CSE 191
 Introduction to Discrete Structures

Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

Logical Reasoning and Proof Methods

Outline

- Logical Reasoning
- Definition
- Invalid Argument
- Logical Reasoning Rules
- Logical Reasoning Example
- Introduction to Mathematical Proofs

Logical Reasoning: What is it?

Suppose the following are TRUE statements:

1. You will buy your friend lunch if they drive you to work
2. They drove you to work

What can you conclude?

Logical Reasoning: What is it?

Suppose the following are TRUE statements:

1. You will buy your friend lunch if they drive you to work
2. They drove you to work

What can you conclude?
You will buy your friend lunch.

Logical Reasoning: What is it?

Suppose the following are TRUE statements:

1. You will buy your friend lunch if they drive you to work
2. They drove you to work

> What can you conclude? You will buy your friend lunch.

Note: This differs from logical equivalence

- Statements derived are not always equivalent
- Can derive new knowledge from multiple facts

Logical Reasoning: What is it?

Suppose the following are TRUE statements:

1. You will buy your friend lunch if they drive you to work
2. They drove you to work

> What can you conclude?
> You will buy your friend lunch.

Note: This differs from logical equivalence

Also known as
deductive reasoning

- Statements derived are not always equivalent
- Can derive new knowledge from multiple facts

Logical Reasoning: Arguments

Arguments are:

- a list of propositions, called hypotheses (also called premises)
- a final proposition, called the conclusion

$$
\begin{aligned}
& \text { Hypotheses } \rightarrow \begin{array}{|l|}
\hline p_{1} \\
p_{2} \\
\ldots \\
p_{\mathrm{n}}
\end{array} \\
& \text { Conclusion } \rightarrow \begin{array}{l}
\therefore \\
c
\end{array}
\end{aligned}
$$

Logical Reasoning: Arguments

Arguments are:

- a list of propositions, called hypotheses (also called premises)
- a final proposition, called the conclusion

An argument is valid if $\left(p_{1} \wedge p_{2} \wedge \ldots \wedge p_{n}\right) \rightarrow c$ is a tautology

- Otherwise, it is invalid
- Fallacies are incorrect reasonings which lead to invalid arguments

Logical Reasoning: Example

You will buy your friend lunch if they drive you to work
They drove you to work
\therefore You will buy your friend lunch

Logical Reasoning: Example

You will buy your friend lunch if they drive you to work
They drove you to work
\therefore You will buy your friend lunch
p: You will buy your friend lunch
q : They drove you to work

Logical Reasoning: Example

You will buy your friend lunch if they drive you to work
They drove you to work
\therefore You will buy your friend lunch
p: You will buy your friend lunch
q : They drove you to work

Logical Reasoning: Example

You will buy your friend lunch if they drive you to work
They drove you to work
\therefore You will buy your friend lunch
p: You will buy your friend lunch
q : They drove you to work
$((\boldsymbol{q} \rightarrow \boldsymbol{p}) \wedge \boldsymbol{q}) \rightarrow \boldsymbol{p}$ is a tautology, therefore the argument is valid

Logical Reasoning: Simplest Example

Prove that the following is a valid argument: $\frac{\boldsymbol{p}}{\therefore \boldsymbol{p}}$

Logical Reasoning: Simplest Example

Prove that the following is a valid argument: $\frac{p}{\therefore p}$

Proving this argument is the same as proving $\boldsymbol{p} \rightarrow \boldsymbol{p}$ is a tautology

Logical Reasoning: Simplest Example

Prove that the following is a valid argument: $\frac{\boldsymbol{p}}{\therefore \boldsymbol{p}}$

Proving this argument is the same as proving $\boldsymbol{p} \rightarrow \boldsymbol{p}$ is a tautology

\boldsymbol{p}	$\boldsymbol{p} \rightarrow \boldsymbol{p}$
F	T
T	T

Therefore, we have shown it's a valid argument

Logical Reasoning: Another Simple Example

Consider the contrapositive as a logical argument

$$
\begin{gathered}
p \rightarrow q \\
\therefore \neg q \rightarrow \neg p
\end{gathered}
$$

Proof of Validity:

1. $\boldsymbol{p} \rightarrow \boldsymbol{q}$
2. $\neg \boldsymbol{p} \vee \mathbf{q}$
3. $q \vee \neg p$
4. $\neg \neg q \vee \neg p \quad$ Double negation law
5. $\neg \boldsymbol{q} \rightarrow \neg \boldsymbol{p} \quad$ Conditional law

