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Binary Relations

A binary relation is a formal way to related two objects, for example:

e Student s is related to a course c iff student s is enrolled in course ¢
o Defines a relation between students at UB and course at UB

e Topic tis related to topic s iff you need to learn s before you learn t
o Reading a chapter t in the textbook related to s requires reading s first

e x andy are related iff they share a common divisor



Binary Relations

A binary relation between two sets Aand Bisany setR S AxB

A binary relation from A to B is a set R of ordered pairs, where the first
element of each ordered pair comes from A and the second from B
e Foranya € A and b € B we say that a is related to b iff (a,b) € R

e DenotedbyaRb

Note: a relation is a binary predicate R(a,b): "a is related to b"




Consider the set of student, S = { Alice, Bob, Carol, Don },
and the set of courses, C = { CSE115, CSE116, CSE191 }

Alice, Bob, and Carol are enrolled in CSE115
Don is enrolled in CSE116

Alice and Don are enrolled in CSE191
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Consider the set of student, S = { Alice, Bob, Carol, Don },
and the set of courses, C = { CSE115, CSE116, CSE191 }

Alice, Bob, and Carol are enrolled in CSE115
Don is enrolled in CSE116
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Consider the set of student, S = { Alice, Bob, Carol, Don },
and the set of courses, C = { CSE115, CSE116, CSE191 }

Alice, Bob, and Carol are enrolled in CSE115
Don is enrolled in CSE116
Alice and Don are enrolled in CSE191

This is called an arrow diagram. It is a visual
representation of a binary relation.




Consider the set of student, S = { Alice, Bob, Carol, Don },
and the set of courses, C = { CSE115, CSE116, CSE191 }

Given the arrow diagram, we have the binary
relation E:

E = {(Alica, CSE115), (Alice, CSE191),
(Bob,CSE115), (Carol,CSE115), (Don,CSE116),
(Don,CSE191)}




Consider the set of student, S = { Alice, Bob, Carol, Don },
and the set of courses, C = { CSE115, CSE116, CSE191 }

We can also use matrix representation to

describe E:

Alice
Bob
Carol

Don

7~

CSE115

1

1

1

CSE116

0

0

0

CSE191




Consider the set of student, S = { Alice, Bob, Carol, Don },
and the set of courses, C = { CSE115, CSE116, CSE191 }

We can also use matrix representation to @
describe E: ‘ @
CSE115 CSE116 CSE191

, N Bob

Alice 1 0 1 Rows represent the first set,

columns represent the second set 16

Bob 1 0 0

Carol 1 0 0 An entry is a 1 if the row and-
column are related, 0 otherwise. 91
Don 0 1 1 Don




Binary Relations over Infinite Sets

Consider the relation L. between R and Zto be: x L. y iff x +y <1
1. Is 5relatedto 77

2. Is 1 related to 0?

3. Which x satisfy 10 L, x?

4. Which x satisfy x L, 7?
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Consider the relation L. between R and Zto be: x L. y iff x +y <1

1. s 5related to 7? No. 51/ 7, because 5 +7 > 1
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Binary Relations over Infinite Sets

Consider the relation L. between R and Zto be: x L. y iff x +y <1

1. s 5related to 7? No. 51/ 7, because 5 +7 > 1
2. Is 1 related to 0? Yes. 1L 0,because1+0=1
3. Which x satisfy 10 L, x? All x € Z where x < -9

4. Which x satisfy x L, 7?



Binary Relations over Infinite Sets

Consider the relation L. between R and Zto be: x L. y iff x +y <1

1. s 5related to 7? No. 51/ 7, because 5 +7 > 1
2. Is 1 related to 0? Yes. 1L 0,because1+0=1
3. Which x satisfy 10 L, x? All x € Z where x < -9

4. Which x satisfy x L, 7? All x € R where x < -6



Binary Relations on a Set

The binary relation R on a set A is a subset of A x A.

The set A is called the domain of the binary relation.




We can define the relation R, on the set of real numbers such that:

aR biffa>b

Is 2 related to 3?

Is 5 related to 3?

For what values of x is x? related to 2x?
For what values of x is x related to x?

ol



We can define the relation R, on the set of real numbers such that:

aR biffa>b

Is 2 related to 3? No.
Is 5relatedto 3?7  Yes.

For what values of x is x? related to 2x? x? > 2x when x > 2
For what values of x is x related to x? None

ol



Special Properties of Binary Relations

For any binary relation, we can consider the following questions:

Are all elements related to themselves?

Does the relation hold in both directions?

Does the relation only hold in one direction?

