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Binary Relations

A binary relation is a formal way to related two objects, for example:

● Student s is related to a course c iff student s is enrolled in course c
○ Defines a relation between students at UB and course at UB

● Topic t is related to topic s iff you need to learn s before you learn t
○ Reading a chapter t in the textbook related to s requires reading s first

● x and y are related iff they share a common divisor



Binary Relations

A binary relation between two sets A and B is any set R ⊆ A ⨉ B

A binary relation from A to B is a set R of ordered pairs, where the first 
element of each ordered pair comes from A and the second from B
● For any a ∈ A and b ∈ B we say that a is related to b iff (a,b) ∈ R
● Denoted by a R b

Note: a relation is a binary predicate R(a,b): "a is related to b"



Example

Consider the set of student, S = { Alice, Bob, Carol, Don },
         and the set of courses, C = { CSE115, CSE116, CSE191 }

Alice, Bob, and Carol are enrolled in CSE115

Don is enrolled in CSE116

Alice and Don are enrolled in CSE191
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Example

Consider the set of student, S = { Alice, Bob, Carol, Don },
         and the set of courses, C = { CSE115, CSE116, CSE191 }

Alice, Bob, and Carol are enrolled in CSE115

Don is enrolled in CSE116

Alice and Don are enrolled in CSE191

This is called an arrow diagram. It is a visual 
representation of a binary relation.
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Example

Consider the set of student, S = { Alice, Bob, Carol, Don },
         and the set of courses, C = { CSE115, CSE116, CSE191 }

Given the arrow diagram, we have the binary 
relation E:

E = {(Alica, CSE115), (Alice, CSE191), 
(Bob,CSE115), (Carol,CSE115), (Don,CSE116), 
(Don,CSE191)}
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Example

Consider the set of student, S = { Alice, Bob, Carol, Don },
         and the set of courses, C = { CSE115, CSE116, CSE191 }

We can also use matrix representation to 
describe E:

Alice

Bob

Carol

Don

CSE115

CSE116

CSE191

CSE115 CSE116 CSE191

Alice 1 0 1

Bob 1 0 0

Carol 1 0 0

Don 0 1 1



Example

Consider the set of student, S = { Alice, Bob, Carol, Don },
         and the set of courses, C = { CSE115, CSE116, CSE191 }

We can also use matrix representation to 
describe E:

Alice

Bob

Carol

Don

CSE115

CSE116

CSE191

CSE115 CSE116 CSE191

Alice 1 0 1

Bob 1 0 0

Carol 1 0 0

Don 0 1 1

Rows represent the first set, 
columns represent the second set

An entry is a 1 if the row and 
column are related, 0 otherwise.



Binary Relations over Infinite Sets

Consider the relation L1 between ℝ and ℤ to be: x L1 y iff x + y ≤ 1

1. Is 5 related to 7?

2. Is 1 related to 0?

3. Which x satisfy 10 L1 x?

4. Which x satisfy x L1 7?
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Consider the relation L1 between ℝ and ℤ to be: x L1 y iff x + y ≤ 1

1. Is 5 related to 7? No. 5 L1 7, because 5 + 7 > 1

2. Is 1 related to 0?

3. Which x satisfy 10 L1 x?

4. Which x satisfy x L1 7?



Binary Relations over Infinite Sets

Consider the relation L1 between ℝ and ℤ to be: x L1 y iff x + y ≤ 1

1. Is 5 related to 7? No. 5 L1 7, because 5 + 7 > 1

2. Is 1 related to 0? Yes. 1 L1 0, because 1 + 0 ≤ 1

3. Which x satisfy 10 L1 x?

4. Which x satisfy x L1 7?



Binary Relations over Infinite Sets

Consider the relation L1 between ℝ and ℤ to be: x L1 y iff x + y ≤ 1

1. Is 5 related to 7? No. 5 L1 7, because 5 + 7 > 1

2. Is 1 related to 0? Yes. 1 L1 0, because 1 + 0 ≤ 1

3. Which x satisfy 10 L1 x? All x ∈ ℤ where x ≤ -9

4. Which x satisfy x L1 7?



Binary Relations over Infinite Sets

Consider the relation L1 between ℝ and ℤ to be: x L1 y iff x + y ≤ 1

1. Is 5 related to 7? No. 5 L1 7, because 5 + 7 > 1

2. Is 1 related to 0? Yes. 1 L1 0, because 1 + 0 ≤ 1

3. Which x satisfy 10 L1 x? All x ∈ ℤ where x ≤ -9

4. Which x satisfy x L1 7? All x ∈ ℝ where x ≤ -6



Binary Relations on a Set

The binary relation R on a set A is a subset of A ⨉ A.

The set A is called the domain of the binary relation.



Example

We can define the relation R1 on the set of real numbers such that:

a R1 b iff a > b

1. Is 2 related to 3?
2. Is 5 related to 3?
3. For what values of x is x2 related to 2x?
4. For what values of x is x related to x?



Example

We can define the relation R1 on the set of real numbers such that:

a R1 b iff a > b

1. Is 2 related to 3? No.
2. Is 5 related to 3? Yes.
3. For what values of x is x2 related to 2x? x2 > 2x when x > 2
4. For what values of x is x related to x? None



Special Properties of Binary Relations

For any binary relation, we can consider the following questions:

● Are all elements related to themselves?
● Does the relation hold in both directions?
● Does the relation only hold in one direction?
● If there is a chain of relations, does the relation also hold directly?



Special Properties of Binary Relations

For any binary relation, we can consider the following questions:

● Are all elements related to themselves? Reflexive
● Does the relation hold in both directions? Symmetric
● Does the relation only hold in one direction? Anti-Symmetric
● If there is a chain of relations, does the relation also hold directly?

Transitive



Special Properties of Binary Relations

A relation R on set A is called reflexive if every a ∈ A is related to itself.

Formally, a R a for all a ∈ A

Example: Consider the ≤ relation on ℤ



Special Properties of Binary Relations

A relation R on set A is called symmetric if for every a R b, we also have 
that b R a.

A relation R on set A is called anti-symmetric if for all a, b ∈ A:
 a R b and b R a implies that a = b.