Hypothesis
Conditional law
Commutative law

$$
\neg q \rightarrow \neg p
$$

$$
\therefore p \rightarrow q
$$

Proof of Validity:

1. $\neg q \rightarrow \neg \boldsymbol{p} \quad$ Hypothesis
2. $\neg \neg q \vee \neg p \quad$ Conditional law
3. $\boldsymbol{q} \vee \neg \boldsymbol{p} \quad$ Double negation law
4. $\neg \mathbf{p} \vee q$ Commutative law
5. $\boldsymbol{p} \rightarrow \boldsymbol{q} \quad$ Conditional law

Logical Reasoning: Another Simple Example

Consider the contrapositive as a logical argument

Proof of Validity:

1. $\boldsymbol{p} \rightarrow \boldsymbol{q}$
2. $\neg \boldsymbol{p} \vee \mathbf{q}$
3. $q \vee \neg p$
4. $\neg \neg q \vee \neg p$ Double negation law
5. $\neg \boldsymbol{q} \rightarrow \neg \boldsymbol{p} \quad$ Conditional law

Hypothesis
Conditional law
Commutative law

$$
\begin{aligned}
& \neg q \rightarrow \neg p \\
& \therefore p \rightarrow q
\end{aligned}
$$

Proof of Validity:

1. $\neg q \rightarrow \neg \boldsymbol{p} \quad$ Hypothesis
2. $\neg \neg q \vee \neg p \quad$ Conditional law
3. $\boldsymbol{q} \vee \neg \boldsymbol{p} \quad$ Double negation law
4. $\neg \mathbf{p} \vee q$ Commutative law
5. $\boldsymbol{p} \rightarrow \boldsymbol{q} \quad$ Conditional law

Logical Reasoning: Proof Definition

A logical proof of an argument is a sequence of steps, each of which consists of a proposition and a justification

Logical Reasoning: Proof Definition

A logical proof of an argument is a sequence of steps, each of which consists of a proposition and a justification

Each line should contain one of the following:

- a hypothesis (assumption)
- a proposition that is equivalent to a previous statement
- a proposition that is derived by applying an argument to previous statements

Logical Reasoning: Proof Definition

A logical proof of an argument is a sequence of steps, each of which consists of a proposition and a justification

Each line should contain one of the following:

- a hypothesis (assumption)
- a proposition that is equivalent to a previous statement
- a proposition that is derived by applying an argument to previous statements

Jusificiations should state one of the following:

- hypothesis
- the equivalence law used (and the line it was applied to)
- the argument used (and the line(s) it was applied to)

Logical Reasoning: Proof Definition

A logical proof of an argument is a sequence of steps, each of which consists of a proposition and a justification

Each line should contain one of the following:

- a hypothesis (assumption)
- a proposition that is equivalent to a previous statement
- a proposition that is derived by applying an argument to previous statements

Jusificiations should state one of the following:

- hypothesis
- the equivalence law used (and the line it was applied to)
- the argument used (and the line(s) it was applied to)

The last line should be the conclusion

Outline

- Logical Reasoning
- Definition
- Invalid Argument
- Logical Reasoning Rules
- Logical Reasoning Example
- Introduction to Mathematical Proofs

Logical Reasoning: Invalid Argument

How can we prove an argument is invalid?

Logical Reasoning: Invalid Argument

Remember: An argument is valid if $\left(p_{1} \wedge p_{2} \wedge \ldots \wedge p_{n}\right) \rightarrow c$ is a tautology
Therefore to show it is invalid, we need a counterexample. A counterexample is a situation where the hypotheses are all TRUE, and the conclusion is FALSE.

Logical Reasoning: Invalid Argument

Remember: An argument is valid if $\left(p_{1} \wedge p_{2} \wedge \ldots \wedge p_{n}\right) \rightarrow c$ is a tautology
Therefore to show it is invalid, we need a counterexample. A counterexample is a situation where the hypotheses are all TRUE, and the conclusion is FALSE.

Example consider the converse as an argument.

$$
\begin{gathered}
p \rightarrow q \\
\therefore q \rightarrow p
\end{gathered}
$$

Logical Reasoning: Invalid Argument

Remember: An argument is valid if $\left(p_{1} \wedge p_{2} \wedge \ldots \wedge p_{n}\right) \rightarrow c$ is a tautology

Therefore to show it is invalid, we need a counterexample. A counterexample is a situation where the hypotheses are all TRUE, and the conclusion is FALSE.