If there is a chain of relations, does the relation also hold directly?



Special Properties of Binary Relations

For any binary relation, we can consider the following questions:

Are all elements related to themselves? Reflexive

Does the relation hold in both directions?  Symmetric

Does the relation only hold in one direction? Anti-Symmetric

If there is a chain of relations, does the relation also hold directly?
Transitive



Special Properties of Binary Relations

A relation R on set A is called reflexive if every a € A is related to itself.

Formally aRaforalla € A

Example: Consider the < relation on Z




Special Properties of Binary Relations

A relation R on set A is called symmetric if for every a R b, we also have
thatb R a.

Example: Consider the = relation on Z

A relation R on set A is called anti-symmetric if for alla, b € A:
aRband bR aimplies thata = b.

Example: Consider the < relation on Z



Special Properties of Binary Relations

A relation R on set A is called transitive if for all a,b,c € A:
aRbandbRcimpliesaRec.

Example: Consider the < relation on Z



Exercise

Consider the following relations on the set {1,2,3}
R, =1(1,1),(1,2), (2,7), (2,2), (3,1), (3,3)}
R,=1(1,1),(1,3), (2,2), (3,1)}

R, ={(2,3)}

R,=1{(1,1), (1,3)}

What are the special properties of each relation?



Exercise

R1 = {(1'1)' (1’2)1 (2'1)' (2’2)1 (3'1)' (313)}

Reflexive?
Symmetric?
Anti-Symmetric?

Transitive?



Exercise

R1 = {(1'1)' (1’2)1 (2'1)' (2’2)1 (3'1)' (313)}

Reflexive? Yes.

Symmetric? No..3R, 1but 1R, 3
Anti-Symmetric? No..2R_1and 1R, 2 but1 =2
Transitive? No..3 R, 1and 1R, 2 but 3 & 2



Exercise

R,=1(1,1), (1,3), (2,2), (3,1)}

Reflexive?

Symmetric?

(;iz) Anti-Symmetric?
Transitive?



Exercise

R,=1(1,1), (1,3), (2,2), (3,1)}

Reflexive? No..3 |, 3

Symmetric? Yes. xR,y — ¥R, x
Anti-Symmetric? No..1R,3and 3R, 1 but1#3
Transitive? No. 3R,1Tand 1R, 3 but 3/, 3



Exercise

R, ={(23)

@ Reflexive?

Symmetric?

@—@ Anti-Symmetric?

Transitive?



Exercise

R, ={(2,3)}

@ Reflexive? No.

Symmetric? No.

@—@ Anti-Symmetric? Yes.

Transitive? Yes. Cant pickab,cst.aR,bandbR,c



Exercise

R,={(1,1),(1,3)

Reflexive?
Symmetric?

@ Anti-Symmetric?

Transitive?



Exercise

R,={(1,1),(1,3)

Reflexive? No.

Symmetric? No.

@ Anti-Symmetric? Yes.
Transitive? Yes. 1 R4 1and 1 R4 31 R4 3
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Partial Ordering

A relation R on a set A is called a partial order if it is reflexive, transitive,
and antisymmetric.

aR b is denoted a < b for partial a ordering R
e Wereada=<bas "ais at mostb" or "a precedes b"
e A domain, A, with a partial ordering < can be treated as the object (A,X)
o (AJX)is called a partially ordered set or poset




Partial Ordering Example

Consider the relation R on the set Z, where:

XRyifandonlyifx<y

Is (Z, R) a poset?



Partial Ordering Example

Consider the relation R on the set Z, where:

XRyifandonlyifx<y

Is (Z, R) a poset? Yes.

R is reflexive (x < x for all x € Z), R is antisymmetric(x<yandy<x — x =
y) and R is transitive (x<yandy<z — x < 2)



Comparable Elements and Total Ordering

Elements x and y are comparable if x <y or y < x (or both)

A partial order is a total order if every pair of elements in the domain are
comparable.

In our previous example, (Z, R) is a total order
e Itis a partial order, and foreveryxy € Z, xRyoryR x
e We say that R is a total ordering of Z




Partial vs Total Ordering

What does it look like when elements cannot be compared?
Let the operator £ be &, where ALBiff A € B,and let S = #A{a,b,c})

We have no way to compare {a,b} and {b,c}
e {ab}Z{b,c}
o {b,c}£{ab}
e Therefore, {a,b} and {b,c} are incomparable

Is (S, <) a partial ordering of S?
Is (S, <) a partial ordering of S?