Example: Consider the ≤ relation on ℤ

Example: Consider the = relation on ℤ



Special Properties of Binary Relations

A relation R on set A is called transitive if for all a,b,c ∈ A:
a R b and b R c implies a R c.

Example: Consider the < relation on ℤ



Exercise

Consider the following relations on the set {1,2,3}

R1 = {(1,1), (1,2), (2,1), (2,2), (3,1), (3,3)}

R2 = {(1,1), (1,3), (2,2), (3,1)}

R3 = {(2,3)}

R4 = {(1,1), (1,3)}

What are the special properties of each relation?



Exercise

R1 = {(1,1), (1,2), (2,1), (2,2), (3,1), (3,3)}

Reflexive?

Symmetric? 

Anti-Symmetric?

Transitive?

1

2 3



Exercise

R1 = {(1,1), (1,2), (2,1), (2,2), (3,1), (3,3)}

Reflexive? Yes.

Symmetric? No…3 R1 1 but 1 R1 3

Anti-Symmetric? No…2 R1 1 and 1 R1 2 but 1 ≠ 2

Transitive? No…3 R1 1 and 1 R1 2 but 3 R1 2

1

2 3



Exercise

R2 = {(1,1), (1,3), (2,2), (3,1)}

Reflexive? 

Symmetric?

Anti-Symmetric?

Transitive?

1

2 3



Exercise

R2 = {(1,1), (1,3), (2,2), (3,1)}

Reflexive? No…3 R2 3

Symmetric? Yes. x R2 y → y R2 x

Anti-Symmetric? No…1 R2 3 and 3 R2 1 but 1 ≠ 3

Transitive? No. 3 R2 1 and 1 R2 3 but 3 R2 3

1

2 3



Exercise

R3 = {(2,3)}

Reflexive?

Symmetric?

Anti-Symmetric?

Transitive?

1

2 3



Exercise

R3 = {(2,3)}

Reflexive? No.

Symmetric? No.

Anti-Symmetric? Yes.

Transitive? Yes. Can't pick a,b,c s.t. a R3 b and b R3 c

1

2 3



Exercise

R4 = {(1,1), (1,3)}

Reflexive?

Symmetric?

Anti-Symmetric?

Transitive?

1

2 3



Exercise

R4 = {(1,1), (1,3)}

Reflexive? No.

Symmetric? No.

Anti-Symmetric? Yes.

Transitive? Yes. 1 R4 1 and 1 R4 3 → 1 R4 3

1

2 3
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Partial Ordering

A relation R on a set A is called a partial order if it is reflexive, transitive, 
and antisymmetric.

a R b is denoted a ⪯ b for partial a ordering R
● We read a ⪯ b as "a is at most b" or "a precedes b"
● A domain, A, with a partial ordering ⪯ can be treated as the object (A,⪯)

○ (A,⪯) is called a partially ordered set or poset



Partial Ordering Example

Consider the relation R on the set ℤ, where:

x R y if and only if x ≤ y 

Is (ℤ, R) a poset?



Partial Ordering Example

Consider the relation R on the set ℤ, where:

x R y if and only if x ≤ y 

Is (ℤ, R) a poset? Yes.

R is reflexive (x ≤ x for all x ∈ ℤ), R is antisymmetric (x ≤ y and y ≤ x → x = 
y) and R is transitive (x ≤ y and y ≤ z → x ≤ z)



Comparable Elements and Total Ordering

Elements x and y are comparable if x ⪯ y or y ⪯ x (or both)

A partial order is a total order if every pair of elements in the domain are 
comparable.

In our previous example, (ℤ, R) is a total order
● It is a partial order, and for every x,y ∈ ℤ, x R y or y R x
● We say that R is a total ordering of  ℤ



Partial vs Total Ordering

What does it look like when elements cannot be compared?

Let the operator ⪯ be ⊆, where A ⪯ B iff A ⊆ B, and let S = 𝒫({a,b,c})

We have no way to compare {a,b} and {b,c}
● {a,b} ⪯ {b,c}
● {b,c} ⪯ {a,b}
● Therefore, {a,b} and {b,c} are incomparable

Is (S, ⪯) a partial ordering of S?

Is (S, ⪯) a partial ordering of S?



Partial vs Total Ordering

What does it look like when elements cannot be compared?

Let the operator ⪯ be ⊆, where A ⪯ B iff A ⊆ B, and let S = 𝒫({a,b,c})

We have no way to compare {a,b} and {b,c}
● {a,b} ⪯ {b,c}
● {b,c} ⪯ {a,b}
● Therefore, {a,b} and {b,c} are incomparable

Is (S, ⪯) a partial ordering of S? Yes. ⪯ is reflexive, anti-symmetric, transitive

Is (S, ⪯) a partial ordering of S? No. There exist incomparable elements of S



Hasse Diagram

Given a poset, we can draw a Hasse Diagram to visualize the relation

● If x ⪯ y, then x appears lower in the drawing than y
● There is a line from x to y iff x ⪯ y or y ⪯ x
● Omit line between x and z if x ⪯ z but ∃y s.t. x ⪯ y ⪯ z

Consider (S, ⊆) where S = 𝒫({a,b,c})



Another Example

Consider the set H

H = { Halloween, It, Hereditary, Get Out, Descent, Chucky, Friday the 13th }



Another Example

Consider the set H

H = { Halloween, It, Hereditary, Get Out, Descent, Chucky, Friday the 13th }

I could organize these movies in a tier list based on my preferences:

A-tier: Halloween, Get Out, Friday the 13th

B-tier: It, Descent, Chucky

C-tier: Hereditary
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I could organize these movies in a tier list based on my preferences:

A-tier: Halloween, Get Out, Friday the 13th

B-tier: It, Descent, Chucky

C-tier: Hereditary
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Is (Hereditary, Chucky) in the relation?
Is (Hereditary, Halloween)?
Is (Halloween, Get Out)?