Example consider the converse as an argument.

$$
p \rightarrow q
$$

$\therefore q \rightarrow p$
Suppose \boldsymbol{p} : FALSE and \mathbf{q} : TRUE.
Then $\boldsymbol{p} \rightarrow \boldsymbol{q}$ is TRUE, but $\boldsymbol{q} \rightarrow \boldsymbol{p}$ is FALSE.
Therefore the argument is invalid.

Outline

- Logical Reasoning
- Definition
- Invalid Argument
- Logical Reasoning Rules
- Logical Reasoning Example
- Introduction to Mathematical Proofs

Logical Reasoning: Rules of Inference

Rule of Inference	Name
$\begin{gathered} p \\ p \rightarrow q \\ \hline \therefore q \end{gathered}$	Modus Ponens
$\begin{gathered} \neg q \\ p \rightarrow q \\ \hline \therefore \neg p \end{gathered}$	Modus Tollens
$\begin{gathered} p \rightarrow q \\ q \rightarrow r \\ \hline \therefore p \rightarrow r \end{gathered}$	Hypothetical Syllogism

Logical Reasoning: Rules of Inference

Rule of Inference	Name
$\frac{\boldsymbol{p} \vee \boldsymbol{q}}{\boldsymbol{\sim} \boldsymbol{p}}$	
$\therefore \boldsymbol{q}$	Disjunctive Syllogism
$\frac{\boldsymbol{p}}{\therefore \boldsymbol{p} \vee \boldsymbol{q}}$	Addition
$\frac{\boldsymbol{p} \wedge \boldsymbol{q}}{\therefore \boldsymbol{p}}$	Simplification

Logical Reasoning: Rules of Inference

Rule of Inference	Name
\boldsymbol{p}	Conjunction
$\quad \therefore \boldsymbol{q} \wedge \boldsymbol{q}$	Resolution
$\boldsymbol{p \vee q}$	
$\therefore \boldsymbol{q} \vee \boldsymbol{r}$	
$\boldsymbol{q} \vee \mathbf{r}$	

Outline

- Logical Reasoning
- Definition
- Invalid Argument
- Logical Reasoning Rules
- Logical Reasoning Example
- Introduction to Mathematical Proofs

Logical Reasoning Proofs

Using modus ponens: $\frac{\boldsymbol{p} \rightarrow \boldsymbol{q}}{\therefore q}$

prove modus tollens:
 $\frac{p \rightarrow q}{\therefore \neg p}$

Logical Reasoning Proofs

Proof:

1. $\neg q \quad$ Hypothesis
2. $\boldsymbol{p} \rightarrow \boldsymbol{q}$

Hypothesis
3. $\neg q \rightarrow \neg p$ Contrapositive, 2
4. $\neg p$

Modus ponens, 3,1

Logical Reasoning Proofs

Proof:

Numbered steps

1.	$\neg \boldsymbol{q}$	Hypothesis
2.	$\boldsymbol{p} \rightarrow \boldsymbol{q}$	Hypothesis
3. $\neg \boldsymbol{q} \rightarrow \neg \boldsymbol{p}$	Contrapositive, 2	
4. $\neg \boldsymbol{p}$	Modus ponens, $3,1$.	

Justification for each step, referencing relevant lines

Logical Reasoning Proofs

Prove the validity of the following argument:

If you send me an email, then I will finish writing the program
If you do not send me and email, then I will go to sleep early If I go to sleep early, then I will wake up refreshed
\therefore If I do not finish writing the program, then I will wake up refreshed

Logical Reasoning Proofs

Prove the validity of the following argument:

If you send me an email, then I will finish writing the program
If you do not send me and email, then I will go to sleep early
If I go to sleep early, then I will wake up refreshed
\therefore If I do not finish writing the program, then I will wake up refreshed
p: You send me an email
\boldsymbol{q} : I will finish writing the program
r: I will go to sleep early
s: I will wake up feeling refreshed

Logical Reasoning Proofs

Prove the validity of the following argument:

If you send me an email, then I will finish writing the program
If you do not send me and email, then I will go to sleep early
If I go to sleep early, then I will wake up refreshed
\therefore If I do not finish writing the program, then I will wake up refreshed
p: You send me an email

$$
\begin{gathered}
p \rightarrow q \\
\neg p \rightarrow r \\
r \rightarrow s \\
\hline \therefore \neg q \rightarrow s
\end{gathered}
$$

\mathbf{q} : I will finish writing the program
r: I will go to sleep early
s: I will wake up feeling refreshed

Logical Reasoning Proofs

Proof

1. $p \rightarrow q$
2. $\neg q \rightarrow \neg p$
3. $\neg p \rightarrow r$
4. $\neg q \rightarrow r$
5. $r \rightarrow s$
6. $\neg q \rightarrow s$