Partial vs Total Ordering

What does it look like when elements cannot be compared?
Let the operator £ be &, where ALBiff A € B,and let S = #A{a,b,c})

We have no way to compare {a,b} and {b,c}
e {ab}Z{b,c}
o {b,c}£{ab}
e Therefore, {a,b} and {b,c} are incomparable

Is (S, <) a partial ordering of S? Yes. < is reflexive, anti-symmetric, transitive

Is (S, <) a partial ordering of S? No. There exist incomparable elements of S



Hasse Diagram

Given a poset, we can draw a Hasse Diagram to visualize the relation

e If x<y, then x appears lower in the drawing than y
e Thereisalinefromxtoyiffx<yory<x
e Omitline betweenxandzifx<zbut Jyst x<y=<z

{a, b, c}
Consider (S, €) where S = #({a,b,c}) _—

T~

{al b} {a, C} {b, C}

= >

{a} {t|>} {c}

\{}/




Another Example

Consider the set H
H = { Halloween, It, Hereditary, Get Out, Descent, Chucky, Friday the 13th }



Another Example

Consider the set H

H = { Halloween, It, Hereditary, Get Out, Descent, Chucky, Friday the 13th }
| could organize these movies in a tier list based on my preferences:
A-tier: Halloween, Get Out, Friday the 13th

B-tier: It, Descent, Chucky

C-tier: Hereditary



Another Example

Consider the set H
H = { Halloween, It, Hereditary, Get Out, Descent, Chucky, Friday the 13th }
| could organize these movies in a tier list based on my preferences:

A-tier: Halloween, Get Out, Friday the 13th

B-tier: It, Descent, Chucky | s this a partial or total ordering?

Is (Hereditary, Chucky) in the relation?
Is (Hereditary, Halloween)?

Is (Halloween, Get Out)?

C-tier: Hereditary




Another Example

Consider the set H
H = { Halloween, It, Hereditary, Get Out, Descent, Chucky, Friday the 13th }
| could organize these movies in a tier list based on my preferences:

A-tier: Halloween, Get Out, Friday the 13th

B-tier: It, Descent, Chucky | s this a partial or total ordering? partial

Is (Hereditary, Chucky) in the relation? Yes
Is (Hereditary, Halloween)? Yes (transitivity)
Is (Halloween, Get Out)? No (incomparable)

C-tier: Hereditary




Another Example

Consider the set H
H = { Halloween, It, Hereditary, Get Out, Descent, Chucky, Friday the 13th }



Another Example

Consider the set H
H = { Halloween, It, Hereditary, Get Out, Descent, Chucky, Friday the 13th }

| could also rank these movies based on my preferences:

1. Halloween

2. Get Out

3. Friday the 13th Is this a partial or total ordering?

4. Descent Is (Hereditary, Chucky) in the relation?
°. It Is (Hereditary, Halloween)?

6. Chucky Is (Halloween, Get Out)?

7. Hereditary



Another Example

Consider the set H
H = { Halloween, It, Hereditary, Get Out, Descent, Chucky, Friday the 13th }

| could also rank these movies based on my preferences:

1. Halloween

2. Get Out

3. Friday the 13th Is this a partial or total ordering? total

4. Descent Is (Hereditary, Chucky) in the relation? Yes
°. It Is (Hereditary, Halloween)? Yes (transitivity)
6. Chucky Is (Halloween, Get Out)? No

7. Hereditary
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Equivalence Relations

A relation R on a set A is called an equivalence relation if it is reflexive,
transitive, and symmetric.

a R b is denoted a ~ b for an equivalence relation R
e Wereada~b as "ais equivalent to b"




Consider the relation R on P = { all people }, where a R b iff a and b have the
same birthday.

Is R an equivalence relation?



Consider the relation R on P = { all people }, where a R b iff a and b have the
same birthday.

Is R an equivalence relation? Yes.
Reflexive: Any person, a, has the same birthday as themselves

Transitive: If person a and b have the same birthday, and b and ¢ have the
same birthday, then a and ¢ also have the same birthday

Symmetric: IfaR b,then bR a.



Equivalence Classes

We can partition the domain of an equivalence relation into equivalent
elements. These partitions are called equivalence classes.

If e € D then the equivalence class containing e is denoted [e]

[e]={x|xED,x~e}




Examples

Consider the birthday equivalence relation from the previous example, R

Suppose Alice's birthday is March 12

If Alice R Bob, then Bob's birthday is also March 12

Under the relation R Alice and Bob are equivalent (Alice ~ Bob)
[Alice] = { Alice, Bob, ... } = { all people born on March 12 }
[Alice] = [Bob] since both represent people born on March 12
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Suppose Alice's birthday is March 12

If Alice R Bob, then Bob's birthday is also March 12

Under the relation R Alice and Bob are equivalent (Alice ~ Bob)
[Alice] = { Alice, Bob, ... } = { all people born on March 12 }
[Alice] = [Bob] since both represent people born on March 12

Do the equivalence classes form a partition of the domain?



