
Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

CSE 191
Introduction to Discrete Structures

Logical Reasoning and Proof Methods

mailto:epmikida@buffalo.edu


Outline

- Logical Reasoning
- Definition
- Invalid Argument
- Logical Reasoning Rules
- Logical Reasoning Example

- Introduction to Mathematical Proofs



Logical Reasoning: What is it?
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2. They drove you to work
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Suppose the following are TRUE statements:
1. You will buy your friend lunch if they drive you to work
2. They drove you to work

What can you conclude?
You will buy your friend lunch.

Note: This differs from logical equivalence
● Statements derived are not always equivalent
● Can derive new knowledge from multiple facts

Also known as 
deductive reasoning
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● a list of propositions, called hypotheses (also called premises)
● a final proposition, called the conclusion
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Logical Reasoning: Arguments

Arguments are:
● a list of propositions, called hypotheses (also called premises)
● a final proposition, called the conclusion

p1
p2
…
pn

∴ 
c

An argument is valid if (p1 ∧ p2 ∧ … ∧  pn) → c is a tautology
● Otherwise, it is invalid
● Fallacies are incorrect reasonings which lead to invalid arguments

Hypotheses →

Conclusion →

(p1 ∧ p2 ∧ … ∧  pn)

c
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Logical Reasoning: Example

You will buy your friend lunch if they drive you to work

They drove you to work

∴ You will buy your friend lunch

p: You will buy your friend lunch

q: They drove you to work

q → p

q

∴ p

Form of the 
argument

((q → p) ∧ q) → p is a tautology, 
therefore the argument is valid
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p
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Logical Reasoning: Simplest Example

Prove that the following is a valid argument:

Proving this argument is the same as proving p → p is a tautology

Therefore, we have shown it's a valid 
argument

p

∴ p

p p → p

F T

T T



Logical Reasoning: Another Simple Example

Consider the contrapositive as a logical argument

p → q

∴ ￢q → ￢p

￢q → ￢p

∴ p → q 

Proof of Validity:
1. p → q Hypothesis
2. ￢p ∨ q  Conditional law
3. q ∨ ￢p  Commutative law
4. ￢￢q ∨ ￢p Double negation law
5. ￢q → ￢p Conditional law

Proof of Validity:
1. ￢q → ￢p Hypothesis
2. ￢￢q ∨ ￢p  Conditional law
3. q ∨ ￢p  Double negation law
4. ￢p ∨ q Commutative law
5. p → q Conditional law
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Consider the contrapositive as a logical argument

p → q

∴ ￢q → ￢p

￢q → ￢p

∴ p → q 

Proof of Validity:
1. p → q Hypothesis
2. ￢p ∨ q  Conditional law
3. q ∨ ￢p  Commutative law
4. ￢￢q ∨ ￢p Double negation law
5. ￢q → ￢p Conditional law

Proof of Validity:
1. ￢q → ￢p Hypothesis
2. ￢￢q ∨ ￢p  Conditional law
3. q ∨ ￢p  Double negation law
4. ￢p ∨ q Commutative law
5. p → q Conditional law

Note: Here we've shown that the hypothesis is equivalent to the conclusion…this is actually overkill



Logical Reasoning: Proof Definition

A logical proof of an argument is a sequence of steps, each of which 
consists of a proposition and a justification

Each line should contain one of the following:
● a hypothesis (assumption)
● a proposition that is equivalent to a previous statement
● a proposition that is derived by applying an argument to previous statements

Jusificiations should state one of the following:
● hypothesis
● the equivalence law used (and the line it was applied to)
● the argument used (and the line(s) it was applied to)

The last line should be the conclusion
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Logical Reasoning: Invalid Argument

Remember: An argument is valid if (p1 ∧ p2 ∧ … ∧  pn) → c is a tautology

Therefore to show it is invalid, we need a counterexample. A counterexample is a 
situation where the hypotheses are all TRUE, and the conclusion is FALSE.

Example consider the converse as an argument.

Suppose p: FALSE and q: TRUE.
Then p → q is TRUE, but q → p is FALSE.
Therefore the argument is invalid.

p → q

∴ q → p
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Logical Reasoning: Rules of Inference

Rule of Inference Name

Modus Ponens

Modus Tollens

Hypothetical Syllogism

p
p → q
∴ q 

￢q
p → q
∴ ￢p

p → q
q → r

∴ p → r



Logical Reasoning: Rules of Inference

Rule of Inference Name

Disjunctive Syllogism

Addition

Simplification

p ∨ q
￢p
∴ q

p
∴ p ∨ q

p ∧ q
∴ p



Logical Reasoning: Rules of Inference

Rule of Inference Name

Conjunction

Resolution

p
q

∴ p ∧ q

p ∨ q
￢p ∨ r
∴ q ∨ r
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Logical Reasoning Proofs