Hypothesis
Contrapositive, 1
Hypothesis
Hypothetical Syllogism, 2, 3
Hypothesis
Hypothetical Syllogism, 4, 5

Logical Reasoning Proofs

Proof that the following argument is valid:

$$
\begin{aligned}
& (\neg f \vee \neg r) \rightarrow(h \wedge \\
& t) \\
& \neg t \\
& \therefore \mathrm{r}
\end{aligned}
$$

Logical Reasoning Proofs

Proof that the following argument is valid: Proof:

1. $(\neg f \vee \neg r) \rightarrow(h \wedge t)$	Hypothesis $\quad \mathrm{n}$. r
2. $\neg(\boldsymbol{f} \wedge \boldsymbol{r}) \rightarrow(\boldsymbol{h} \wedge \boldsymbol{t})$	De Morgan's Law, 1
3. $\neg(h \wedge t) \rightarrow(f \wedge r)$	Contrapositive, 2
4. $(\neg h \vee \neg t) \rightarrow(f \wedge r)$	De Morgan's Law, 3
5. $\rightarrow t$	Hypothesis
6. ($\neg \boldsymbol{}$, \downarrow t)	Addition, 5
7. (f \wedge r)	Modus ponens, 4, 6
8. r	Simplification, 7

Outline

- Logical Reasoning
- Introduction to Mathematical Proofs
- Terminology
- Proof by Exhaustion
- Disproof by Counterexample
- Direct Proofs
- Proof by Contraposition
- Proof by Contradiction

Mathematical Proofs

- A mathematical proof is usually "informal"
- More formal than everyday language, less formal than logical proofs
- More than one rule may be used in a step
- (Some) steps may be skipped
- Axioms may be assumed
- Rules for inference need not be explicitly stated
- Proofs must be a self-contained line of reasoning containing only:
- facts (axioms)
- Theorems, lemmas, corollaries (previously proven statements), or
- statements derived from the above

You cannot use something as fact within a proof if you are not certain that it is

Some Terminology

- Theorem: statement that can be shown true
- Proposition: less important theorem
- Lemma: less important theorem used to prove other theorems
- Corollary: theorem that trivially follows another theorem
- Conjecture: statement proposed to be true, but not yet proven
- Axiom: statement assumed to be true (does not need a proof)
- Most axioms, theorems, etc are universal over some domain
- ie all perfect squares are non-negative
- the domain should be clear from context, or explicitly stated

Hidden Universal Quantifier

Example Theorem: If $\boldsymbol{a}>\boldsymbol{b}$, then $\boldsymbol{a}-\boldsymbol{b}>\mathbf{0}$
[For all real numbers \boldsymbol{a} and \boldsymbol{b}] if $\boldsymbol{a}>\boldsymbol{b}$, then $\boldsymbol{a}-\boldsymbol{b}>\mathbf{0}$
With predicates:

- $P(a, b): a>b$
- $Q(a, b): a-b>0$
- Theorem: $\forall a, b,(P(a, b) \rightarrow Q(a, b))$

We can assume a general domain, 芭 (real numbers), because nothing was stated otherwise

Outline

- Logical Reasoning
- Introduction to Mathematical Proofs
- Terminology
- Proof by Exhaustion
- Disproof by Counterexample
- Direct Proofs
- Proof by Contraposition
- Proof by Contradiction

Proof Method: Proof by Exhaustion

A proof by exhaustion for $\boldsymbol{p} \rightarrow \boldsymbol{q}$ starts by considering each element of the domain of discourse and showing the predicate is true

Only useful when dealing with a small domain

- Small is relative, but must be finite
- Example: $\{2,4,6\}$ is a small and finite domain

This is a special type of proof by cases

Proof by Exhaustion Example

Prove that if \boldsymbol{n} is in the domain $\{2,4,6\}$, then $3 n \leq 18$
Proof idea: Show the predicate is true for $\boldsymbol{n}=\mathbf{2 , n = 6}$, and $\boldsymbol{n}=\mathbf{6}$
Proof:
$n=2: 3 n=3(2)=6$. We know $6 \leq 18$.
$n=4: 3 n=3(4)=12$. We know $12 \leq 18$.
$n=6: 3 n=3(6)=18$. We know $18 \leq 18$.
\therefore for all possible values of $n, 3 n \leq 18$

Proof by Exhaustion Non-Example

Prove that if \boldsymbol{n} has the form \boldsymbol{x}^{2} for some integer, \boldsymbol{x}, then $\boldsymbol{n}>\boldsymbol{0}$