Examples

Consider the birthday equivalence relation from the previous example, R

Suppose Alice's birthday is March 12

If Alice R Bob, then Bob's birthday is also March 12

Under the relation R Alice and Bob are equivalent (Alice ~ Bob)
[Alice] = { Alice, Bob, ... } = { all people born on March 12 }
[Alice] = [Bob] since both represent people born on March 12

Do the equivalence classes form a partition of the domain? Yes
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Function Definition

Consider a relation of students to letter grades:

Alice A
Bob B
Carly C
Devon D
Eustace E

We may want to be able to input a student's name a get their grade
(A function is a different take on binary relations)



Function Definition

Let A and B be nonempty sets. A function, f, from A to B is an assignment
of exactly one element of B to each element of A.

Denoted by f: A — B

We write f(a) = b if b is the unique element of B assigned by fto the
element a of A

The set A is the domain of f

The set B is the codomain of f




Function Examples

Consider the sets X, ={1, 2,3}, Y, ={1, 2, 3}, and the mapping f,: X, — Y_:
F,(x) =x

1. Isf, afunction?
2. Whatis the domain of f.?
3. Whatis the codomain of f.?
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Consider the sets X, ={1, 2,3}, Y, ={1, 2, 3}, and the mapping f,: X, — Y_:
F,(x) =x

1. Isf, afunction? Yes. Every element in X, maps to a unique elem of Y,
2. Whatis the domain of f.? X,
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Function Examples

Consider the sets X, ={1, 2,3}, Y, ={1, 2, 3}, and the mapping f,: X, — Y_:
F,(x) =x

1. Isf, afunction? Yes. Every element in X, maps to a unique elem of Y,
2. Whatis the domain of f.? X,
3. Whatis the codomain of f.? Y,

We can also write f, = {(1,1), (2,2), (3,3)}



Function Examples

Consider the sets X, =% Y, = {1, 2, 3}, and the mapping f,: X, — Y :
f>(%) =x

1. Isf, afunction?



Function Examples

Consider the sets X, =% Y, = {1, 2, 3}, and the mapping f,: X, — Y :
f>(%) =x

1. Isf, afunction? No. Problem: f.(4) = 2??



Function Examples

Consider the sets X, =% Y, = {1, 2, 3}, and the mapping f,: X, — Y :
1,00 = x

1. Isf, afunction? No. Problem: f.(4) = 2??

We could fix this by defining a new mapping:

f1(x) r 1<z <3
T =
72 1 ife<loraxz>3



Function Examples

Consider the sets X, =% Y, = {1, 2, 3}, and the mapping f,: X, — Y :
f>(%) =x
1. Isf, afunction? No. Problem: f.(4) = 2??

We could fix this by defining a new mapping:

f1(x) r 1<z <3
T =
72 1 ife<loraxz>3

£, ={(1,1),(22), B3 U{(x,1) Ix € Z, x<1 orx >3}



Function Examples

Consider the sets X, =%, Y, = Z, and the mapping f,: X, — Y :
r if x is odd
fa(z) =qa2* ifx>0
lz| ifz <0

Is f, a function?



Function Examples

Consider the sets X, =%, Y, = Z, and the mapping f,: X, — Y :
r if x is odd
fa(x) = qa* ifx>0
lz| ifz <0

Is f, a function? No. Problem: f,(-1) =-1 and f,(-1) = 1



Function Definition in Symbols

Symbolically, for a mapping f: X — Y:
fis a (well-defined) function if and only if

vxeX FyeY, (fx)=yAN(VzEY,(yzz—-fx)2z2z)))



Function Definition in Symbols

Symbolically, for a mapping f: X — Y:
fis a (well-defined) function if and only if

VxeEX TFyeY FXEYA(VZzEY,(yzz—f(X)#2)))

For every x in the domain,
there exists a y in the
codomain such that f(x) =y



Function Definition in Symbols

Symbolically, for a mapping f: X — Y:
fis a (well-defined) function if and only if

VxeEX TFyeY fXEYA(VZEY, (yzz—f(X) F2))

For every x in the domain, For every other element of the

there exists a y in the codomain, z, f(x) # z.
codomain such that f(x) =y



Function Range

If fis a function from A to B, the setrange(f) ={y| Ix € A, f(x) =y }is
called the range of f

It is the set of all values in the codomain that have an element from the
domain mapped to it

e For any function f: A — B, range(f) S B

e It does not have to be the whole codomain




More Examples

X,=2,Y,=% Is f, a function?
[,0: X, —Y, Domain?
f,(x) =1 Codomain?

