CSE 191 Recitation

Arguments

An **argument** is a list of propositions called *hypotheses* and a single proposition called the *conclusion*

An argument is **valid** if \((p_1 \land p_2 \land p_n) \rightarrow c\) is a tautology

Recall the truth table for implication

- The only time an implication is F is if the premise is T, and the conclusion is F
- So an argument is **invalid** if it is possible for all the hypotheses to be T, and the conclusion be F

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(p \rightarrow q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Invalid Arguments

For the following arguments, come up with counterexamples to show they are invalid.

\[a \rightarrow b \]

\[p \land q \]

\[q \lor \neg r \]

\[r \rightarrow \neg p \]

\[x \lor y \lor z \]

\[x \land z \]

\[\therefore r \land q \]

\[\therefore \neg y \]
Logical Reasoning Proofs

Translate the following statements to a formal argument, then prove validity via truth table, and with a proof.

If I am with friends, I am playing a game

If I am playing a game, I am happy

I am with friends

∴ I am happy
Mathematical Proof Examples

Proof by Cases: Prove that if \(n \) is an integer, then \(n^2 \geq n \)

What are your exhaustive cases? Prove each case? Note: you can assume we've proven that \(n^2 \geq 0 \)

Proof by Contraposition: Prove that for any integers \(x \) and \(y \), if both \(x + y \) and \(xy \) are even, then both \(x \) and \(y \) are even.

What implication are you trying to prove? What is its contrapositive? What is the starting assumption of your proof?