CSE 191 Recitation

3/27/23-3/31/23 - Functions and Relations

Relations

Consider the relation \boldsymbol{R}_{1} over the set \{people in this room\}, where $\boldsymbol{x} \boldsymbol{R}_{\boldsymbol{1}} \boldsymbol{y}$ if \boldsymbol{x} visited at least as many countries as \boldsymbol{y}.

Is R_{1} reflexive? symmetric? anti-symmetric? transitive?
Is R_{1} a partial ordering? a total ordering? equivalence relation? $\exists x \forall y, x R_{1} y$?
Consider the relation \boldsymbol{R}_{2} over the set \{people in this room\}, where $x \boldsymbol{R}_{1} \boldsymbol{y}$ if x knows $\boldsymbol{y}^{\prime} \mathrm{s}$ name.
Is \boldsymbol{R}_{2} reflexive? symmetric? anti-symmetric? transitive?
Is R_{2} a partial ordering? a total ordering? equivalence relation? $\exists y \forall x, x R_{2} y$?

Functions

Let $f_{0}:\{1,2,3\} \rightarrow \imath$, defined as $\{(1,1),(1,2),(2,2),(2,3)\}$
Is f_{0} a function? domain? codomain? range? injective, surjective, bijective?

Let $f_{1}: \boxtimes \rightarrow \boxtimes+$, defined by $f_{2}(\mathrm{a})=|\mathrm{a}|$ (absolute value of a)
Is f_{1} function? domain? codomain? range? injective, surjective, bijective?

Let $f_{2}: \boxtimes \rightarrow$, defined by $f_{2}(\mathrm{a})=\mathrm{a}+1$
Is f_{2} a function? domain? codomain? range? injective, surjective, bijective? inverse?