Range?
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More Examples

X,=2,Y,=% Is f, a function? Yes
f,(x):X, =Y, Domain? Z
[, (x) =1 Codomain?  Z

Range?



More Examples

X,=2,Y,=% Is f, a function? Yes
f,(x):X, =Y, Domain? Z
[, (x) =1 Codomain?  Z

Range? {1}



More Examples

X.=2Y.=2 Is f; a function?
[s(X): X, — Y, Domain?
fs(x) =vX Codomain?

Range?



More Examples

X.=2Y.=2 Is f; a function? No
[(X): X, —> Y, Domain? N/A
f(x) =vx Codomain?  N/A

Range? N/A



More Examples

— 2 :
X, ={x*|xe€z} Is f, a function?
Y, =¢ Domain?
f(X): X, =Y, Codomain?

[ (x) =vX Range?



More Examples

X ={x*|x€Z} Is f, a function? Yes
Y, =¢ Domain?
f(X): X, =Y, Codomain?

[ (x) =vX Range?



More Examples

Y =Z Domain? {(¥* | x €z}
f(X): X, —Y Codomain?
[ (x) =vX Range?



More Examples

Y =Z Domain? {(¥* | x €z}
f(X): X, —Y Codomain? Z
[ (x) =vX Range?



More Examples

Y =Z Domain? {(¥* | x €z}
f(x):X,—Y Codomain?  Z
[ (x) =vX Range? z* U {0}
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Function Equality

Two functions, f: A — B and g: X — Y are equal iff the following hold:
1. A=X

2. B=Y

3. Va€A f(a)=¢g()

In English, two functions are equal if they have the same domain, same
codomain, and map each element in the domain to the same element of

the codomain



Function Equality

Consider the functions: f: Z — Z, and g: Z — Z defined as:

f={x,1)Ixez and g(y)=1

Are the two functions equal?



Function Equality

Consider the functions: f: Z — Z, and g: Z — Z defined as:

f={xNIxez and g(y)=1
Are the two functions equal?

1. Same domain v



Function Equality

Consider the functions: f: Z — Z, and g: Z — Z defined as:
f={x1N)Ix€z and g(y)=1
Are the two functions equal?

1. Same domain v
2. Same codomain v/
3. Vx€E€Zf(x)=gx)?



Function Equality

Consider the functions: f: Z — Z, and g: Z — Z defined as:

f={x,1)Ixez and g(y)=1

Are the two functions equal?

1. Same domain v/ e Pick an arbitrary x € Z
2. Same codomain v e Then(x,1) €f orf(x)=1
3. Vx€Zf(x)=g(x)? e Similarly g(x) = 1




Function Equality

Consider the functions: f: Z — Z, and g: Z — Z defined as:

f={x,1)Ixez and g(y)=1

Are the two functions equal? Yes

1. Same domain v/ e Pick an arbitrary x € Z
2. Same codomain v e Then(x,1) €f orf(x)=1
3. VxE€Zflx)=gx) v/ e Similarly g(x) = 1
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Injective Functions

A function f: A — B is injective if Vx_, x, € A, (f(x,) = f(x,) — x, = X,)

Also known as one-to-one or 1-1

e FEach element in the domain is mapped to a unique element from the
codomain (no element in the codomain is hit twice)
e To prove a function is 1-1

o Take an arbitrary x and y such that f(x) = f(y)
o Concludethatx=y

e To prove a function is not 1-1
o Find a counterexample where x # y but f(x) = f(y)




Surjective Functions

A function f: A — B is surjective if Vy € B, Ix € A, f(x) =y

Also known as onto

e Every element in the codomain has an element that maps to it

e To prove a function is onto:
o Take arbitrary y in the codomain
o Find the value of x in the domain such that f(x) =y
e To prove a function is not onto:
o Find a counterexample, element y in codomain s.t. no element maps to it




Bijective Functions

Idea: What if a function is both 1-1 and onto?



Bijective Functions

A bijective function is called a bijection, or a one-to-one correspondence




Examples

Letf,: Z — Z, defined by f.(a) = 1
Is f, injective, surjective, bijective?

Injective (1-1)?