Using modus ponens: prove modus tollens: 
p

p → q
∴ q

￢q
p → q
∴ ￢p
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Using modus ponens: prove modus tollens:

Proof:

1. ￢q Hypothesis
2. p → q Hypothesis
3. ￢q → ￢p Contrapositive, 2
4. ￢p Modus ponens, 3,1

p
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Logical Reasoning Proofs

Using modus ponens: prove modus tollens:

Proof:

1. ￢q Hypothesis
2. p → q Hypothesis
3. ￢q → ￢p Contrapositive, 2
4. ￢p Modus ponens, 3,1

p
p → q

∴ q → p

￢q
p → q
∴ ￢p

Numbered steps

Justification for each step, 
referencing relevant lines

Last line is the conclusion



Logical Reasoning Proofs

Prove the validity of the following argument:

If you send me an email, then I will finish writing the program

If you do not send me and email, then I will go to sleep early

If I go to sleep early, then I will wake up refreshed

    ∴ If I do not finish writing the program, then I will wake up refreshed
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Prove the validity of the following argument:

If you send me an email, then I will finish writing the program

If you do not send me and email, then I will go to sleep early

If I go to sleep early, then I will wake up refreshed

    ∴ If I do not finish writing the program, then I will wake up refreshed

p: You send me an email
q: I will finish writing the program
r: I will go to sleep early
s: I will wake up feeling refreshed

p → q
￢p → r
r → s

∴ ￢q → s



Logical Reasoning Proofs

Proof

1. p → q Hypothesis
2. ￢q → ￢p Contrapositive, 1
3. ￢p → r Hypothesis
4. ￢q → r Hypothetical Syllogism, 2, 3
5. r → s Hypothesis
6. ￢q → s Hypothetical Syllogism, 4, 5

p → q
￢p → r
r → s

∴ ￢q → s



Logical Reasoning Proofs

Proof that the following argument is valid: (￢f ∨ ￢r) → (h ∧ 
t)
￢t
∴ r



Logical Reasoning Proofs

Proof that the following argument is valid:

Proof:

1. (￢f ∨ ￢r) → (h ∧ t) Hypothesis
2. ￢(f ∧ r) → (h ∧ t) De Morgan's Law, 1
3. ￢(h ∧ t) → (f ∧ r) Contrapositive, 2
4. (￢h ∨ ￢t) → (f ∧ r)      De Morgan's Law, 3
5. ￢t Hypothesis
6. (￢h ∨ ￢t) Addition, 5
7. (f ∧ r) Modus ponens, 4, 6
8. r Simplification, 7

(￢f ∨ ￢r) → (h ∧ 
t)
￢t
∴ r
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Mathematical Proofs

● A mathematical proof is usually "informal"
● More formal than everyday language, less formal than logical proofs

○ More than one rule may be used in a step
○ (Some) steps may be skipped
○ Axioms may be assumed
○ Rules for inference need not be explicitly stated

● Proofs must be a self-contained line of reasoning containing only:
○ facts (axioms)
○ Theorems, lemmas, corollaries (previously proven statements), or
○ statements derived from the above

You cannot use something as fact within a proof if you are not certain that it is



Some Terminology

● Theorem: statement that can be shown true
○ Proposition: less important theorem
○ Lemma: less important theorem used to prove other theorems
○ Corollary: theorem that trivially follows another theorem

● Conjecture: statement proposed to be true, but not yet proven
● Axiom: statement assumed to be true (does not need a proof)
● Most axioms, theorems, etc are universal over some domain

○ ie all perfect squares are non-negative
○ the domain should be clear from context, or explicitly stated



Hidden Universal Quantifier

Example Theorem: If a > b, then a - b > 0

[For all real numbers a and b] if a > b, then a - b > 0

With predicates:
● P(a, b): a > b
● Q(a, b): a - b > 0
● Theorem: ∀a,b,(P(a, b) → Q(a, b))

We can assume a general domain, ℝ (real numbers), because nothing was 
stated otherwise
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Proof Method: Proof by Exhaustion

A proof by exhaustion for p → q starts by considering each element of the 
domain of discourse and showing the predicate is true

Only useful when dealing with a small domain
● Small is relative, but must be finite
● Example: {2,4,6} is a small and finite domain

This is a special type of proof by cases



Proof by Exhaustion Example

Prove that if n is in the domain {2,4,6}, then 3n ≤ 18

Proof idea: Show the predicate is true for n = 2, n = 6, and n = 6

Proof:
n = 2: 3n = 3(2) = 6. We know 6 ≤ 18.
n = 4: 3n = 3(4) = 12. We know 12 ≤ 18.
n = 6: 3n = 3(6) = 18. We know 18 ≤ 18.

