CSE 191 Introduction to Discrete Structures

Dr. Eric Mikida epmikida@buffalo.edu 208 Capen Hall

Logical Reasoning and Proof Methods

Outline

- Logical Reasoning
 - Definition
 - Invalid Argument
 - Logical Reasoning Rules
 - Logical Reasoning Example
- Introduction to Mathematical Proofs

Suppose the following are TRUE statements:

- 1. You will buy your friend lunch if they drive you to work
- 2. They drove you to work

What can you conclude?

Suppose the following are TRUE statements:

- 1. You will buy your friend lunch if they drive you to work
- 2. They drove you to work

What can you conclude? You will buy your friend lunch.

Suppose the following are TRUE statements:

- 1. You will buy your friend lunch if they drive you to work
- 2. They drove you to work

What can you conclude? You will buy your friend lunch.

Note: This differs from logical equivalence

- Statements derived are not always equivalent
- Can derive new knowledge from multiple facts

Suppose the following are TRUE statements:

- 1. You will buy your friend lunch if they drive you to work
- 2. They drove you to work

What can you conclude? You will buy your friend lunch.

Note: This differs from logical equivalence

- Statements derived are not always equivalent
- Can derive new knowledge from multiple facts

Also known as deductive reasoning

Logical Reasoning: Arguments

Arguments are:

- a list of propositions, called hypotheses (also called premises)
- a final proposition, called the **conclusion**

Hypotheses
$$\rightarrow \begin{array}{c} p_1 \\ p_2 \\ \vdots \\ p_n \end{array}$$

Conclusion $\rightarrow \begin{array}{c} \vdots \\ c \end{array}$

Logical Reasoning: Arguments

Arguments are:

- a list of propositions, called hypotheses (also called premises)
- a final proposition, called the conclusion

Hypotheses
$$\rightarrow \begin{bmatrix} p_1 \\ p_2 \\ \vdots \\ p_n \end{bmatrix}$$
 $(p_1 \land p_2 \land \ldots \land p_n)$
Conclusion $\rightarrow \vdots \\ c$

An argument is <u>valid</u> if $(p_1 \land p_2 \land ... \land p_n) \rightarrow c$ is a tautology

- Otherwise, it is invalid
- **Fallacies** are incorrect reasonings which lead to invalid arguments

You will buy your friend lunch if they drive you to work

They drove you to work

. You will buy your friend lunch

You will buy your friend lunch if they drive you to work

They drove you to work

. You will buy your friend lunch

p: You will buy your friend lunch

q: They drove you to work

You will buy your friend lunch if they drive you to work

They drove you to work

. You will buy your friend lunch

$$q \rightarrow p$$
 Form of the argument q

p: You will buy your friend lunch

q: They drove you to work

You will buy your friend lunch if they drive you to work

They drove you to work

. You will buy your friend lunch

$$q \rightarrow p$$
 Form of the argument q

p: You will buy your friend lunch

q: They drove you to work

 $(({\pmb q} \to {\pmb p}) \land {\pmb q}) \to {\pmb p}$ is a tautology, therefore the argument is valid

Logical Reasoning: Simplest Example

Prove that the following is a valid argument: $\frac{p}{p}$

Logical Reasoning: Simplest Example

Prove that the following is a valid argument: $\frac{p}{p}$

Proving this argument is the same as proving $p \rightarrow p$ is a tautology

Logical Reasoning: Simplest Example

Prove that the following is a valid argument: $\frac{p}{p}$

Proving this argument is the same as proving $p \rightarrow p$ is a tautology

р	$oldsymbol{ ho} ightarrow oldsymbol{ ho}$
F	Т
Т	Т

Therefore, we have shown it's a valid argument

Logical Reasoning: Another Simple Example

Consider the contrapositive as a logical argument

 $p \rightarrow q$

$$\therefore \neg q \rightarrow \neg p$$

 $\therefore p \rightarrow q$

1. $\boldsymbol{p} \rightarrow \boldsymbol{q}$ 2. ¬p V q 3. **q ∨ ¬p** 5. **¬q** → **¬p**

Hypothesis Conditional law Commutative law 4. $\neg \neg q \lor \neg p$ Double negation law Conditional law

Proof of Validity:

1.
$$\neg q \rightarrow \neg p$$

2. $\neg \neg q \lor \neg p$
3. $q \lor \neg p$
4. $\neg p \lor q$

5. $\boldsymbol{p} \rightarrow \boldsymbol{q}$

Hypothesis Conditional law Double negation law Commutative law Conditional law

Logical Reasoning: Another Simple Example

Consider the contrapositive as a logical argument

 $oldsymbol{
ho}
ightarrow oldsymbol{q}$

$$\neg q \rightarrow \neg p$$

 $\neg q \rightarrow \neg p$ $\therefore p \rightarrow q$

Proof of Validity:

1. $p \rightarrow q$ 2. $\neg p \lor q$ 3. $q \lor \neg p$ 4. $\neg \neg q \lor \neg p$ 5. $\neg q \rightarrow \neg p$

Hypothesis Conditional law Commutative law Double negation law Conditional law **Proof of Validity:**

1.
$$\neg q \rightarrow \neg p$$

2. $\neg \neg q \lor \neg p$
3. $q \lor \neg p$
4. $\neg p \lor q$
5. $p \rightarrow q$

Hypothesis Conditional law Double negation law Commutative law Conditional law

Note: Here we've shown that the hypothesis is equivalent to the conclusion...this is actually overkill

A **logical proof** of an argument is a sequence of steps, each of which consists of a proposition and a justification

A **logical proof** of an argument is a sequence of steps, each of which consists of a proposition and a justification

Each line should contain one of the following:

- a hypothesis (assumption)
- a proposition that is equivalent to a previous statement
- a proposition that is derived by applying an argument to previous statements

A **logical proof** of an argument is a sequence of steps, each of which consists of a proposition and a justification

Each line should contain one of the following:

- a hypothesis (assumption)
- a proposition that is equivalent to a previous statement
- a proposition that is derived by applying an argument to previous statements

Jusificiations should state one of the following:

- hypothesis
- the equivalence law used (and the line it was applied to)
- the argument used (and the line(s) it was applied to)

A **logical proof** of an argument is a sequence of steps, each of which consists of a proposition and a justification

Each line should contain one of the following:

- a hypothesis (assumption)
- a proposition that is equivalent to a previous statement
- a proposition that is derived by applying an argument to previous statements

Jusificiations should state one of the following:

- hypothesis
- the equivalence law used (and the line it was applied to)
- the argument used (and the line(s) it was applied to)

The last line should be the conclusion

Outline

- Logical Reasoning
 - Definition
 - Invalid Argument
 - Logical Reasoning Rules
 - Logical Reasoning Example
- Introduction to Mathematical Proofs

How can we prove an argument is invalid?

Remember: An argument is valid if $(p_1 \land p_2 \land ... \land p_n) \rightarrow c$ is a tautology

Therefore to show it is invalid, we need a **counterexample**. A counterexample is a situation where the hypotheses are all TRUE, and the conclusion is FALSE.

Remember: An argument is valid if $(p_1 \land p_2 \land ... \land p_n) \rightarrow c$ is a tautology

Therefore to show it is invalid, we need a **counterexample**. A counterexample is a situation where the hypotheses are all TRUE, and the conclusion is FALSE.

Example consider the converse as an argument.

p
ightarrow q

Remember: An argument is valid if $(p_1 \land p_2 \land ... \land p_n) \rightarrow c$ is a tautology

Therefore to show it is invalid, we need a **counterexample**. A counterexample is a situation where the hypotheses are all TRUE, and the conclusion is FALSE.

Example consider the converse as an argument.

Suppose *p*: FALSE and *q*: TRUE. $p \rightarrow q$

- Then $p \rightarrow q$ is TRUE, but $q \rightarrow p$ is FALSE.
- $\therefore q \rightarrow p$ Therefore the argument is invalid.

Outline

- Logical Reasoning
 - Definition
 - Invalid Argument
 - Logical Reasoning Rules
 - Logical Reasoning Example
- Introduction to Mathematical Proofs

Logical Reasoning: Rules of Inference

Rule of Inference	Name
$ \begin{array}{c} p\\ \hline p \rightarrow q\\ \hline \vdots q \end{array} $	Modus Ponens
$ \begin{array}{c} \neg q \\ \hline $	Modus Tollens
$ \begin{array}{c} p \rightarrow q \\ \hline $	Hypothetical Syllogism

Logical Reasoning: Rules of Inference

Rule of Inference	Name
$ \begin{array}{c} \rho \lor q \\ \neg p \\ \hline $	Disjunctive Syllogism
$\frac{p}{\therefore p \lor q}$	Addition
$\frac{p \wedge q}{\therefore p}$	Simplification