Examples
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1. Letx=2andy=-2(clearly x andy are both in Z)

2. £,(0=2.£,(y) =2
3. Therefore f.(x) = f.(y), butx = y

We've found a counterexample, so f, is not 1-1
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Examples

Let f.: Z — Z*, defined by f,(a) = |a| (absolute value of a)
Is £, injective, surjective, bijective?
Surjective (onto)?

1. Letybe an arbitrary element of z*
2. f,(y)=y



Examples

Let f.: Z — Z*, defined by f,(a) = |a| (absolute value of a)
Is £, injective, surjective, bijective?
Surjective (onto)?

1. Letybe an arbitrary element of z*
2. f,(y)=y

Therefore, since we chose y arbitrarily, every element of Z* gets mapped
to by something, therefore £, is onto
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Bijective (one-to-one correspondence)?

No. To be bijective f, must be injective AND surjective
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Letf,.Z — 7, defined by f,(a) =a + 16
Is f, injective, surjective, bijective?
Injective (1-1)?

1. Letxandy be arbitrary elements of Z

2. Assume f,(x) = f,(y)
3. xX+16=y+16—>x=y



Examples

Letf,.Z — 7, defined by f,(a) =a + 16
Is f, injective, surjective, bijective?
Injective (1-1)?

1. Letxandy be arbitrary elements of Z

2. Assume f,(x) = f,(y)
3. xX+16=y+16—>x=y

Therefore, since we chose x and y arbitrarily, and f,(x) = f,(y) — x =y, then
f3is 1-1
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Letf,.Z — 7, defined by f,(a) =a + 16
Is f, injective, surjective, bijective?
Surjective (onto)?

1. Lety be an arbitrary element of Z
2. x=y-16is also thereforein z
3. fy(x)=x+16=(y-16)+16=y



Examples

Letf,.Z — 7, defined by f,(a) =a + 16
Is f, injective, surjective, bijective?
Surjective (onto)?

1. Lety be an arbitrary element of Z
2. x=y-16is also thereforein z
3. fy(x)=x+16=(y-16)+16=y

Therefore, since we chose y arbitrarily, every element of Z gets mapped to
by something, therefore f, is onto
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Examples

Letf,.Z — 7, defined by f,(a) =a + 16
Is f, injective, surjective, bijective?

Bijective (one-to-one correspondence)?

Yes. To be bijective f, must be injective AND surjective, and it is!



Inverse of Functions

For any function f: A — B, the inverse mapping of f, denoted by £, is
defined by the mapping f': B — A where: f ' ={(y, x) | (x,y) € f}

If fis a bijection then £ is a function (otherwise it is just a mapping)
e ' maps codomain elements of fto domain elements of f

e If f(x) =ythenf'(y) =x




Inverse of Functions

For £ to be a function, f must be a bijection:

e 1-1: guarantees at most one arrow out of each codomain element
e Onto: guarantees at least one arrow out of each codomain element
e Bijection: exactly one arrow out of each codomain element
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For £ to be a function, f must be a bijection:

e 1-1: guarantees at most one arrow out of each codomain element
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e 1-1: guarantees at most one arrow out of each codomain element
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e Bijection: exactly one arrow out of each codomain element
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Inverse of Functions

For £ to be a function, f must be a bijection:

e 1-1: guarantees at most one arrow out of each codomain element
e Onto: guarantees at least one arrow out of each codomain element
e Bijection: exactly one arrow out of each codomain element




Inverse of Functions

For £ to be a function, f must be a bijection:

e 1-1: guarantees at most one arrow out of each codomain element
e Onto: guarantees at least one arrow out of each codomain element
e Bijection: exactly one arrow out of each codomain element




Inverse of Functions

For £ to be a function, f must be a bijection:

e 1-1: guarantees at most one arrow out of each codomain element
e Onto: guarantees at least one arrow out of each codomain element
e Bijection: exactly one arrow out of each codomain element

Exactly one arrow out of every
element of codomain, therefore f
is a function



Cardinality of Domain vs Codomain

If f: A — B is onto:
e Then for every codomain element, there is at least one domain element
o |A|=|B|

If A — Bis 1-1:
e For every domain element, there is a unique codomain element
o |A|<|B|

If f: A — B is a bijection, then fis 1-1 and onto
e |A|=<|B|and|A| = |B|, therefore |A| = |B|



Cardinality of Domain vs Codomain

If f: A — B is onto:
e Then for every codomain element, there is at least one domain element
o |A|=|B|

If A — Bis 1-1:
e For every domain element, there is a unique codomain element
o |A|<|B|

If f: A — B is a bijection, then fis 1-1 and onto
e |A|=<|B|and|A| = |B|, therefore |A| = |B|

This will be useful for comparing the cardinality of sets!
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Theorem: The cardinalities of Nl and Z are the same
Proof: Show a bijection from N to

Let f: N — Z be defined by

, —i if x = 27 (x is even)
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i ifx=24+1 (x1is odd)

Is f a bijection?