∴ for all possible values of n, 3n ≤ 18



Proof by Exhaustion Non-Example

Prove that if n has the form x2 for some integer, x, then n > 0

Proof:

n = 4: Let x = 2, so x2 = 22 = 4. 4 > 0

n = 625: Let x = 25, so x2 = 252 = 625. 625 > 0

n = 900: Let x = -30, so x2 = -302 = 900. 900 > 0

∴ If n = x2 for some integer x, then n > 0
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Proof by Exhaustion Non-Example

Prove that if n has the form x2 for some integer, x, then n > 0

Proof:

n = 4: Let x = 2, so x2 = 22 = 4. 4 > 0

n = 625: Let x = 25, so x2 = 252 = 625. 625 > 0

n = 900: Let x = -30, so x2 = -302 = 900. 900 > 0

∴ If n = x2 for some integer x, then n > 0

Is this true for every n?
 A proof must handle 
every possible scenario.



Proof by Cases

When proving something exhaustively, we can break up the domain into a finite 
number of cases instead of considering each possible value individually

These cases must be exhaustive (consider the entire domain)

Overlap in cases is OK but may introduce redundant work
● For the domain of integers could consider n ≥ 0, n = 0, and n ≤ 0
● Better option: n ≥ 0 and n < 0 or n > 0 and n ≤ 0

Non-exhaustive cases leave possibility for error
● n is positive, and n is negative are non-exaustive (missing case where n = 0)
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Disproof by Counterexample

How can we prove a statement is false?

The theorems we try to prove are generally universally quantified 
implications…so we can disprove them by finding a counterexample

ie: We can prove ∀x,(P(x) → Q(x)) is false by finding a counterexample

This is a value for x, where P(x) is TRUE, and Q(x) is FALSE (T → F = F)
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Disproof by Counterexample

How can we prove a statement is false?

The theorems we try to prove are generally universally quantified 
implications…so we can disprove them by finding a counterexample

ie: We can prove ∀x,(P(x) → Q(x)) is false by finding a counterexample

This is a value for x, where P(x) is TRUE, and Q(x) is FALSE (T → F ≡ F)



Disproof by Counterexample

Find counterexamples for each of the below statements

● Every month of the year has 30 or 31 days
● If n is an integer and n2 is divisible by 4, then n is divisible by 4
● For every positive integer x, x3 < 2x
● Every positive integer can be expressed as the sum of the squares of 

two integers
● Every real number has a multiplicative inverse (xy = 1)
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Direct Proofs

A direct proof for P(x) → Q(x) starts by assuming P(x) as fact, and finishes 
by establishing Q(x)

It makes use of axioms, previously proven theorems, inference rules, etc

Same approach as proving a logical argument is valid
● P(x) is the hypothesis
● Q(x) is the conclusion



Direct Proof Example

Prove that if n is an odd integer, then n2 is also odd

Decomposition of the Statement
●  The domain of x is all integers
● P(x): x is an odd integer
● Q(x): x2 is an odd integer



Direct Proof Example

Prove that if n is an odd integer, then n2 is also odd

Proof
Assume P(n) is TRUE (n is an odd integer)

There exists an integer k s.t. n = 2k + 1
So, n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2 (2k2 + 2k) + 1

Since k is an integer,  2k2 + 2k is also an integer (call it j)
So n2 has the form 2j + 1

Therefore n2 is an odd integer



Direct Proof Example

Prove that if n is an odd integer, then (n + 3) / 2  is an integer

Decomposition of the Statement
●  The domain of x is all integers
● P(x): x is an odd integer
● Q(x): (x + 3) / 2 is an odd integer



Direct Proof Example

Prove that if n is an odd integer, then (n + 3) / 2 is an integer

Proof
Assume P(n) is TRUE (n is an odd integer)

There exists an integer k s.t. n = 2k + 1
So, n + 3 = (2k + 1) + 3 = 2k + 4 = 2 (k + 2)

Then (n + 3) / 2 = (2 (k + 2)) / 2 = k + 2, which is an integer

Therefore (n + 3) / 2 is an integer
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Proof by Contraposition

A proof by contraposition for P(x) → Q(x) is a proof where you:
1. Write a direct proof for ￢Q(x) → ￢P(x)
2. Conclude that the contrapositive, P(x) → Q(x), is also true

Proof Layout:
Assume ￢Q(x)
Perform your derivations (using theorems, axioms, etc)
∴ ￢P(x)

Since ￢Q(x) → ￢P(x) is TRUE, we may conclude that our original 
statement P(x) → Q(x) is also TRUE



Proof by Contraposition Example

Prove that if n is an integer, and 3n + 2 is odd, then n is odd

Decomposition of the Statement
●  The domain of x is all integers
● P(x): 3x + 2 is an odd integer
● Q(x): x is an odd integer



Proof by Contraposition Example

Prove that if n is an integer, and 3n + 2 is odd, then n is odd

Proof by Contraposition
Assume n is not an odd integer. So n is even.

