CSE 191
 Introduction to Discrete Structures

Dr. Eric Mikida
epmikida@buffalo.edu
208 Capen Hall

Functions and Relations

Outline

- Binary Relations
- Intro
- Partial Ordering
- Equivalence Relations
- Functions

Binary Relations

A binary relation is a formal way to related two objects, for example:

- Student \boldsymbol{s} is related to a course \boldsymbol{c} iff student \boldsymbol{s} is enrolled in course \boldsymbol{c}
- Defines a relation between students at UB and course at UB
- Topic \boldsymbol{t} is related to topic \boldsymbol{s} iff you need to learn \boldsymbol{s} before you learn \boldsymbol{t}
- Reading a chapter \boldsymbol{t} in the textbook related to \boldsymbol{s} requires reading s first
- \boldsymbol{x} and \boldsymbol{y} are related iff they share a common divisor

Binary Relations

A binary relation between two sets \boldsymbol{A} and \boldsymbol{B} is any set $\boldsymbol{R} \subseteq \boldsymbol{A} \times \boldsymbol{B}$
A binary relation from \boldsymbol{A} to \boldsymbol{B} is a set \boldsymbol{R} of ordered pairs, where the first element of each ordered pair comes from \boldsymbol{A} and the second from \boldsymbol{B}

- For any $\boldsymbol{a} \in \boldsymbol{A}$ and $\boldsymbol{b} \in \boldsymbol{B}$ we say that \boldsymbol{a} is related to \boldsymbol{b} iff $(\mathbf{a}, \boldsymbol{b}) \in \boldsymbol{R}$
- Denoted by $\boldsymbol{a} \boldsymbol{R} \boldsymbol{b}$

Note: a relation is a binary predicate $\mathbf{R}(\mathbf{a}, \boldsymbol{b})$: "a is related to $b^{\prime \prime}$

Example

Consider the set of student, $S=\{$ Alice, Bob, Carol, Don \}, and the set of courses, $C=\{$ CSE115, CSE116, CSE191 $\}$

Alice, Bob, and Carol are enrolled in CSE115
Don is enrolled in CSE116
Alice and Don are enrolled in CSE191

Example

Consider the set of student, $S=\{$ Alice, Bob, Carol, Don \}, and the set of courses, $C=\{$ CSE115, CSE116, CSE191 $\}$

Alice, Bob, and Carol are enrolled in CSE115
Don is enrolled in CSE116
Alice and Don are enrolled in CSE191

CSE115

CSE116

CSE191

Example

Consider the set of student, $S=\{$ Alice, Bob, Carol, Don \}, and the set of courses, $C=\{$ CSE115, CSE116, CSE191 $\}$

Alice, Bob, and Carol are enrolled in CSE115
Don is enrolled in CSE116
Alice and Don are enrolled in CSE191

Example

Consider the set of student, $S=\{$ Alice, Bob, Carol, Don \}, and the set of courses, $C=\{$ CSE115, CSE116, CSE191 $\}$

Alice, Bob, and Carol are enrolled in CSE115
Don is enrolled in CSE116
Alice and Don are enrolled in CSE191

Example

Consider the set of student, $S=\{$ Alice, Bob, Carol, Don \}, and the set of courses, $C=\{$ CSE115, CSE116, CSE191 $\}$

Alice, Bob, and Carol are enrolled in CSE115
Don is enrolled in CSE116
Alice and Don are enrolled in CSE191

Example

Consider the set of student, $S=\{$ Alice, Bob, Carol, Don \}, and the set of courses, $C=\{$ CSE115, CSE116, CSE191 $\}$

Alice, Bob, and Carol are enrolled in CSE115
Don is enrolled in CSE116
Alice and Don are enrolled in CSE191
This is called an arrow diagram. It is a visual representation of a binary relation.

Example

Consider the set of student, $S=\{$ Alice, Bob, Carol, Don \}, and the set of courses, $C=\{\operatorname{CSE115}, \mathrm{CSE116}, \mathrm{CSE191}\}$

Given the arrow diagram, we have the binary relation E :
$E=\{($ Alica, CSE115), (Alice, CSE191), (Bob,CSE115), (Carol,CSE115), (Don,CSE116), (Don,CSE191)\}

Example

Consider the set of student, $S=\{$ Alice, Bob, Carol, Don \}, and the set of courses, $C=\{$ CSE115, CSE116, CSE191 $\}$

We can also use matrix representation to describe E :