Proof:

$n=4$: Let $x=2$, so $x^{2}=2^{2}=4.4>0$
$n=625$: Let $x=25$, so $x^{2}=25^{2}=625.625>0$
$n=900$: Let $x=-30$, so $x^{2}=-30^{2}=900.900>0$
\therefore If $\boldsymbol{n}=\boldsymbol{x}^{2}$ for some integer \boldsymbol{x}, then $\boldsymbol{n}>0$

Proof by Exhaustion Non-Example

Prove that if \boldsymbol{n} has the form $\boldsymbol{x}^{\mathbf{2}}$ for some integer, \boldsymbol{x}, then $\boldsymbol{n}>\boldsymbol{0}$

Proof:

$n=4$: Let $x=2$, so $x^{2}=2^{2}=4.4>0$
$n=625$: Let $x=25$, so $x^{2}=25^{2}=625.625>0$
Is this true for every \boldsymbol{n} ?
A proof must handle every possible scenario.
$n=900$: Let $x=-30$, so $x^{2}=-30^{2}=900.900>0$
\therefore If $\boldsymbol{n}=\boldsymbol{x}^{2}$ for some integer \boldsymbol{x}, then $\boldsymbol{n}>\mathbf{0}$

Proof by Exhaustion Non-Example

Prove that if \boldsymbol{n} has the form \boldsymbol{x}^{2} for some integer, \boldsymbol{x}, then $\boldsymbol{n} \boldsymbol{>} \mathbf{0}$

Is this true for every \boldsymbol{n} ? A proof must handle every possible scenario.

Proof by Cases

When proving something exhaustively, we can break up the domain into a finite number of cases instead of considering each possible value individually

These cases must be exhaustive (consider the entire domain)
Overlap in cases is OK but may introduce redundant work

- For the domain of integers could consider $\boldsymbol{n} \geq \mathbf{0}, \boldsymbol{n}=\mathbf{0}$, and $\boldsymbol{n} \leq 0$
- Better option: $\boldsymbol{n} \geq \mathbf{0}$ and $\boldsymbol{n}<\mathbf{0}$ or $\boldsymbol{n}>\mathbf{0}$ and $\boldsymbol{n} \leq \mathbf{0}$

Non-exhaustive cases leave possibility for error

- \boldsymbol{n} is positive, and \boldsymbol{n} is negative are non-exaustive (missing case where $\boldsymbol{n}=0$)

Outline

- Logical Reasoning
- Introduction to Mathematical Proofs
- Terminology
- Proof by Exhaustion
- Disproof by Counterexample
- Direct Proofs
- Proof by Contraposition
- Proof by Contradiction

Disproof by Counterexample

How can we prove a statement is false?

Disproof by Counterexample

How can we prove a statement is false?
The theorems we try to prove are generally universally quantified implications...so we can disprove them by finding a counterexample

Disproof by Counterexample

How can we prove a statement is false?
The theorems we try to prove are generally universally quantified implications...so we can disprove them by finding a counterexample
ie: We can prove $\forall \boldsymbol{\forall x}(\boldsymbol{P}(\boldsymbol{x}) \rightarrow \boldsymbol{Q}(\mathbf{x}))$ is false by finding a counterexample This is a value for \boldsymbol{x}, where $\boldsymbol{P}(\boldsymbol{x})$ is TRUE, and $\boldsymbol{Q}(\boldsymbol{x})$ is FALSE ($T \rightarrow F \equiv F$)

Disproof by Counterexample

Find counterexamples for each of the below statements

- Every month of the year has 30 or 31 days
- If \boldsymbol{n} is an integer and \boldsymbol{n}^{2} is divisible by 4 , then \boldsymbol{n} is divisible by 4
- For every positive integer $\boldsymbol{x}, x^{3}<2 x$
- Every positive integer can be expressed as the sum of the squares of two integers
- Every real number has a multiplicative inverse ($x y=1$)

Outline

- Logical Reasoning
- Introduction to Mathematical Proofs
- Terminology
- Proof by Exhaustion
- Disproof by Counterexample
- Direct Proofs
- Proof by Contraposition
- Proof by Contradiction

Direct Proofs

A direct proof for $P(x) \rightarrow Q(x)$ starts by assuming $P(x)$ as fact, and finishes by establishing $\mathbf{Q}(\mathbf{x})$

It makes use of axioms, previously proven theorems, inference rules, etc
Same approach as proving a logical argument is valid