Cardinality of N and Z

, —i if x = 27 (x is even)
flx) = {z if o =214 1 (xis odd)
Let x and y be arbitrary elements of N
Assume f(x) = f(y). Then x and y must both be even, or both be odd.
If even: x =2iandy = 2i.
Ifodd: x=2i+1andy=2i+1.
Therefore, if f(x) = f(y), x =y, which means fis 1-1



Cardinality of N and Z

—i if x = 27 (x is even)
i ifr=2+1 (xis odd)
Let z be an arbitrary element of Z

Case1:z<0
X =2*-zis aninteger > 0, therefore x is in N and f(x) = z

Case2:z=20
x=2*z+1isaninteger > 0, therefore x is in N and f(x) = z

Therefore for any arbitrary z in Z, exists an x in N s.t. f(x) = z. So fis onto.



Cardinality of N and Z

Theorem: The cardinalities of Nl and Z are the same
Proof: Show a bijection from N to

Let f: N — Z be defined by

, —i if x = 27 (x is even)
f(a) = { (

i ifx=24+1 (x1is odd)

Therefore fis both 1-1 and onto. So fis a bijection.
Therefore N and Z have the same size.
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Floor Functions

The floor function is the function floor : R — Z defined by
floor(x) =max{y|ly € Z, y<x}
Evaluates to the maximum integer below the given number.

Denoted by: floor(x) = Lx|

Examples
14.5] =4 L171=17
|-8.71=-9 Ll =13.141591 =3




Ceiling Function

The ceiling function is the function floor : R — Z defined by
ceiling(x) =min{y |y € Z,y > x}
Evaluates to the minimum integer above the given number.

Denoted by: ceiling(x) = x]

Examples
[4.57=5 [171=17
[-8.71=-8 m1=03.141597=4
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Divides

Let x and y be integers. Then x divides y if there is an integer k s.t. y = kx.

Denoted by x | y
e x does not divide y is denoted by x{y

If x | y, then we say:
e yisamultiple of x
e xis a factor or divisor of y




Divides Examples

The question “x | y?” asks “Does x divide y?”

Examples

o 4|87 Yes!8=2-4

e 5|15? Yes!15=3-5
e 6|157 No!'15=2-6+3



Division Algorithm

Theorem

Letn € Zand letd € z*

Then there are unique integersgand r,withO<sr<d-1,st.n=q-d+r.
e Ifx|ythenr=0,ie,y=qgx+0forsomeq € Z

o Ifx{fythenrz0,ie,y=qx+rforsomeq€ Zand1=sr=<x-1.

2g+ 0 if z is even

Even vs odd: 2 | x?
:-E : - -
{2q+1 if x is odd



Integer Division Definition

The Division Algorithm forn € Z and d € Z* gives unique values
gezandre{0,..,d-1}.
e The number q is called the quotient.
e The number ris called the remainder.



Integer Division Definition

The Division Algorithm forn € Z and d € Z* gives unique values
gezandre{0,..,d-1}.

e The number q is called the quotient.

e The number ris called the remainder.

The operations div and mod produce the quotient and the remainder,
respectively, as a function of n and d.

e ndivd=gq

e nmodd=r

In programming, n % d = r denotesnmodd =r



Addition mod n

For any integer n > 0, x mod n can be seen as a function mod (x):
e mod:Z—{0,1,2,..,n -1}, where mod (x) = x mod n.

Addition mod n is defined by adding two numbers and then applying mod_
e Allresultsintherange{0,1,...,n- 1}
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Addition mod n

For any integer n > 0, x mod n can be seen as a function mod (x):
e mod:Z—{0,1,2,..,n -1}, where mod (x) = x mod n.

Addition mod n is defined by adding two numbers and then applying mod_
e Allresultsintherange{0,1,...,n- 1}
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Addition mod n

For any integer n > 0, x mod n can be seen as a function mod (x):
e mod:Z—{0,1,2,..,n -1}, where mod (x) = x mod n.

Addition mod n is defined by adding two numbers and then applying mod_
e Allresultsintherange{0,1,...,n- 1}

Supposen =7/
+mod_(4,6) =(4+6)mod7=10mod 7 =3

+mod_(15,17) =(15+17)mod 7 =32 mod 7 = 4
+ mod_(8, 20) =



Addition mod n

For any integer n > 0, x mod n can be seen as a function mod (x):
e mod:Z—{0,1,2,..,n -1}, where mod (x) = x mod n.