Logical Reasoning: Rules of Inference

Rule of Inference	Name
$ \begin{array}{c} p\\ q\\ \hline $	Conjunction
$ \begin{array}{c} p \lor q \\ \neg p \lor r \\ \hline $	Resolution

Outline

- Logical Reasoning
 - Definition
 - Invalid Argument
 - Logical Reasoning Rules
 - Logical Reasoning Example
- Introduction to Mathematical Proofs

Proof:

- 1. ¬q Hypothesis
- 2. $\boldsymbol{p} \rightarrow \boldsymbol{q}$ Hypothesis
- 3. $\neg q \rightarrow \neg p$ Contrapositive, 2
- 4. **¬***p* Modus ponens, 3,1

Prove the validity of the following argument:

If you send me an email, then I will finish writing the program

If you do not send me and email, then I will go to sleep early

If I go to sleep early, then I will wake up refreshed

... If I do not finish writing the program, then I will wake up refreshed

Prove the validity of the following argument:

If you send me an email, then I will finish writing the program

If you do not send me and email, then I will go to sleep early

If I go to sleep early, then I will wake up refreshed

... If I do not finish writing the program, then I will wake up refreshed

p: You send me an email *q*: I will finish writing the program *r*: I will go to sleep early *s*: I will wake up feeling refreshed
Prove the validity of the following argument:

If you send me an email, then I will finish writing the program

If you do not send me and email, then I will go to sleep early

If I go to sleep early, then I will wake up refreshed

... If I do not finish writing the program, then I will wake up refreshed

p: You send me an email	$oldsymbol{ ho} ightarrow oldsymbol{q}$
q : I will finish writing the program	$\neg ho ightarrow r$
<i>r</i> : I will go to sleep early	r ightarrow s
s: I will wake up feeling refreshed	$\neg \neg q \rightarrow$

Proof

6. **¬q** → **s**

- **Hypothesis** 1. $p \rightarrow q$ 2. $\neg q \rightarrow \neg p$
 - Contrapositive, 1
- 3. ¬*p* → *r* Hypothesis
- 4. ¬*q* → *r* Hypothetical Syllogism, 2, 3
- Hypothesis 5. $\mathbf{r} \rightarrow \mathbf{s}$
 - Hypothetical Syllogism, 4, 5

 $p \rightarrow q$ eg p
ightarrow r $r \rightarrow s$ $\therefore \neg q \rightarrow s$

Proof that the following argument is valid:

$$(\neg f \lor \neg r) \rightarrow (h \land t)$$

$$\frac{\neg t}{\neg t}$$

Proof that the following argument is valid:

Proof:

- 1. $(\neg f \lor \neg r) \rightarrow (h \land t)$ 2. $\neg (f \land r) \rightarrow (h \land t)$ 3. $\neg (h \land t) \rightarrow (f \land r)$ 4. $(\neg h \lor \neg t) \rightarrow (f \land r)$ 5. $\neg t$ 6. $(\neg h \lor \neg t)$ 7. $(f \land r)$ 8. r
 - *t*) Hypothesis ... r De Morgan's Law, 1 Contrapositive, 2 *r*) De Morgan's Law, 3 Hypothesis Addition, 5 Modus ponens, 4, 6 Simplification, 7

$$(\neg f \lor \neg r) \rightarrow (h \land t)$$

$$\neg t$$

Outline

- Logical Reasoning

- Introduction to Mathematical Proofs

- Terminology
- Proof by Exhaustion
- Disproof by Counterexample
- Direct Proofs
- Proof by Contraposition
- Proof by Contradiction

Mathematical Proofs

- A <u>mathematical proof</u> is usually "informal"
- More formal than everyday language, less formal than logical proofs
 - More than one rule may be used in a step
 - (Some) steps may be skipped
 - Axioms may be assumed
 - Rules for inference need not be explicitly stated
- Proofs must be a self-contained line of reasoning containing only:
 - facts (axioms)
 - Theorems, lemmas, corollaries (previously proven statements), or
 - statements derived from the above

You cannot use something as fact within a proof if you are not certain that it is

Some Terminology

- **Theorem**: statement that can be shown true
 - **Proposition**: less important theorem
 - **Lemma**: less important theorem used to prove other theorems
 - **Corollary**: theorem that trivially follows another theorem
- **Conjecture**: statement proposed to be true, but not yet proven
- **<u>Axiom</u>**: statement assumed to be true (does not need a proof)
- Most axioms, theorems, etc are universal over some domain
 - ie all perfect squares are non-negative
 - the domain should be clear from context, or explicitly stated