- $P(x)$ is the hypothesis
- $Q(x)$ is the conclusion

Direct Proof Example

Prove that if \boldsymbol{n} is an odd integer, then $\boldsymbol{n}^{\mathbf{2}}$ is also odd

Decomposition of the Statement

- The domain of x is all integers
- $P(x): x$ is an odd integer
- $Q(x): x^{2}$ is an odd integer

Direct Proof Example

Prove that if \boldsymbol{n} is an odd integer, then $\boldsymbol{n}^{\mathbf{2}}$ is also odd

Proof

Assume $P(\boldsymbol{n})$ is TRUE (\boldsymbol{n} is an odd integer)
There exists an integer \boldsymbol{k} s.t. $\boldsymbol{n}=\mathbf{2 k + 1}$
So, $n^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1$
Since \boldsymbol{k} is an integer, $\mathbf{2} \boldsymbol{k}^{\mathbf{2}} \boldsymbol{+} \mathbf{2} \boldsymbol{k}$ is also an integer (call it \boldsymbol{j})
So n^{2} has the form $2 j+1$
Therefore $\boldsymbol{n}^{\mathbf{2}}$ is an odd integer

Direct Proof Example

Prove that if \boldsymbol{n} is an odd integer, then $(\boldsymbol{n}+\mathbf{3}) / \mathbf{2}$ is an integer

Decomposition of the Statement

- The domain of x is all integers
- $P(x): x$ is an odd integer
- $Q(x):(x+3) / 2$ is an odd integer

Direct Proof Example

Prove that if \boldsymbol{n} is an odd integer, then $(\boldsymbol{n}+\mathbf{3}) / \mathbf{2}$ is an integer

Proof

Assume $P(\boldsymbol{n})$ is TRUE (\boldsymbol{n} is an odd integer)
There exists an integer \boldsymbol{k} s.t. $\boldsymbol{n}=\mathbf{2 k + 1}$
So, $n+3=(2 k+1)+3=2 k+4=2(k+2)$
Then $(\boldsymbol{n}+3) / 2=(\mathbf{2}(\mathbf{k}+\mathbf{2})) / \mathbf{2}=\mathbf{k}+\mathbf{2}$, which is an integer
Therefore $(n+3) / 2$ is an integer

Outline

- Logical Reasoning
- Introduction to Mathematical Proofs
- Terminology
- Proof by Exhaustion
- Disproof by Counterexample
- Direct Proofs
- Proof by Contraposition
- Proof by Contradiction
- Proof Examples

Proof by Contraposition

A proof by contraposition for $P(x) \rightarrow \boldsymbol{Q}(x)$ is a proof where you:

1. Write a direct proof for $\neg Q(x) \rightarrow \neg P(x)$
2. Conclude that the contrapositive, $P(x) \rightarrow \boldsymbol{Q}(\boldsymbol{x})$, is also true

Proof Layout:

Assume $\neg Q(x)$
Perform your derivations (using theorems, axioms, etc)
$\therefore \neg P(x)$
Since $\neg Q(x) \rightarrow \neg P(x)$ is TRUE, we may conclude that our original statement $P(x) \rightarrow \boldsymbol{Q}(\boldsymbol{x})$ is also TRUE

Proof by Contraposition Example

Prove that if \boldsymbol{n} is an integer, and $\mathbf{3 n + 2}$ is odd, then \boldsymbol{n} is odd
Decomposition of the Statement

- The domain of x is all integers
- $P(x): 3 x+2$ is an odd integer
- $Q(x): x$ is an odd integer

Proof by Contraposition Example

Prove that if \boldsymbol{n} is an integer, and $\mathbf{3 n + 2}$ is odd, then \boldsymbol{n} is odd

Proof by Contraposition

Assume \boldsymbol{n} is not an odd integer. So \boldsymbol{n} is even.
There exists an integer \boldsymbol{k} s.t. $\boldsymbol{n}=\mathbf{2 k}$
So, $3 n+2=3(2 k)+2=6 k+2=2(3 k+1)$
Since \boldsymbol{k} is an integer, $\mathbf{3 k} \boldsymbol{+ 1}$ is also an integer (call it \boldsymbol{j})
Therefore, $3 n+2$ has the form $2 j$ which means it is an even integer (not odd).
Thus, $\neg Q(x) \rightarrow \neg P(x)$
$\therefore P(x) \rightarrow Q(x)$

Outline

- Logical Reasoning
- Introduction to Mathematical Proofs
- Terminology
- Proof by Exhaustion
- Disproof by Counterexample
- Direct Proofs
- Proof by Contraposition
- Proof by Contradiction