CSE115 CSE116 CSE191
$\left.\begin{array}{c}\text { CSE115 }\end{array} \begin{array}{c}\text { CSE116 } \\ \text { Alice } \\ \text { Bob } \\ \text { Carol } \\ \text { Don }\end{array} \begin{array}{ccc}1 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1\end{array}\right)$

Example

Consider the set of student, $S=\{$ Alice, Bob, Carol, Don \}, and the set of courses, $C=\{$ CSE115, CSE116, CSE191 $\}$

We can also use matrix representation to describe E :
$\left.\begin{array}{c}\text { CSE115 } \\ \text { Alice } \\ \text { Bob } \\ \text { Carol } \\ \text { Don }\end{array} \begin{array}{ccc}1 & \text { CSE116 } & \text { CSE191 } \\ 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$

Binary Relations over Infinite Sets

Consider the relation L_{1} between R and $ъ$ to be: $\boldsymbol{x} L_{1} \boldsymbol{y}$ iff $\boldsymbol{x}+\boldsymbol{y} \leq 1$

1. Is 5 related to 7 ?
2. Is 1 related to 0 ?
3. Which \boldsymbol{x} satisfy $10 L_{1} x$?
4. Which x satisfy $x L_{1} 7$?

Binary Relations over Infinite Sets

Consider the relation L_{1} between 圆 and $飞$ to be: $\boldsymbol{x} L_{1} \boldsymbol{y}$ iff $\boldsymbol{x}+\boldsymbol{y} \leq 1$

1. Is 5 related to 7 ?

No. $5 \not / 1 / 7$, because $5+7>1$
2. Is 1 related to 0 ?
3. Which \boldsymbol{x} satisfy $10 L_{1} x$?
4. Which x satisfy $x L_{1} 7$?

Binary Relations over Infinite Sets

Consider the relation L_{1} between 圆 and $飞$ to be: $\boldsymbol{x} L_{1} \boldsymbol{y}$ iff $\boldsymbol{x}+\boldsymbol{y} \leq 1$

1. Is 5 related to 7 ?
2. Is 1 related to 0 ?
3. Which \boldsymbol{x} satisfy $10 L_{1} x$?
4. Which x satisfy $x L_{1} 7$?

No. $5 / 1 / 7$, because $5+7>1$
Yes. $1 L_{1} 0$, because $1+0 \leq 1$

Binary Relations over Infinite Sets

Consider the relation L_{1} between 圆 and $飞$ to be: $\boldsymbol{x} L_{1} \boldsymbol{y}$ iff $\boldsymbol{x}+\boldsymbol{y} \leq 1$

1. Is 5 related to 7 ?

No. $5 \not / 7$, because $5+7>1$
2. Is 1 related to 0 ?

Yes. $1 L_{1} 0$, because $1+0 \leq 1$
3. Which x satisfy $10 L_{1} x$? All $x \in Z$ where $x \leq-9$
4. Which x satisfy $x L_{1} 7$?

Binary Relations over Infinite Sets

Consider the relation L_{1} between 圆 and $飞$ to be： $\boldsymbol{x} L_{1} \boldsymbol{y}$ iff $\boldsymbol{x}+\boldsymbol{y} \leq 1$
1．Is 5 related to 7 ？
No． $5 \not / 7$ ，because $5+7>1$
2．Is 1 related to 0 ？
Yes． $1 L_{1} 0$ ，because $1+0 \leq 1$
3．Which x satisfy $10 L_{1} x$ ？All $x \in Z$ where $x \leq-9$
4．Which x satisfy $x L_{1} 7$ ？All $x \in$ 质 where $x \leq-6$

Binary Relations on a Set

The binary relation \boldsymbol{R} on a set \boldsymbol{A} is a subset of $\boldsymbol{A} \times \boldsymbol{A}$.
The set \boldsymbol{A} is called the domain of the binary relation.

Example

We can define the relation $\boldsymbol{R}_{\boldsymbol{1}}$ on the set of real numbers such that:

$$
a R_{1} b \text { iff } a>b
$$

1. Is 2 related to 3 ?
2. Is 5 related to 3 ?
3. For what values of x is x^{2} related to $2 x$?
4. For what values of x is x related to x ?

Example

We can define the relation $\boldsymbol{R}_{\boldsymbol{1}}$ on the set of real numbers such that:

$$
a R_{1} b \text { iff } a>b
$$

1. Is 2 related to 3 ? No.
2. Is 5 related to 3? Yes.
3. For what values of x is x^{2} related to $2 x$? $x^{2}>2 x$ when $x>2$
4. For what values of x is x related to x ? None

Special Properties of Binary Relations

For any binary relation, we can consider the following questions:

- Are all elements related to themselves?
- Does the relation hold in both directions?
- Does the relation only hold in one direction?
- If there is a chain of relations, does the relation also hold directly?