Another Example

Consider the set H

H = { Halloween, It, Hereditary, Get Out, Descent, Chucky, Friday the 13th }

I could organize these movies in a tier list based on my preferences:

A-tier: Halloween, Get Out, Friday the 13th

B-tier: It, Descent, Chucky

C-tier: Hereditary

Is this a partial or total ordering? partial
Is (Hereditary, Chucky) in the relation? Yes
Is (Hereditary, Halloween)? Yes (transitivity)
Is (Halloween, Get Out)? No (incomparable)



Another Example

Consider the set H

H = { Halloween, It, Hereditary, Get Out, Descent, Chucky, Friday the 13th }



Another Example

Consider the set H

H = { Halloween, It, Hereditary, Get Out, Descent, Chucky, Friday the 13th }

I could also rank these movies based on my preferences:

1. Halloween
2. Get Out
3. Friday the 13th
4. Descent
5. It
6. Chucky
7. Hereditary

Is this a partial or total ordering?
Is (Hereditary, Chucky) in the relation?
Is (Hereditary, Halloween)?
Is (Halloween, Get Out)?



Another Example

Consider the set H

H = { Halloween, It, Hereditary, Get Out, Descent, Chucky, Friday the 13th }

I could also rank these movies based on my preferences:

1. Halloween
2. Get Out
3. Friday the 13th
4. Descent
5. It
6. Chucky
7. Hereditary

Is this a partial or total ordering? total
Is (Hereditary, Chucky) in the relation? Yes
Is (Hereditary, Halloween)? Yes (transitivity)
Is (Halloween, Get Out)? No
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Equivalence Relations

A relation R on a set A is called an equivalence relation if it is reflexive, 
transitive, and symmetric.

a R b is denoted a ~ b for an equivalence relation R
● We read a ~ b as "a is equivalent to b"



Example

Consider the relation R on P = { all people }, where a R b iff a and b have the 
same birthday.

Is R an equivalence relation?



Example

Consider the relation R on P = { all people }, where a R b iff a and b have the 
same birthday.

Is R an equivalence relation? Yes.

Reflexive: Any person, a, has the same birthday as themselves

Transitive: If person a and b have the same birthday, and b and c have the 
same birthday, then a and c also have the same birthday

Symmetric: If a R b, then b R a.



Equivalence Classes

We can partition the domain of an equivalence relation into equivalent 
elements. These partitions are called equivalence classes.

If e ∈ D then the equivalence class containing e is denoted [e]

[e] = { x | x ∈ D, x ~ e }



Examples

Consider the birthday equivalence relation from the previous example, R

Suppose Alice's birthday is March 12
● If Alice R Bob, then Bob's birthday is also March 12
● Under the relation R Alice and Bob are equivalent (Alice ~ Bob)
● [Alice] = { Alice, Bob, … } = { all people born on March 12 }
● [Alice] = [Bob] since both represent people born on March 12 



Examples

Consider the birthday equivalence relation from the previous example, R

Suppose Alice's birthday is March 12
● If Alice R Bob, then Bob's birthday is also March 12
● Under the relation R Alice and Bob are equivalent (Alice ~ Bob)
● [Alice] = { Alice, Bob, … } = { all people born on March 12 }
● [Alice] = [Bob] since both represent people born on March 12

Do the equivalence classes form a partition of the domain? 



Examples

Consider the birthday equivalence relation from the previous example, R

Suppose Alice's birthday is March 12
● If Alice R Bob, then Bob's birthday is also March 12
● Under the relation R Alice and Bob are equivalent (Alice ~ Bob)
● [Alice] = { Alice, Bob, … } = { all people born on March 12 }
● [Alice] = [Bob] since both represent people born on March 12

Do the equivalence classes form a partition of the domain? Yes
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Function Definition

Consider a relation of students to letter grades:

We may want to be able to input a student's name a get their grade
(A function is a different take on binary relations)

Alice A

Bob B

Carly C

Devon D

Eustace E



Function Definition

Let A and B be nonempty sets. A function, 𝒇, from A to B is an assignment 
of exactly one element of B to each element of A.

Denoted by 𝒇: A → B

We write 𝒇(a) = b if b is the unique element of B assigned by 𝒇 to the 
element a of A

The set A is the domain of 𝒇

The set B is the codomain of 𝒇



Function Examples

Consider the sets X1 = {1, 2, 3}, Y1 = {1, 2, 3}, and the mapping 𝒇1: X1 → Y1:

𝒇1(x) = x

1. Is 𝒇1 a function?
2. What is the domain of 𝒇1?
3. What is the codomain of 𝒇1?
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Consider the sets X1 = {1, 2, 3}, Y1 = {1, 2, 3}, and the mapping 𝒇1: X1 → Y1:

𝒇1(x) = x
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Function Examples

Consider the sets X1 = {1, 2, 3}, Y1 = {1, 2, 3}, and the mapping 𝒇1: X1 → Y1:

𝒇1(x) = x

1. Is 𝒇1 a function? Yes. Every element in X1 maps to a unique elem of Y1
2. What is the domain of 𝒇1? X1
3. What is the codomain of 𝒇1? Y1



Function Examples

Consider the sets X1 = {1, 2, 3}, Y1 = {1, 2, 3}, and the mapping 𝒇1: X1 → Y1:

𝒇1(x) = x

1. Is 𝒇1 a function? Yes. Every element in X1 maps to a unique elem of Y1
2. What is the domain of 𝒇1? X1
3. What is the codomain of 𝒇1? Y1

We can also write 𝒇1 = {(1,1), (2,2), (3,3)}



Function Examples

Consider the sets X2 = ℤ, Y2 = {1, 2, 3}, and the mapping 𝒇2: X2 → Y2:

𝒇2(x) = x

1. Is 𝒇2 a function?



Function Examples

Consider the sets X2 = ℤ, Y2 = {1, 2, 3}, and the mapping 𝒇2: X2 → Y2:

𝒇2(x) = x

1. Is 𝒇2 a function? No. Problem: 𝒇2(4) = ???



Function Examples

Consider the sets X2 = ℤ, Y2 = {1, 2, 3}, and the mapping 𝒇2: X2 → Y2:

𝒇2(x) = x

1. Is 𝒇2 a function? No. Problem: 𝒇2(4) = ???

We could fix this by defining a new mapping:



Function Examples

Consider the sets X2 = ℤ, Y2 = {1, 2, 3}, and the mapping 𝒇2: X2 → Y2:

𝒇2(x) = x

1. Is 𝒇2 a function? No. Problem: 𝒇2(4) = ???

We could fix this by defining a new mapping:

𝒇2' = {(1,1), (2,2), (3,3} ⋃ {(x, 1) | x ∈ ℤ, x < 1 or x > 3}



Function Examples

Consider the sets X3 = ℤ, Y3 = ℤ, and the mapping 𝒇3: X3 → Y3:

Is 𝒇3 a function?