Addition mod n is defined by adding two numbers and then applying mod_
e Allresultsintherange{0,1,...,n- 1}

Supposen =7/
+mod_(4,6) =(4+6)mod7=10mod 7 =3

+mod_(15,17) =(15+17)mod 7 =32 mod 7 = 4
+ mod_(8, 20) = (8 + 20) mod 7 =28 mod 7 = 0



Multiplication mod n

Multiplication mod n is defined by multiplying two numbers and then
applying mod .

e Allresultsintherange {0,1,...,n-1}

Supposen=11.
*mod._(4, 6)

*mod._ _(5,7) =
*mod. (8, 23) =



Multiplication mod n

Multiplication mod n is defined by multiplying two numbers and then
applying mod .

e Allresultsintherange {0,1,...,n-1}

Supposen=11.
*mod. (4,6)=(4*6)mod 11 =24mod 11 =2

*mod._ _(5,7) =
*mod. (8, 23) =



Multiplication mod n

Multiplication mod n is defined by multiplying two numbers and then
applying mod .

e Allresultsintherange {0,1,...,n-1}

Supposen=11.
*mod. (4,6)=(4*6)mod 11 =24mod 11 =2

*mod_ (5,7)=(5*7)mod 11 =35mod 11 =2
*mod. (8, 23) =



Multiplication mod n

Multiplication mod n is defined by multiplying two numbers and then
applying mod .

e Allresultsintherange {0,1,...,n-1}

Supposen=11.
*mod. (4,6)=(4*6)mod 11 =24mod 11 =2

*mod_ (5,7)=(5*7)mod 11 =35mod 11 =2
*mod.__(8,23)=(8+23)mod11=184mod 11 =8



Congruence Modulo

If a and b are integers and m is a positive integer, then a is congruent to b
modulo m if m divides a - b.

The notation a = b (mod m) indicates that a is congruent to b modulo m.

e a=b (modm)isacongruence.
e Indicates that a and b are in the same equivalence class.

Is 17 congruent to 5 modulo 67?
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If a and b are integers and m is a positive integer, then a is congruent to b
modulo m if m divides a - b.

The notation a = b (mod m) indicates that a is congruent to b modulo m.

e a=b (modm)isacongruence.
e Indicates that a and b are in the same equivalence class.

Is 17 congruent to 5 modulo 6? Yes, because 6 divides 17 - 5.



Congruence Modulo

If a and b are integers and m is a positive integer, then a is congruent to b
modulo m if m divides a - b.

The notation a = b (mod m) indicates that a is congruent to b modulo m.

e a=b (modm)isacongruence.
e Indicates that a and b are in the same equivalence class.

Is 17 congruent to 5 modulo 6? Yes, because 6 divides 17 - 5.

e 17 mod6 =5;itis inthe equivalence class for 5in mod 6.
e 5mod6 =25;itisinthe equivalence class for 5in mod 6.
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Composition of Functions

If fand g are two functions, where . X — Y and g: Y — Z, the composition
of g with £, denoted by g - £, is the function:

(gof): X—Z st . forallx € X, (g°fHx) = g(fix))




Consider the functions £ Z2* — Z and g: Z — { 0, 1} where:

fz) = -
o(z) = {0 it [3] =3

1 otherwise



Consider the functions £ Z2* — Z and g: Z — { 0, 1} where:

fz) = -
o(z) = {0 it [3] =3

1 otherwise

Then we can work out that:

(9o f)(x) =g(f(x)) =g(—x) = {0 if |5 =7

2
1  otherwise



Interesting Function Composition

Idea: Compose the inverse function (if it exists) with the original function



Interesting Function Composition

Idea: Compose the inverse function (if it exists) with the original function

A function mapping an element to itself is called an identity function
e Identity function over A, denoted by, A — Aisl (a) = a




Interesting Function Composition

Idea: Compose the inverse function (if it exists) with the original function
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Interesting Function Composition

Idea: Compose the inverse function (if it exists) with the original function

A function mapping an element to itself is called an identity function
e Identity function over A, denoted by, A — Aisl (a) = a

If £ X — Y, wehave (F1-f =1

X

Is (f- £1) also an identity function?



Interesting Function Composition

Idea: Compose the inverse function (if it exists) with the original function

A function mapping an element to itself is called an identity function
e Identity function over A, denoted by, A — Aisl (a) = a

If £ X — Y, wehave (F1-f =1

X

° 1 . . .
Is (f=f") also an identity function? Yes. |,