Proof by Contradiction

Note that p is logically equivalent to $\neg p \rightarrow(r \wedge \neg r)$
A proof by contradiction for p is actually a proof for $\neg p \rightarrow(r \wedge \neg r)$ where you:

1. Write a proof starting with the asumption $\neg p$
2. Find some proposition \boldsymbol{r} where you can derive both \boldsymbol{r} and $\neg \boldsymbol{r}$ to be TRUE (a contradiction)

Proof Layout:

Assume $\neg p$
Find something that breaks
\therefore. contradiction, so p has to be true

Proof by Contradiction Example

Prove that $\sqrt{ } 2$ is not a rational number
Decomposition of the Statement

- The domain of \boldsymbol{x} is all rational numbers
- $P: \forall x, x \neq \sqrt{ } 2$

Proof by Contradiction Example

Prove that $\sqrt{ } 2$ is not a rational number

Proof by Contradiction

Assume that \boldsymbol{r} is a rational number and $\boldsymbol{r}=\sqrt{ } \mathbf{2}$

Proof by Contradiction Example

Prove that $\sqrt{ } 2$ is not a rational number

Proof by Contradiction

Assume that \boldsymbol{r} is a rational number and $\boldsymbol{r}=\sqrt{ } \mathbf{2}$
There exists integers $\mathbf{a}, \boldsymbol{b}$ s.t. $\boldsymbol{r}=\boldsymbol{a} / \boldsymbol{b}$
WLOG, we assume that \boldsymbol{a} and \boldsymbol{b} have no common divisors
Then $2=r^{2}=(a / b)^{2}=a^{2} / b^{2}$

Proof by Contradiction Example

Prove that $\sqrt{ } 2$ is not a rational number

Proof by Contradiction

Assume that \boldsymbol{r} is a rational number and $\boldsymbol{r}=\sqrt{ } \mathbf{2}$
There exists integers $\mathbf{a}, \boldsymbol{b}$ s.t. $\boldsymbol{r}=\boldsymbol{a} / \boldsymbol{b}$
WLOG, we assume that \boldsymbol{a} and \boldsymbol{b} have no common divisors
Then $2=r^{2}=(a / b)^{2}=a^{2} / b^{2}$
Since $\mathbf{2}=\boldsymbol{a}^{\mathbf{2}} / \boldsymbol{b}^{\mathbf{2}}, \boldsymbol{a}^{\mathbf{2}}=\mathbf{2} \boldsymbol{b}^{\mathbf{2}}$, therefore $\boldsymbol{a}^{\mathbf{2}}$ is an even number, therefore \boldsymbol{a} is also even So there exists integer i s.t. $a=2 i$
Plug into $\boldsymbol{a}^{2}=\mathbf{2} \boldsymbol{b}^{2}$ to get $\mathbf{4 i ^ { 2 }}=\mathbf{2} \boldsymbol{b}^{2}$ so $\boldsymbol{b}^{\mathbf{2}}=\mathbf{2 i ^ { 2 }}$ and we can conclude \boldsymbol{b} is even

Proof by Contradiction Example

Prove that $\sqrt{ } 2$ is not a rational number

Proof by Contradiction

Assume that \boldsymbol{r} is a rational number and $\boldsymbol{r}=\sqrt{ } \mathbf{2}$
There exists integers $\mathbf{a}, \boldsymbol{b}$ s.t. $\boldsymbol{r}=\boldsymbol{a} / \boldsymbol{b}$
WLOG, we assume that \boldsymbol{a} and \boldsymbol{b} have no common divisors
Then $2=r^{2}=(a / b)^{2}=a^{2} / b^{2}$
Since $\mathbf{2}=\boldsymbol{a}^{\mathbf{2}} / \boldsymbol{b}^{\mathbf{2}}, \boldsymbol{a}^{\mathbf{2}}=\mathbf{2} \boldsymbol{b}^{\mathbf{2}}$, therefore $\boldsymbol{a}^{\mathbf{2}}$ is an even number, therefore \boldsymbol{a} is also even So there exists integer is.t. $a=2 i$
Plug into $a^{2}=\mathbf{2} b^{2}$ to get $4 i^{2}=2 b^{2}$ so $b^{2}=2 i^{2}$ and we can conclude b is even
Since \boldsymbol{a} and \boldsymbol{b} are both even, they share a common divisor, 2 . This is a contradiction Therefore our original assumption is false, so no rational number $=\sqrt{ } 2$