Hidden Universal Quantifier

Example Theorem: If **a > b**, then **a - b > 0**

[For all real numbers **a** and **b**] if **a** > **b**, then **a** - **b** > **0**

With predicates:

- *P*(*a*, *b*): *a* > *b*
- Q(a, b): a b > 0
- Theorem: $\forall a, b, (P(a, b) \rightarrow Q(a, b))$

We can assume a general domain, $\mathbb R$ (real numbers), because nothing was stated otherwise

Outline

- Logical Reasoning

- Introduction to Mathematical Proofs

- Terminology
- Proof by Exhaustion
- Disproof by Counterexample
- Direct Proofs
- Proof by Contraposition
- Proof by Contradiction

Proof Method: Proof by Exhaustion

A **proof by exhaustion** for $p \rightarrow q$ starts by considering each element of the domain of discourse and showing the predicate is true

Only useful when dealing with a small domain

- Small is relative, but must be finite
- Example: {2,4,6} is a small and finite domain

This is a special type of proof by cases

Proof by Exhaustion Example

Prove that if **n** is in the domain $\{2,4,6\}$, then $3n \le 18$

Proof idea: Show the predicate is true for *n* = 2, *n* = 6, and *n* = 6

Proof:

n = 2: 3n = 3(2) = 6. We know $6 \le 18$. n = 4: 3n = 3(4) = 12. We know $12 \le 18$. n = 6: 3n = 3(6) = 18. We know $18 \le 18$.

. for all possible values of n, $3n \le 18$

Proof by Exhaustion Non-Example

Prove that if **n** has the form x^2 for some integer, **x**, then **n** > **0**

Proof:

$$n = 4$$
: Let $x = 2$, so $x^2 = 2^2 = 4$. $4 > 0$

n = 900: Let x = -30, so $x^2 = -30^2 = 900$. 900 > 0

. If $n = x^2$ for some integer x, then n > 0

Proof by Exhaustion Non-Example

Prove that if **n** has the form x^2 for some integer, **x**, then **n** > **0**

Proof:

n = 625: Let x = 25, so $x^2 = 25^2 = 625$. 625 > 0

Is this true for every **n**? A proof must handle every possible scenario.

n = 900: Let x = -30, so $x^2 = -30^2 = 900$. 900 > 0

. If $n = x^2$ for some integer x, then n > 0

Proof by Exhaustion Non-Example

Prove that if **n** has the form x^2 for some integer, **x**, then **n** > **0**

Is this true for every **n**? A proof must handle every possible scenario.

Proof by Cases

When proving something exhaustively, we can break up the domain into a finite number of cases instead of considering each possible value individually

These cases must be exhaustive (consider the **entire domain**)

Overlap in cases is OK but may introduce redundant work

- For the domain of integers could consider $n \ge 0$, n = 0, and $n \le 0$
- Better option: $n \ge 0$ and n < 0 or n > 0 and $n \le 0$

Non-exhaustive cases leave possibility for error

• **n** is positive, and **n** is negative are non-exaustive (missing case where **n** = **0**)

Outline

- Logical Reasoning

- Introduction to Mathematical Proofs

- Terminology
- Proof by Exhaustion
- Disproof by Counterexample
- Direct Proofs
- Proof by Contraposition
- Proof by Contradiction

How can we prove a statement is false?

How can we prove a statement is false?

The theorems we try to prove are generally universally quantified implications...so we can disprove them by finding a counterexample

How can we prove a statement is false?

The theorems we try to prove are generally universally quantified implications...so we can disprove them by finding a counterexample

ie: We can prove $\forall x, (P(x) \rightarrow Q(x))$ is false by finding a counterexample

This is a value for **x**, where **P**(**x**) is TRUE, and **Q**(**x**) is FALSE ($T \rightarrow F \equiv F$)

Find counterexamples for each of the below statements

- Every month of the year has 30 or 31 days
- If **n** is an integer and n^2 is divisible by 4, then **n** is divisible by 4
- For every positive integer x, $x^3 < 2x$
- Every positive integer can be expressed as the sum of the squares of two integers
- Every real number has a multiplicative inverse (**xy** = 1)

Outline

- Logical Reasoning

- Introduction to Mathematical Proofs

- Terminology
- Proof by Exhaustion
- Disproof by Counterexample
- Direct Proofs
- Proof by Contraposition
- Proof by Contradiction

Direct Proofs

A <u>direct proof</u> for $P(x) \rightarrow Q(x)$ starts by assuming P(x) as fact, and finishes by establishing Q(x)