Function Examples

Consider the sets X3 = ℤ, Y3 = ℤ, and the mapping 𝒇3: X3 → Y3:

Is 𝒇3 a function? No. Problem: 𝒇3(-1) = -1 and 𝒇3(-1) = 1



Function Definition in Symbols

Symbolically, for a mapping 𝒇: X → Y:

𝒇 is a (well-defined) function if and only if

∀x ∈ X, ∃y ∈ Y, (𝒇(x) = y ∧ (∀z ∈ Y, (y ≠ z → 𝒇(x) ≠ z)))



Function Definition in Symbols

Symbolically, for a mapping 𝒇: X → Y:

𝒇 is a (well-defined) function if and only if

∀x ∈ X, ∃y ∈ Y, (𝒇(x) = y ∧ (∀z ∈ Y, (y ≠ z → 𝒇(x) ≠ z)))

For every x in the domain, 
there exists a y in the 
codomain such that 𝒇(x) = y



Function Definition in Symbols

Symbolically, for a mapping 𝒇: X → Y:

𝒇 is a (well-defined) function if and only if

∀x ∈ X, ∃y ∈ Y, (𝒇(x) = y ∧ (∀z ∈ Y, (y ≠ z → 𝒇(x) ≠ z)))

For every x in the domain, 
there exists a y in the 
codomain such that 𝒇(x) = y

For every other element of the 
codomain, z, 𝒇(x) ≠ z. 



Function Range

If 𝒇 is a function from A to B, the set range(𝒇) = { y | ∃x ∈ A, 𝒇(x) = y } is 
called the range of 𝒇

It is the set of all values in the codomain that have an element from the 
domain mapped to it
● For any function 𝒇: A → B, range(𝒇) ⊆ B
● It does not have to be the whole codomain



More Examples

X4 = ℤ, Y4 = ℤ Is 𝒇4 a function?

𝒇4(x): X4 → Y4 Domain?

𝒇4(x) = 1 Codomain?

Range?



More Examples

X4 = ℤ, Y4 = ℤ Is 𝒇4 a function? Yes

𝒇4(x): X4 → Y4 Domain?

𝒇4(x) = 1 Codomain?

Range?



More Examples

X4 = ℤ, Y4 = ℤ Is 𝒇4 a function? Yes

𝒇4(x): X4 → Y4 Domain? ℤ

𝒇4(x) = 1 Codomain?

Range?



More Examples

X4 = ℤ, Y4 = ℤ Is 𝒇4 a function? Yes

𝒇4(x): X4 → Y4 Domain? ℤ

𝒇4(x) = 1 Codomain? ℤ

Range?



More Examples

X4 = ℤ, Y4 = ℤ Is 𝒇4 a function? Yes

𝒇4(x): X4 → Y4 Domain? ℤ

𝒇4(x) = 1 Codomain? ℤ

Range? {1}



More Examples

X5 = ℤ, Y5 = ℤ Is 𝒇5 a function?

𝒇5(x): X5 → Y5 Domain?

𝒇5(x) = √x Codomain?

Range?



More Examples

X5 = ℤ, Y5 = ℤ Is 𝒇5 a function? No

𝒇5(x): X5 → Y5 Domain? N/A

𝒇5(x) = √x Codomain? N/A

Range? N/A



More Examples

X6 = { x2 | x ∈ ℤ } Is 𝒇6 a function?

Y6 = ℤ Domain?

𝒇6(x): X6 → Y6 Codomain?

𝒇6(x) = √x Range?



More Examples

X6 = { x2 | x ∈ ℤ } Is 𝒇6 a function? Yes

Y6 = ℤ Domain?

𝒇6(x): X6 → Y6 Codomain?

𝒇6(x) = √x Range?



More Examples

X6 = { x2 | x ∈ ℤ } Is 𝒇6 a function? Yes

Y6 = ℤ Domain? { x2 | x ∈ ℤ }

𝒇6(x): X6 → Y6 Codomain?

𝒇6(x) = √x Range?



More Examples

X6 = { x2 | x ∈ ℤ } Is 𝒇6 a function? Yes

Y6 = ℤ Domain? { x2 | x ∈ ℤ }

𝒇6(x): X6 → Y6 Codomain? ℤ

𝒇6(x) = √x Range?



More Examples

X6 = { x2 | x ∈ ℤ } Is 𝒇6 a function? Yes

Y6 = ℤ Domain? { x2 | x ∈ ℤ }

𝒇6(x): X6 → Y6 Codomain? ℤ

𝒇6(x) = √x Range? ℤ+ ⋃ {0}
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Function Equality

Two functions, 𝒇: A → B and 𝘨: X → Y are equal iff the following hold:
1. A = X
2. B = Y
3. ∀a ∈ A, 𝒇(a) = 𝘨(a)

In English, two functions are equal if they have the same domain, same 
codomain, and map each element in the domain to the same element of 
the codomain



Function Equality

Consider the functions: 𝒇: ℤ → ℤ, and 𝘨: ℤ → ℤ defined as:

 𝒇 = {(x, 1) | x ∈ ℤ} and 𝘨(y) = 1

Are the two functions equal?



Function Equality

Consider the functions: 𝒇: ℤ → ℤ, and 𝘨: ℤ → ℤ defined as:

 𝒇 = {(x, 1) | x ∈ ℤ} and 𝘨(y) = 1

Are the two functions equal?

1. Same domain ✓
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Consider the functions: 𝒇: ℤ → ℤ, and 𝘨: ℤ → ℤ defined as:

 𝒇 = {(x, 1) | x ∈ ℤ} and 𝘨(y) = 1

Are the two functions equal?

