build the truth table

Consider the general case, AKA build the truth table

р	q	(p ∨ q)	(p ∧ q)	¬(p ∧ q)	$(p \lor q) \land \neg (p \land q)$

Consider the general case, AKA build the truth table

р	q	(p ∨ q)	(p ∧ q)	$(p \lor q) \land \neg (p \land q)$
F	F			
F	Т			
Т	F			
Т	Т			

Consider the general case, AKA build the truth table

р	q	(p ∨ q)	(p ∧ q)	¬(p ∧ q)	$(p \lor q) \land \neg (p \land q)$
F	F	F	F	Т	
F	Т	Т	F	Т	
Т	F	Т	F	Т	
Т	Т	Т	Т	F	

Consider the general case, AKA build the truth table

р	q	(p ∨ q)	(p ∧ q)	¬(p ∧ q)	$(p \lor q) \land \neg (p \land q)$
F	F	F	F	Т	F
F	Т	Т	F	Т	Т
Т	F	Т	F	Т	Т
Т	Т	Т	Т	F	F

р	q	(p ∨ q)	(p ∧ q)	$\neg (p \land q)$	$(p \lor q) \land \neg (p \land q)$ q)
F	F	F	F	Т	F
F	Т	Т	F	Т	Т
Т	F	Т	F	Т	Т
Т	Т	Т	Т	F	F

Scenario 2: *r* is TRUE and *p* is TRUE. What is the truth value of *q*?

р	q	(p V q)	(p ∧ q)	$\neg(p \land q)$	$(p \lor q) \land \neg (p \land q)$ q)
F	F	F	F	Т	F
F	Т	Т	F	Т	Т
Т	F	Т	F	Т	Т
Т	Т	Т	Т	F	F

Scenario 2: *r* is TRUE and *p* is TRUE. What is the truth value of *q***?** FALSE

Operator Precedence

Operator	Precedence
()	0
-	1
Λ	2
V	3
Ð	4
\rightarrow	5
⇔	6

Examples $\neg p \land q$ means $(\neg p) \land q$ $p \land q \rightarrow r$ means $(p \land q) \rightarrow r$ $p \lor q \land r \Leftrightarrow p \rightarrow q \oplus r$ means $(p \lor (q \land r)) \Leftrightarrow (p \rightarrow (q \oplus r))$

When in doubt, use parenthesis!