There exists an integer k s.t. n = 2k
So, 3n + 2 = 3 (2k) + 2 = 6k + 2 = 2 (3k + 1)

Since k is an integer, 3k + 1 is also an integer (call it j)
Therefore, 3n + 2 has the form 2j which means it is an even integer (not odd).

Thus,  ￢Q(x) → ￢P(x)
∴ P(x) → Q(x)
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Proof by Contradiction

Note that p is logically equivalent to ￢p → (r ∧ ￢r)

A proof by contradiction for p is actually a proof for ￢p → (r ∧ ￢r) where you:
1. Write a proof starting with the asumption ￢p
2. Find some proposition r where you can derive both r and ￢r to be TRUE         

(a contradiction)

Proof Layout:
Assume ￢p
Find something that breaks
∴ contradiction, so p has to be true



Proof by Contradiction Example

Prove that √2 is not a rational number

Decomposition of the Statement
●  The domain of x is all rational numbers
● P: ∀x, x ≠ √2



Proof by Contradiction Example

Prove that √2 is not a rational number

Proof by Contradiction
Assume that r is a rational number and r = √2



Proof by Contradiction Example

Prove that √2 is not a rational number

Proof by Contradiction
Assume that r is a rational number and r = √2

There exists integers a, b s.t. r = a/b
WLOG, we assume that a and b have no common divisors
Then 2 = r2 = (a/b)2 = a2 / b2



Proof by Contradiction Example

Prove that √2 is not a rational number

Proof by Contradiction
Assume that r is a rational number and r = √2

There exists integers a, b s.t. r = a/b
WLOG, we assume that a and b have no common divisors
Then 2 = r2 = (a/b)2 = a2 / b2

Since 2 = a2 / b2, a2 = 2b2, therefore a2 is an even number, therefore a is also even
So there exists integer i s.t. a = 2i
Plug into a2 = 2b2 to get 4i2 = 2b2 so b2 = 2i2 and we can conclude b is even



Proof by Contradiction Example

Prove that √2 is not a rational number
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Since a and b are both even, they share a common divisor, 2. This is a contradiction
Therefore our original assumption is false, so no rational number = √2
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Prove that √2 is not a rational number

Proof by Contradiction
Assume that r is a rational number and r = √2

There exists integers a, b s.t. r = a/b
WLOG, we assume that a and b have no common divisors
Then 2 = r2 = (a/b)2 = a2 / b2

Since 2 = a2 / b2, a2 = 2b2, therefore a2 is an even number, therefore a is also even
So there exists integer i s.t. a = 2i
Plug into a2 = 2b2 to get 4i2 = 2b2 so b2 = 2i2 and we can conclude b is even

Since a and b are both even, they share a common divisor, 2. This is a contradiction
Therefore our original assumption is false, so no rational number = √2



WLOG: Without Loss of Generality

In the previous example when we say WLOG (without loss of generality):
● We are saying we can consider a reduced fraction without losing the 

generality of our argument
● We can say WLOG when conidering another case would be redundant

○ Suppose we didn't assume a and b had no common divisors
○ The first step of our proof could have been to reduce a/b to lowest terms 

and proceed. So instead we just say WLOG.



Proof by Contradiction Example

A prime number is a an integer > 1, whose only divisors are 1 and itself.

The first few prime numbers: 2, 3, 5, 7, 11, 13, 17 …

At the beginning, prime numbers are dense
● There are 168 between 1 and 1000 (~17%)

As we get bigger the prime numbers get more sparse
● There are 78,498 primes between 1 and 1,000,000 (~8%)

Theorem: There are infinitely many prime numbers



Proof by contradiction that there are infinitely many prime numbers (Euclid 325 - 265 BC)

Assume that there are only finitely many primes, p1, p2, p3, …, pn
Consider the number Q = p1 ⋅ p2 ⋅ p3 ⋅ … ⋅ pn + 1
Is Q a prime number?

For each i, 1 ≤ i ≤ n, Q > pi
By our assumption, p1, p2, p3, …, pn are all of the prime numbers
Therefore Q is not prime

If Q is not prime, it must have a prime factor
So one of pi must be a factor of Q
But Q divided by each pi has a remainder of 1
So no pi divides Q
So Q is a prime number

∴ Contradiction, so our original assumption is false. 
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