Special Properties of Binary Relations

For any binary relation, we can consider the following questions:

- Are all elements related to themselves? Reflexive
- Does the relation hold in both directions? Symmetric
- Does the relation only hold in one direction? Anti-Symmetric
- If there is a chain of relations, does the relation also hold directly?

Transitive

Special Properties of Binary Relations

A relation \boldsymbol{R} on set \boldsymbol{A} is called reflexive if every $\boldsymbol{a} \in \boldsymbol{A}$ is related to itself.
Formally, $\boldsymbol{a} \boldsymbol{R} \boldsymbol{a}$ for all $\boldsymbol{a} \in \boldsymbol{A}$

Example: Consider the \leq relation on \mathbb{Z}

Special Properties of Binary Relations

A relation \boldsymbol{R} on set \boldsymbol{A} is called symmetric if for every $\boldsymbol{a} \boldsymbol{R} \boldsymbol{b}$, we also have that $\boldsymbol{b} \boldsymbol{R} \boldsymbol{a}$.

Example: Consider the $=$ relation on \mathbb{z}

A relation R on set \boldsymbol{A} is called anti-symmetric if for all $a, b \in A$: $\boldsymbol{a} \boldsymbol{R} \boldsymbol{b}$ and $\boldsymbol{b} \boldsymbol{R} \boldsymbol{a}$ implies that $\boldsymbol{a}=\boldsymbol{b}$.

Example: Consider the \leq relation on \mathbb{z}

Special Properties of Binary Relations

A relation R on set \boldsymbol{A} is called transitive if for all $a, b, c \in A$: $\boldsymbol{a} \boldsymbol{R} \boldsymbol{b}$ and $\boldsymbol{b} \boldsymbol{R} \boldsymbol{c}$ implies $\boldsymbol{a} \boldsymbol{R} \mathbf{c}$.

Example: Consider the < relation on z^{8}

Exercise

Consider the following relations on the set $\{1,2,3\}$

$$
\begin{aligned}
& R_{1}=\{(1,1),(1,2),(2,1),(2,2),(3,1),(3,3)\} \\
& R_{2}=\{(1,1),(1,3),(2,2),(3,1)\} \\
& R_{3}=\{(2,3)\} \\
& R_{4}=\{(1,1),(1,3)\}
\end{aligned}
$$

What are the special properties of each relation?

Exercise

$$
R_{1}=\{(1,1),(1,2),(2,1),(2,2),(3,1),(3,3)\}
$$

Reflexive?
Symmetric?
Anti-Symmetric?
Transitive?

Exercise

$$
R_{1}=\{(1,1),(1,2),(2,1),(2,2),(3,1),(3,3)\}
$$

Reflexive? Yes.
Symmetric? No... $3 \boldsymbol{R}_{1} 1$ but $1 \mathbb{R}_{1} 3$
Anti-Symmetric? No... $2 R_{1} 1$ and $1 R_{1} 2$ but $1 \neq 2$
Transitive? No... $3 \boldsymbol{R}_{1} \mathbf{1}$ and $\mathbf{1} \boldsymbol{R}_{\mathbf{1}} \mathbf{2}$ but $\mathbf{3} \not \boldsymbol{P}_{1} \mathbf{2}$

Exercise

$$
R_{2}=\{(1,1),(1,3),(2,2),(3,1)\}
$$

Reflexive?
Symmetric?
Anti-Symmetric?
Transitive?

Exercise

$$
R_{2}=\{(1,1),(1,3),(2,2),(3,1)\}
$$

Reflexive? No... $3 \not$ P/ $_{2} 3$
Symmetric? Yes. $x \boldsymbol{R}_{2} \boldsymbol{y} \rightarrow \boldsymbol{y} \boldsymbol{R}_{2} x$
Anti-Symmetric? No... $1 R_{2} 3$ and $3 R_{2} 1$ but $1 \neq 3$
Transitive? No. $3 \boldsymbol{R}_{2} \mathbf{1}$ and $1 \boldsymbol{R}_{2} \mathbf{3}$ but $3 \not \mathrm{P}_{2} \mathbf{3}$

Exercise

$$
R_{3}=\{(2,3)\}
$$

Symmetric?
Anti-Symmetric?
Transitive?