1. Same domain ✓
2. Same codomain ✓
3. ∀x ∈ ℤ, 𝒇(x) = 𝘨(x)?



Function Equality

Consider the functions: 𝒇: ℤ → ℤ, and 𝘨: ℤ → ℤ defined as:

 𝒇 = {(x, 1) | x ∈ ℤ} and 𝘨(y) = 1

Are the two functions equal?

1. Same domain ✓
2. Same codomain ✓
3. ∀x ∈ ℤ, 𝒇(x) = 𝘨(x)?

● Pick an arbitrary x ∈ ℤ
● Then (x, 1) ∈ 𝒇, or 𝒇(x) = 1
● Similarly 𝘨(x) = 1



Function Equality

Consider the functions: 𝒇: ℤ → ℤ, and 𝘨: ℤ → ℤ defined as:

 𝒇 = {(x, 1) | x ∈ ℤ} and 𝘨(y) = 1

Are the two functions equal? Yes

1. Same domain ✓
2. Same codomain ✓
3. ∀x ∈ ℤ, 𝒇(x) = 𝘨(x) ✓

● Pick an arbitrary x ∈ ℤ
● Then (x, 1) ∈ 𝒇, or 𝒇(x) = 1
● Similarly 𝘨(x) = 1
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Injective Functions

A function 𝒇: A → B is injective if ∀x1, x2 ∈ A, (𝒇(x1) = 𝒇(x2) → x1 = x2)

Also known as one-to-one or 1-1

● Each element in the domain is mapped to a unique element from the 
codomain (no element in the codomain is hit twice)

● To prove a function is 1-1
○ Take an arbitrary x and y such that 𝒇(x) = 𝒇(y)
○ Conclude that x = y

●  To prove a function is not 1-1
○ Find a counterexample where x ≠ y but 𝒇(x) = 𝒇(y)



Surjective Functions

A function 𝒇: A → B is surjective if ∀y ∈ B, ∃x ∈ A, 𝒇(x) = y

Also known as onto

● Every element in the codomain has an element that maps to it
● To prove a function is onto:

○ Take arbitrary y in the codomain
○ Find the value of x in the domain such that 𝒇(x) = y

● To prove a function is not onto:
○ Find a counterexample, element y in codomain s.t. no element maps to it



Bijective Functions

Idea: What if a function is both 1-1 and onto?



Bijective Functions

A function𝒇: A → B is bijective if it is injective and surjective

A bijective function is called a bijection, or a one-to-one correspondence



Examples

Let 𝒇1: ℤ → ℤ, defined by 𝒇1(a) = 1

Is 𝒇1 injective, surjective, bijective?

Injective (1-1)?



Examples

Let 𝒇1: ℤ → ℤ, defined by 𝒇1(a) = 1

Is 𝒇1 injective, surjective, bijective?

Injective (1-1)?

1. Let x = 1 and y = 5 (clearly x and y are both in ℤ)
2. 𝒇1(x) = 1, 𝒇1(y) = 1
3. Therefore 𝒇1(x) = 𝒇1(y), but x ≠ y



Examples

Let 𝒇1: ℤ → ℤ, defined by 𝒇1(a) = 1

Is 𝒇1 injective, surjective, bijective?

Injective (1-1)?

1. Let x = 1 and y = 5 (clearly x and y are both in ℤ)
2. 𝒇1(x) = 1, 𝒇1(y) = 1
3. Therefore 𝒇1(x) = 𝒇1(y), but x ≠ y

We've found a counterexample, so 𝒇1 is not 1-1



Examples

Let 𝒇1: ℤ → ℤ, defined by 𝒇1(a) = 1

Is 𝒇1 injective, surjective, bijective?

Surjective (onto)?



Examples

Let 𝒇1: ℤ → ℤ, defined by 𝒇1(a) = 1

Is 𝒇1 injective, surjective, bijective?

Surjective (onto)?

1. Consider y = 2 (clearly 2 is in the codomain ℤ)
2. There is no x ∈ ℤ s.t. 𝒇1(x) = y



Examples

Let 𝒇1: ℤ → ℤ, defined by 𝒇1(a) = 1

Is 𝒇1 injective, surjective, bijective?

Surjective (onto)?

1. Consider y = 2 (clearly 2 is in the codomain ℤ)
2. There is no x ∈ ℤ s.t. 𝒇1(x) = y

We've found a counterexample, so 𝒇1 is not onto



Examples

Let 𝒇1: ℤ → ℤ, defined by 𝒇1(a) = 1

Is 𝒇1 injective, surjective, bijective?

Bijective (one-to-one correspondence)?



Examples

Let 𝒇1: ℤ → ℤ, defined by 𝒇1(a) = 1

Is 𝒇1 injective, surjective, bijective?

Bijective (one-to-one correspondence)?

No. To be bijective 𝒇1 must be injective AND surjective



Examples

Let 𝒇2: ℤ → ℤ+, defined by 𝒇2(a) = |a| (absolute value of a)

Is 𝒇2 injective, surjective, bijective?

Injective (1-1)?



Examples

Let 𝒇2: ℤ → ℤ+, defined by 𝒇2(a) = |a| (absolute value of a)

Is 𝒇2 injective, surjective, bijective?

Injective (1-1)?

1. Let x = 2 and y = -2 (clearly x and y are both in ℤ)
2. 𝒇1(x) = 2, 𝒇1(y) = 2
3. Therefore 𝒇1(x) = 𝒇1(y), but x ≠ y



Examples

Let 𝒇2: ℤ → ℤ+, defined by 𝒇2(a) = |a| (absolute value of a)

Is 𝒇2 injective, surjective, bijective?

Injective (1-1)?

1. Let x = 2 and y = -2 (clearly x and y are both in ℤ)
2. 𝒇1(x) = 2, 𝒇1(y) = 2
3. Therefore 𝒇1(x) = 𝒇1(y), but x ≠ y

We've found a counterexample, so 𝒇2 is not 1-1



Examples

Let 𝒇2: ℤ → ℤ+, defined by 𝒇2(a) = |a| (absolute value of a)

Is 𝒇2 injective, surjective, bijective?

Surjective (onto)?



