CSE 191 Recitation

4/10/23 - 4/14/23 - Summations, Recurrence, and Induction

Summations

Compute the following summations

Let $a_{n}=3 n+4$ $\sum_{n=1}^{5} a_{n}$
$\sum_{i=4}^{9}(i-3)$

$$
\sum_{i=1}^{3} \sum_{j=2}^{4} i j
$$

Recurrence Relations

Let $\left\{a_{n}\right\}$ be the sequence defined by the recurrence relation: $a_{0}=0, a_{1}=2, a_{n}=2 a_{n-2}-2$
List out the first 10 terms of the sequence that satisfies this recurrence relation
Find an explicit formula for the nth term of this recurrence relation

Recurrence Relations

Let $\left\{a_{n}\right\}$ be the sequence defined by the recurrence relation: $a_{0}=0, a_{1}=2, a_{n}=2 a_{n-2}-2$
List out the first 10 terms of the sequence that satisfies this recurrence relation Find an explicit formula for the nth term of this recurrence relation

$$
a_{n}= \begin{cases}-2\left(2^{n / 2}-1\right) & \text { if } n \text { is even } \\ 2 & \text { if } n \text { is odd }\end{cases}
$$

Induction

Using induction prove that for $n \geq 4,2^{n}<n$!

Induction

Using induction prove that for $n \geq 4,2^{n}<n$!

1. Express the statement being proved in the form " $\forall n \geq b, P(n)$ for a fixed integer b
2. Prove the Base Case: show that $P(b)$ is true.
3. Prove the Inductive Case
a. State the inductive hypothesis in the form "assume that $\boldsymbol{P}(\boldsymbol{k})$ is true for an arbitrary $\boldsymbol{k} \geq \boldsymbol{b}$
b. State what must be proved under this assumption; write out $P(k+1)$
c. Prove the statement $P(k+1)$ is true by using the assumption $P(k)$ is true. Be sure this proof is valid for all integers $\boldsymbol{k} \geq \boldsymbol{b}$
d. Clearly identify the conclusion
4. Now that you have proven the Base Case and Inductive Case, conclude that $P(n)$ is true for all $\boldsymbol{n} \geq \boldsymbol{b}$