It makes use of axioms, previously proven theorems, inference rules, etc

Same approach as proving a logical argument is valid

- **P(x)** is the hypothesis
- Q(x) is the conclusion

Prove that if n is an odd integer, then n^2 is also odd

Decomposition of the Statement

- The domain of **x** is all integers
- **P(x): x** is an odd integer
- Q(x): x² is an odd integer

Prove that if \mathbf{n} is an odd integer, then \mathbf{n}^2 is also odd

Proof

Assume *P***(n)** is TRUE (*n* is an odd integer)

There exists an integer k s.t. n = 2k + 1So, $n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$

Since **k** is an integer, $2k^2 + 2k$ is also an integer (call it **j**) So n^2 has the form 2j + 1

Therefore n^2 is an odd integer

Prove that if **n** is an odd integer, then (**n + 3**) / **2** is an integer

Decomposition of the Statement

- The domain of **x** is all integers
- **P(x): x** is an odd integer
- Q(x): (x + 3) / 2 is an odd integer

Prove that if **n** is an odd integer, then (**n + 3**) / **2** is an integer

Proof

Assume **P**(**n**) is TRUE (**n** is an odd integer)

There exists an integer k s.t. n = 2k + 1So, n + 3 = (2k + 1) + 3 = 2k + 4 = 2 (k + 2)

Then (n + 3) / 2 = (2 (k + 2)) / 2 = k + 2, which is an integer

Therefore (n + 3) / 2 is an integer

Outline

- Logical Reasoning

- Introduction to Mathematical Proofs

- Terminology
- Proof by Exhaustion
- Disproof by Counterexample
- Direct Proofs
- Proof by Contraposition
- Proof by Contradiction
- Proof Examples

Proof by Contraposition

A proof by contraposition for $P(x) \rightarrow Q(x)$ is a proof where you:

- 1. Write a direct proof for $\neg Q(x) \rightarrow \neg P(x)$
- 2. Conclude that the contrapositive, $P(x) \rightarrow Q(x)$, is also true

Proof Layout:

Assume $\neg Q(x)$ Perform your derivations (using theorems, axioms, etc) $\therefore \neg P(x)$

Since $\neg Q(x) \rightarrow \neg P(x)$ is TRUE, we may conclude that our original statement $P(x) \rightarrow Q(x)$ is also TRUE

Prove that if **n** is an integer, and **3n + 2** is odd, then **n** is odd

Decomposition of the Statement

- The domain of **x** is all integers
- **P(x): 3x + 2** is an odd integer
- Q(x): x is an odd integer

Prove that if *n* is an integer, and **3n + 2** is odd, then *n* is odd

Proof by Contraposition

Assume *n* is not an odd integer. So *n* is even.

There exists an integer k s.t. n = 2kSo, 3n + 2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1)

Since **k** is an integer, **3k + 1** is also an integer (call it **j**)

Therefore, **3n + 2** has the form **2j** which means it is an even integer (not odd).

Thus, $\neg Q(x) \rightarrow \neg P(x)$ $\therefore P(x) \rightarrow Q(x)$

Outline

- Logical Reasoning

- Introduction to Mathematical Proofs

- Terminology
- Proof by Exhaustion
- Disproof by Counterexample
- Direct Proofs
- Proof by Contraposition
- Proof by Contradiction

Proof by Contradiction

Note that **p** is logically equivalent to $\neg p \rightarrow (r \land \neg r)$

A **proof by contradiction** for **p** is actually a proof for $\neg p \rightarrow (r \land \neg r)$ where you:

- 1. Write a proof starting with the asumption **¬***p*
- 2. Find some proposition **r** where you can derive both **r** and **¬r** to be TRUE (a contradiction)

Proof Layout:

Assume ¬p

Find something that breaks

. contradiction, so **p** has to be true

Prove that $\sqrt{2}$ is not a rational number

Decomposition of the Statement

- The domain of **x** is all rational numbers
- *P*: $\forall x, x \neq \sqrt{2}$

Prove that $\sqrt{2}$ is not a rational number

Proof by Contradiction

Assume that **r** is a rational number and $r = \sqrt{2}$

Prove that $\sqrt{2}$ is not a rational number

Proof by Contradiction

Assume that **r** is a rational number and $r = \sqrt{2}$

There exists integers **a**, **b** s.t. r = a/bWLOG, we assume that **a** and **b** have no common divisors Then $2 = r^2 = (a/b)^2 = a^2 / b^2$