Examples

Let 𝒇2: ℤ → ℤ+, defined by 𝒇2(a) = |a| (absolute value of a)

Is 𝒇2 injective, surjective, bijective?

Surjective (onto)?

1. Let y be an arbitrary element of ℤ+

2. 𝒇2(y) = y



Examples

Let 𝒇2: ℤ → ℤ+, defined by 𝒇2(a) = |a| (absolute value of a)

Is 𝒇2 injective, surjective, bijective?

Surjective (onto)?

1. Let y be an arbitrary element of ℤ+

2. 𝒇2(y) = y

Therefore, since we chose y arbitrarily, every element of ℤ+ gets mapped 
to by something, therefore 𝒇2 is onto  



Examples

Let 𝒇2: ℤ → ℤ+, defined by 𝒇2(a) = |a| (absolute value of a)

Is 𝒇2 injective, surjective, bijective?

Bijective (one-to-one correspondence)?



Examples

Let 𝒇2: ℤ → ℤ+, defined by 𝒇2(a) = |a| (absolute value of a)

Is 𝒇2 injective, surjective, bijective?

Bijective (one-to-one correspondence)?

No. To be bijective 𝒇2 must be injective AND surjective



Examples

Let 𝒇3: ℤ → ℤ, defined by 𝒇3(a) = a + 16

Is 𝒇3 injective, surjective, bijective?

Injective (1-1)?



Examples

Let 𝒇3: ℤ → ℤ, defined by 𝒇3(a) = a + 16

Is 𝒇3 injective, surjective, bijective?

Injective (1-1)?

1. Let x and y be arbitrary elements of ℤ
2. Assume 𝒇3(x) = 𝒇3(y)
3. x + 16 = y + 16 → x = y



Examples

Let 𝒇3: ℤ → ℤ, defined by 𝒇3(a) = a + 16

Is 𝒇3 injective, surjective, bijective?

Injective (1-1)?

1. Let x and y be arbitrary elements of ℤ
2. Assume 𝒇3(x) = 𝒇3(y)
3. x + 16 = y + 16 → x = y

Therefore, since we chose x and y arbitrarily, and 𝒇3(x) = 𝒇3(y) → x = y, then 
𝒇3 is 1-1   



Examples

Let 𝒇3: ℤ → ℤ, defined by 𝒇3(a) = a + 16

Is 𝒇3 injective, surjective, bijective?

Surjective (onto)?



Examples

Let 𝒇3: ℤ → ℤ, defined by 𝒇3(a) = a + 16

Is 𝒇3 injective, surjective, bijective?

Surjective (onto)?

1. Let y be an arbitrary element of ℤ
2. x = y - 16 is also therefore in ℤ
3. 𝒇3(x) = x + 16 = (y - 16) + 16 = y



Examples

Let 𝒇3: ℤ → ℤ, defined by 𝒇3(a) = a + 16

Is 𝒇3 injective, surjective, bijective?

Surjective (onto)?

1. Let y be an arbitrary element of ℤ
2. x = y - 16 is also therefore in ℤ
3. 𝒇3(x) = x + 16 = (y - 16) + 16 = y

Therefore, since we chose y arbitrarily, every element of ℤ gets mapped to 
by something, therefore 𝒇3 is onto  



Examples

Let 𝒇3: ℤ → ℤ, defined by 𝒇3(a) = a + 16

Is 𝒇3 injective, surjective, bijective?

Bijective (one-to-one correspondence)?



Examples

Let 𝒇3: ℤ → ℤ, defined by 𝒇3(a) = a + 16

Is 𝒇3 injective, surjective, bijective?

Bijective (one-to-one correspondence)?

Yes. To be bijective 𝒇3 must be injective AND surjective, and it is!



Inverse of Functions

For any function 𝒇: A → B, the inverse mapping of 𝒇, denoted by 𝒇-1, is 
defined by the mapping 𝒇-1: B → A where: 𝒇–1 = { (y, x) | (x, y) ∈ 𝒇 }

If 𝒇 is a bijection then 𝒇-1 is a function (otherwise it is just a mapping)
● 𝒇-1 maps codomain elements of 𝒇 to domain elements of 𝒇
● If 𝒇(x) = y then 𝒇-1(y) = x



Inverse of Functions

For 𝒇-1 to be a function, 𝒇 must be a bijection:
● 1-1: guarantees at most one arrow out of each codomain element
● Onto: guarantees at least one arrow out of each codomain element
● Bijection: exactly one arrow out of each codomain element



Inverse of Functions

For 𝒇-1 to be a function, 𝒇 must be a bijection:
● 1-1: guarantees at most one arrow out of each codomain element
● Onto: guarantees at least one arrow out of each codomain element
● Bijection: exactly one arrow out of each codomain element

𝒇
a w

b x

c y

d z



Inverse of Functions

For 𝒇-1 to be a function, 𝒇 must be a bijection:
● 1-1: guarantees at most one arrow out of each codomain element
● Onto: guarantees at least one arrow out of each codomain element
● Bijection: exactly one arrow out of each codomain element

𝒇-1
a w

b x

c y

d z



Inverse of Functions

For 𝒇-1 to be a function, 𝒇 must be a bijection:
● 1-1: guarantees at most one arrow out of each codomain element
● Onto: guarantees at least one arrow out of each codomain element
● Bijection: exactly one arrow out of each codomain element

𝒇-1
a w

b x

c y

d z Not a function because z does not 
map to anything



Inverse of Functions

For 𝒇-1 to be a function, 𝒇 must be a bijection:
● 1-1: guarantees at most one arrow out of each codomain element
● Onto: guarantees at least one arrow out of each codomain element
● Bijection: exactly one arrow out of each codomain element

𝒇
a w

b x

c y

d z



Inverse of Functions

For 𝒇-1 to be a function, 𝒇 must be a bijection:
● 1-1: guarantees at most one arrow out of each codomain element
● Onto: guarantees at least one arrow out of each codomain element
● Bijection: exactly one arrow out of each codomain element

