CSE 191 Recitation

5/1/23-5/5/23 - Graphs

Graph Examples

Consider the following degree sequence: 6444222
How many edges must any graph with this degree sequence have?
Is it possible for this graph to be simple? Why or why not?
Draw a connected graph with this sequence of degrees.
Draw another graph (connected or unconnected) that is isomorphic to the first.
Write out the isomorphism.

Graph Representation

Graph Representation

$$
\{(\mathrm{A}, 4),(\mathrm{E}, 1),(\mathrm{F}, 2),(\mathrm{G}, 3),(\mathrm{B}, \mathrm{C}),(\mathrm{C}, 7),(\mathrm{D}, 5)\}
$$

Provide a valid coloring for this graph with as few colors as possible.

Find an Euler Circuit in this graph, or prove there cannot be one.

Use your isomorphism to provide a coloring and Euler Circuit for the other graph on the previous slide without looking at it.

Graph Representation

Trees

For the tree to the right:

1. What is the root?
2. What is the depth of b ? e ?
3. What is the height of the tree?
4. What are the leaves?
5. What are the children of e?
6. What are the descendents of \mathbf{e} ?
7. What is the parent of f ?
8. What are the ancestors of f ?
9. What is the largest degree of any node in the tree?
10. What is the chromatic number of the tree?