Prove that $\sqrt{2}$ is not a rational number

Proof by Contradiction

Assume that r is a rational number and $r = \sqrt{2}$

There exists integers **a**, **b** s.t. r = a/bWLOG, we assume that **a** and **b** have no common divisors Then $2 = r^2 = (a/b)^2 = a^2 / b^2$

Since $2 = a^2 / b^2$, $a^2 = 2b^2$, therefore a^2 is an even number, therefore a is also even So there exists integer i s.t. a = 2iPlug into $a^2 = 2b^2$ to get $4i^2 = 2b^2$ so $b^2 = 2i^2$ and we can conclude b is even
Proof by Contradiction Example

Prove that $\sqrt{2}$ is not a rational number

Proof by Contradiction

Assume that r is a rational number and $r = \sqrt{2}$

There exists integers **a**, **b** s.t. r = a/bWLOG, we assume that **a** and **b** have no common divisors Then $2 = r^2 = (a/b)^2 = a^2 / b^2$

Since $2 = a^2 / b^2$, $a^2 = 2b^2$, therefore a^2 is an even number, therefore a is also even So there exists integer i s.t. a = 2iPlug into $a^2 = 2b^2$ to get $4i^2 = 2b^2$ so $b^2 = 2i^2$ and we can conclude b is even

Since **a** and **b** are both even, they share a common divisor, 2. This is a contradiction Therefore our original assumption is false, so no rational number = $\sqrt{2}$

Proof by Contradiction Example

Prove that $\sqrt{2}$ is not a rational number

Proof by Contradiction

Assume that **r** is a rational number and $r = \sqrt{2}$

There exists integers **a**, **b** s.t. r = a/bWLOG, we assume that **a** and **b** have no common divisors Then $2 = r^2 = (a/b)^2 = a^2 / b^2$

Since $2 = a^2 / b^2$, $a^2 = 2b^2$, therefore a^2 is an even number, therefore a is also even So there exists integer i s.t. a = 2iPlug into $a^2 = 2b^2$ to get $4i^2 = 2b^2$ so $b^2 = 2i^2$ and we can conclude b is even

Since *a* and *b* are both even, they share a common divisor, 2. This is a contradiction Therefore our original assumption is false, so no rational number = $\sqrt{2}$

WLOG: Without Loss of Generality

In the previous example when we say WLOG (without loss of generality):

- We are saying we can consider a reduced fraction without losing the generality of our argument
- We can say WLOG when conidering another case would be redundant
 - Suppose we didn't assume a and b had no common divisors
 - The first step of our proof could have been to reduce a/b to lowest terms and proceed. So instead we just say WLOG.

Proof by Contradiction Example

A **prime number** is a an integer > 1, whose only divisors are 1 and itself.

The first few prime numbers: 2, 3, 5, 7, 11, 13, 17 ...

At the beginning, prime numbers are **dense**

• There are 168 between 1 and 1000 (~17%)

As we get bigger the prime numbers get more **sparse**

• There are 78,498 primes between 1 and 1,000,000 (~8%)

Theorem: There are infinitely many prime numbers

Assume that there are only finitely many primes, $p_1, p_2, p_3, ..., p_n$ Consider the number $Q = p_1 \cdot p_2 \cdot p_3 \cdot ... \cdot p_n + 1$ Is Q a prime number?

For each *i*, 1 ≤ *i* ≤ *n*, *Q* > *p*_{*i*}

By our assumption, $p_1, p_2, p_3, ..., p_n$ are all of the prime numbers Therefore **Q** is not prime

If **Q** is not prime, it must have a prime factor So one of **p**_i must be a factor of **Q** But **Q** divided by each **p**_i has a remainder of 1 So no **p**_i divides **Q** So **Q** is a prime number

Contradiction, so our original assumption is false.

Assume that there are only finitely many primes, $p_1, p_2, p_3, ..., p_n$ Consider the number $Q = p_1 \cdot p_2 \cdot p_3 \cdot ... \cdot p_n + 1$ Is Q a prime number?

For each *i*, 1 ≤ *i* ≤ *n*, *Q* > *p*_{*i*}

By our assumption, $p_1, p_2, p_3, ..., p_n$ are all of the prime numbers **Therefore Q is not prime**

If **Q** is not prime, it must have a prime factor So one of **p**_i must be a factor of **Q** But **Q** divided by each **p**_i has a remainder of 1 So no **p**_i divides **Q So Q is a prime number**

Contradiction, so our original assumption is false.