𝒇-1
a w

b x

c y

d z



Inverse of Functions

For 𝒇-1 to be a function, 𝒇 must be a bijection:
● 1-1: guarantees at most one arrow out of each codomain element
● Onto: guarantees at least one arrow out of each codomain element
● Bijection: exactly one arrow out of each codomain element

𝒇-1
a w

b x

c y

d z

Not a function because x maps to 
more than one thing



Inverse of Functions

For 𝒇-1 to be a function, 𝒇 must be a bijection:
● 1-1: guarantees at most one arrow out of each codomain element
● Onto: guarantees at least one arrow out of each codomain element
● Bijection: exactly one arrow out of each codomain element

𝒇
a w

b x

c y

d z



Inverse of Functions

For 𝒇-1 to be a function, 𝒇 must be a bijection:
● 1-1: guarantees at most one arrow out of each codomain element
● Onto: guarantees at least one arrow out of each codomain element
● Bijection: exactly one arrow out of each codomain element

𝒇-1
a w

b x

c y

d z



Inverse of Functions

For 𝒇-1 to be a function, 𝒇 must be a bijection:
● 1-1: guarantees at most one arrow out of each codomain element
● Onto: guarantees at least one arrow out of each codomain element
● Bijection: exactly one arrow out of each codomain element

𝒇-1
a w

b x

c y

d z

Exactly one arrow out of every 
element of codomain, therefore 𝒇-1 
is a function 



Cardinality of Domain vs Codomain

If 𝒇: A → B is onto:
● Then for every codomain element, there is at least one domain element
● |A| ≥ |B|

If 𝒇: A → B is 1-1:
● For every domain element, there is a unique codomain element
● |A| ≤ |B|

If 𝒇: A → B is a bijection, then 𝒇 is 1-1 and onto
● |A| ≤ |B| and |A| ≥ |B|, therefore |A| = |B|



Cardinality of Domain vs Codomain

If 𝒇: A → B is onto:
● Then for every codomain element, there is at least one domain element
● |A| ≥ |B|

If 𝒇: A → B is 1-1:
● For every domain element, there is a unique codomain element
● |A| ≤ |B|

If 𝒇: A → B is a bijection, then 𝒇 is 1-1 and onto
● |A| ≤ |B| and |A| ≥ |B|, therefore |A| = |B|

This will be useful for comparing the cardinality of sets!



Cardinality of ℕ and ℤ

Theorem: The cardinalities of ℕ and ℤ are the same

Proof: Show a bijection from ℕ to ℤ



Cardinality of ℕ and ℤ

Theorem: The cardinalities of ℕ and ℤ are the same

Proof: Show a bijection from ℕ to ℤ

Let 𝒇: ℕ → ℤ be defined by 

Is 𝒇 a bijection?



Cardinality of ℕ and ℤ

Let x and y be arbitrary elements of ℕ

Assume 𝒇(x) = 𝒇(y). Then x and y must both be even, or both be odd.

If even: x = 2i and y = 2i.

If odd: x = 2i + 1 and y = 2i + 1. 

Therefore, if 𝒇(x) = 𝒇(y), x = y, which means 𝒇 is 1-1



Cardinality of ℕ and ℤ

Let z be an arbitrary element of ℤ

Case 1: z < 0
x = 2 * -z is an integer > 0, therefore x is in ℕ and 𝒇(x) = z

Case 2: z ≥ 0
x = 2 * z + 1 is an integer > 0, therefore x is in ℕ and 𝒇(x) = z

Therefore for any arbitrary z in ℤ, exists an x in ℕ s.t. 𝒇(x) = z. So 𝒇 is onto.



Cardinality of ℕ and ℤ

Theorem: The cardinalities of ℕ and ℤ are the same

Proof: Show a bijection from ℕ to ℤ

Let 𝒇: ℕ → ℤ be defined by 

Therefore 𝒇 is both 1-1 and onto. So 𝒇 is a bijection.
Therefore ℕ and ℤ have the same size.



Outline

- Binary Relations
- Functions

- Introduction to Functions
- Function Equality
- Function Properties
- Floor/Ceiling Functions
- Division of Modular Arithmetic
- Composition of Functions



Floor Functions

The floor function is the function floor : ℝ → ℤ defined by

floor(x) = max{ y | y ∈ ℤ, y ≤ x }

Evaluates to the maximum integer below the given number.

Denoted by: floor(x) = ⌊x⌋

Examples

⌊4.5⌋ = 4 ⌊17⌋ = 17

⌊-8.7⌋ = -9 ⌊𝝿⌋ = ⌊3.14159⌋ = 3



Ceiling Function

The ceiling function is the function floor : ℝ → ℤ defined by

ceiling(x) = min{ y | y ∈ ℤ, y ≥ x }

Evaluates to the minimum integer above the given number.

Denoted by: ceiling(x) = ⌈x⌉

Examples

⌈4.5⌉ = 5 ⌈17⌉ = 17

⌈-8.7⌉ = -8 ⌈𝝿⌉ = ⌈3.14159⌉ = 4
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Divides

Let x and y be integers. Then x divides y if there is an integer k s.t. y = kx.

Denoted by x | y
● x does not divide y is denoted by x | y

If x | y, then we say:
● y is a multiple of x
● x is a factor or divisor of y



Divides Examples

The question “x | y?” asks “Does x divide y?”

Examples
● 4 | 8? Yes! 8 = 2 · 4
● 5 | 15? Yes! 15 = 3 · 5
● 6 | 15? No! 15 = 2 · 6 + 3



Division Algorithm

Theorem

Let n ∈ ℤ and let d ∈ ℤ+

Then there are unique integers q and r, with 0 ≤ r ≤ d − 1, s.t. n = q · d + r.
● If x | y then r = 0, i.e., y = qx + 0 for some q ∈ ℤ
● If x | y then r ≠ 0, i.e., y = qx + r for some q ∈ ℤ and 1 ≤ r ≤ x − 1.

Even vs odd: 2 | x?



Integer Division Definition

The Division Algorithm for n ∈ ℤ and d ∈ ℤ+ gives unique values
q ∈ ℤ and r ∈ {0, ... , d − 1}.

● The number q is called the quotient.
● The number r is called the remainder.