Proof by Contradiction Example

Prove that $\sqrt{ } 2$ is not a rational number

Proof by Contradiction

Assume that \boldsymbol{r} is a rational number and $\boldsymbol{r}=\sqrt{ } \mathbf{2}$
There exists integers $\boldsymbol{a}, \boldsymbol{b}$ s.t. $\boldsymbol{r}=\boldsymbol{a} / \boldsymbol{b}$
WLOG, we assume that a and b have no common divisors
Then $2=r^{2}=(a / b)^{2}=a^{2} / b^{2}$
Since $\mathbf{2}=\boldsymbol{a}^{\mathbf{2}} / \boldsymbol{b}^{\mathbf{2}}, \boldsymbol{a}^{\mathbf{2}}=\mathbf{2} \boldsymbol{b}^{\mathbf{2}}$, therefore $\boldsymbol{a}^{\mathbf{2}}$ is an even number, therefore \boldsymbol{a} is also even So there exists integer is.t. $a=2 i$
Plug into $a^{2}=2 b^{2}$ to get $4 i^{2}=2 b^{2}$ so $b^{2}=2 i^{2}$ and we can conclude b is even
Since a and b are both even, they share a common divisor, 2. This is a contradiction Therefore our original assumption is false, so no rational number $=\sqrt{ } 2$

WLOG: Without Loss of Generality

In the previous example when we say WLOG (without loss of generality):

- We are saying we can consider a reduced fraction without losing the generality of our argument
- We can say WLOG when conidering another case would be redundant
- Suppose we didn't assume a and b had no common divisors
- The first step of our proof could have been to reduce a/b to lowest terms and proceed. So instead we just say WLOG.

Proof by Contradiction Example

A prime number is a an integer > 1, whose only divisors are 1 and itself.
The first few prime numbers: $2,3,5,7,11,13,17$...
At the beginning, prime numbers are dense

- There are 168 between 1 and 1000 (~17\%)

As we get bigger the prime numbers get more sparse

- There are 78,498 primes between 1 and 1,000,000 ($\sim 8 \%$)

Theorem: There are infinitely many prime numbers

Assume that there are only finitely many primes, $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \boldsymbol{p}_{3}, \ldots, \boldsymbol{p}_{\boldsymbol{n}}$ Consider the number $\mathbf{Q}=\boldsymbol{p}_{1} \cdot \boldsymbol{p}_{\mathbf{2}} \cdot \boldsymbol{p}_{\mathbf{3}} \cdot \ldots \cdot \boldsymbol{p}_{\mathrm{n}}+\mathbf{1}$ Is \mathbf{Q} a prime number?

For each $i, 1 \leq i \leq n, Q>p_{i}$
By our assumption, $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \boldsymbol{p}_{3}, \ldots, \boldsymbol{p}_{n}$ are all of the prime numbers Therefore \mathbf{Q} is not prime
If Q is not prime, it must have a prime factor
So one of $\boldsymbol{p}_{\boldsymbol{i}}$ must be a factor of \boldsymbol{Q}
But \boldsymbol{Q} divided by each $\boldsymbol{p}_{\boldsymbol{i}}$ has a remainder of 1
So no $\boldsymbol{p}_{\boldsymbol{i}}$ divides \mathbf{Q}
So \mathbf{Q} is a prime number
\therefore Contradiction, so our original assumption is false.

Proof by contradiction that there are infinitely many prime numbers (Euclid 325-265 BC)

Assume that there are only finitely many primes, $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \boldsymbol{p}_{3}, \ldots, \boldsymbol{p}_{\boldsymbol{n}}$ Consider the number $\mathbf{Q}=\boldsymbol{p}_{1} \cdot \boldsymbol{p}_{\mathbf{2}} \cdot \boldsymbol{p}_{\mathbf{3}} \cdot \ldots \cdot \boldsymbol{p}_{\mathrm{n}}+\mathbf{1}$ Is \mathbf{Q} a prime number?

For each $i, 1 \leq i \leq n, Q>p_{i}$
By our assumption, $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \boldsymbol{p}_{3}, \ldots, \boldsymbol{p}_{\boldsymbol{n}}$ are all of the prime numbers Therefore Q is not prime
If Q is not prime, it must have a prime factor
So one of $\boldsymbol{p}_{\boldsymbol{i}}$ must be a factor of \boldsymbol{Q}
But \boldsymbol{Q} divided by each $\boldsymbol{p}_{\boldsymbol{i}}$ has a remainder of 1
So no $\boldsymbol{p}_{\boldsymbol{i}}$ divides \mathbf{Q}
So Q is a prime number
\therefore Contradiction, so our original assumption is false.

Proof by contradiction that there are infinitely many prime numbers (Euclid 325-265 BC)