Integer Division Definition

The Division Algorithm for n ∈ ℤ and d ∈ ℤ+ gives unique values
q ∈ ℤ and r ∈ {0, ... , d − 1}.

● The number q is called the quotient.
● The number r is called the remainder.

The operations div and mod produce the quotient and the remainder, 
respectively, as a function of n and d.
● n div d = q
● n mod d = r

In programming, n % d = r denotes n mod d = r



Addition mod n

For any integer n > 0, x mod n can be seen as a function modn(x):
● modn: ℤ → {0, 1, 2, ... , n − 1}, where modn(x) = x mod n.

Addition mod n is defined by adding two numbers and then applying modn
● All results in the range {0, 1, ... , n − 1}



Addition mod n

For any integer n > 0, x mod n can be seen as a function modn(x):
● modn: ℤ → {0, 1, 2, ... , n − 1}, where modn(x) = x mod n.

Addition mod n is defined by adding two numbers and then applying modn
● All results in the range {0, 1, ... , n − 1}

Suppose n = 7
+ mod7(4, 6) =

+ mod7(15, 17) =

+ mod7(8, 20) =



Addition mod n

For any integer n > 0, x mod n can be seen as a function modn(x):
● modn: ℤ → {0, 1, 2, ... , n − 1}, where modn(x) = x mod n.

Addition mod n is defined by adding two numbers and then applying modn
● All results in the range {0, 1, ... , n − 1}

Suppose n = 7
+ mod7(4, 6) = (4 + 6) mod 7 = 10 mod 7 = 3

+ mod7(15, 17) =

+ mod7(8, 20) =



Addition mod n

For any integer n > 0, x mod n can be seen as a function modn(x):
● modn: ℤ → {0, 1, 2, ... , n − 1}, where modn(x) = x mod n.

Addition mod n is defined by adding two numbers and then applying modn
● All results in the range {0, 1, ... , n − 1}

Suppose n = 7
+ mod7(4, 6) = (4 + 6) mod 7 = 10 mod 7 = 3

+ mod7(15, 17) = (15 + 17) mod 7 = 32 mod 7 = 4

+ mod7(8, 20) =



Addition mod n

For any integer n > 0, x mod n can be seen as a function modn(x):
● modn: ℤ → {0, 1, 2, ... , n − 1}, where modn(x) = x mod n.

Addition mod n is defined by adding two numbers and then applying modn
● All results in the range {0, 1, ... , n − 1}

Suppose n = 7
+ mod7(4, 6) = (4 + 6) mod 7 = 10 mod 7 = 3

+ mod7(15, 17) = (15 + 17) mod 7 = 32 mod 7 = 4

+ mod7(8, 20) = (8 + 20) mod 7 = 28 mod 7 = 0



Multiplication mod n

Multiplication mod n is defined by multiplying two numbers and then 
applying modn.

● All results in the range { 0, 1, ... , n − 1 }

Suppose n = 11.
∗ mod11(4, 6) = 

∗ mod11(5, 7) = 

∗ mod11(8, 23) = 



Multiplication mod n

Multiplication mod n is defined by multiplying two numbers and then 
applying modn.

● All results in the range { 0, 1, ... , n − 1 }

Suppose n = 11.
∗ mod11(4, 6) = (4 ∗ 6) mod 11 = 24 mod 11 = 2

∗ mod11(5, 7) = 

∗ mod11(8, 23) = 



Multiplication mod n

Multiplication mod n is defined by multiplying two numbers and then 
applying modn.

● All results in the range { 0, 1, ... , n − 1 }

Suppose n = 11.
∗ mod11(4, 6) = (4 ∗ 6) mod 11 = 24 mod 11 = 2

∗ mod11(5, 7) = (5 ∗ 7) mod 11 = 35 mod 11 = 2

∗ mod11(8, 23) = 



Multiplication mod n

Multiplication mod n is defined by multiplying two numbers and then 
applying modn.

● All results in the range { 0, 1, ... , n − 1 }

Suppose n = 11.
∗ mod11(4, 6) = (4 ∗ 6) mod 11 = 24 mod 11 = 2

∗ mod11(5, 7) = (5 ∗ 7) mod 11 = 35 mod 11 = 2

∗ mod11(8, 23) = (8 ∗ 23) mod 11 = 184 mod 11 = 8



Congruence Modulo

If a and b are integers and m is a positive integer, then a is congruent to b 
modulo m if m divides a − b.

The notation a ≡ b (mod m) indicates that a is congruent to b modulo m.
● a ≡ b (mod m) is a congruence.
● Indicates that a and b are in the same equivalence class.

Is 17 congruent to 5 modulo 6? 
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Congruence Modulo

If a and b are integers and m is a positive integer, then a is congruent to b 
modulo m if m divides a − b.

The notation a ≡ b (mod m) indicates that a is congruent to b modulo m.
● a ≡ b (mod m) is a congruence.
● Indicates that a and b are in the same equivalence class.

Is 17 congruent to 5 modulo 6? Yes, because 6 divides 17 - 5.

● 17 mod 6 = 5; it is in the equivalence class for 5 in mod 6.
● 5 mod 6 = 5; it is in the equivalence class for 5 in mod 6.
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Composition of Functions

If 𝑓 and 𝑔 are two functions, where 𝑓: X → Y and 𝑔: Y → Z, the composition 
of 𝑔 with 𝑓, denoted by 𝑔 ◦ 𝑓, is the function:

(𝑔 ◦ 𝑓): X → Z, s.t. for all x ∈ X, (𝑔 ◦ 𝑓)(x) = 𝑔(𝑓(x))



Example

Consider the functions 𝑓: ℤ+ → ℤ- and 𝑔: ℤ → { 0, 1} where:
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Consider the functions 𝑓: ℤ+ → ℤ- and 𝑔: ℤ → { 0, 1} where:

 

Then we can work out that: 
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Interesting Function Composition

Idea: Compose the inverse function (if it exists) with the original function

A function mapping an element to itself is called an identity function
● Identity function over A, denoted by IA: A → A is IA(a) = a

If 𝑓: X → Y, we have (𝑓-1 ◦ 𝑓) = IX

Is (𝑓 ◦ 𝑓-1) also an identity function? Yes. IY