Exercise

$$
R_{3}=\{(2,3)\}
$$

1 Reflexive? No.
Symmetric? No.
Anti-Symmetric? Yes.
Transitive? Yes. Can't pick a, b, c s.t. $a \boldsymbol{R}_{\mathbf{3}} \boldsymbol{b}$ and $\boldsymbol{b} \boldsymbol{R}_{\mathbf{3}} \mathbf{c}$

Exercise

$$
R_{4}=\{(1,1),(1,3)\}
$$

Reflexive?
Symmetric?
Anti-Symmetric?
Transitive?

Exercise

$$
R_{4}=\{(1,1),(1,3)\}
$$

Reflexive? No.
Symmetric? No.
Anti-Symmetric? Yes.
Transitive? Yes. $1 R_{4} 1$ and $1 R_{4} 3 \rightarrow 1 R_{4} 3$

Outline

- Binary Relations
- Intro
- Partial Ordering
- Equivalence Relations
- Functions

Partial Ordering

A relation \boldsymbol{R} on a set \boldsymbol{A} is called a partial order if it is reflexive, transitive, and antisymmetric.
$\boldsymbol{a} \boldsymbol{R} \boldsymbol{b}$ is denoted $\boldsymbol{a} \leq \boldsymbol{b}$ for partial a ordering \boldsymbol{R}

- We read $\boldsymbol{a} \leq \boldsymbol{b}$ as " \boldsymbol{a} is at most \boldsymbol{b} " or "a precedes \boldsymbol{b} "
- A domain, \boldsymbol{A}, with a partial ordering \leq can be treated as the object (\boldsymbol{A}, \leq)
- (A, \leq) is called a partially ordered set or poset

Partial Ordering Example

Consider the relation \boldsymbol{R} on the set π, where:

$$
x \boldsymbol{R} y \text { if and only if } x \leq y
$$

$$
\text { Is }(\mathbb{Z}, \boldsymbol{R}) \text { a poset? }
$$

Partial Ordering Example

Consider the relation \boldsymbol{R} on the set $ъ$, where:
$\boldsymbol{x} \boldsymbol{R} \boldsymbol{y}$ if and only if $\boldsymbol{x} \leq \boldsymbol{y}$

$$
\text { Is }(\mathbb{Z}, \boldsymbol{R}) \text { a poset? Yes. }
$$

R is reflexive ($x \leq x$ for all $x \in \mathbb{Z}$), R is antisymmetric ($x \leq y$ and $y \leq x \rightarrow x=$ \boldsymbol{y}) and \boldsymbol{R} is transitive $(\boldsymbol{x} \leq \boldsymbol{y}$ and $\boldsymbol{y} \leq \boldsymbol{z} \rightarrow \boldsymbol{x} \leq \boldsymbol{z})$

Comparable Elements and Total Ordering

Elements \boldsymbol{x} and \boldsymbol{y} are comparable if $\boldsymbol{x} \leq \boldsymbol{y}$ or $\boldsymbol{y} \leq \boldsymbol{x}$ (or both)
A partial order is a total order if every pair of elements in the domain are comparable.

In our previous example, $(\mathbb{Z}, \boldsymbol{R})$ is a total order

- It is a partial order, and for every $\boldsymbol{x}, \boldsymbol{y} \in z, \boldsymbol{x} \boldsymbol{R} \boldsymbol{y}$ or $\boldsymbol{y} \boldsymbol{R} \boldsymbol{x}$
- We say that R is a total ordering of z

Partial vs Total Ordering

What does it look like when elements cannot be compared?
Let the operator \leq be \subseteq, where $\boldsymbol{A} \leq \boldsymbol{B}$ iff $\boldsymbol{A} \subseteq B$, and let $\boldsymbol{S}=\mathscr{A}(\{a, b, c\})$
We have no way to compare $\{\mathbf{a}, \mathbf{b}\}$ and $\{\mathbf{b}, \mathbf{c}\}$

- $\{a, b\} \notin\{b, c\}$
- $\{b, c\} \notin\{a, b\}$
- Therefore, $\{\mathbf{a}, \mathrm{b}\}$ and $\{\mathbf{b}, \mathbf{c}\}$ are incomparable

Is (\boldsymbol{S}, \leq) a partial ordering of \boldsymbol{S} ?
Is (\boldsymbol{S}, \leq) a partial ordering of \boldsymbol{S} ?

Partial vs Total Ordering

What does it look like when elements cannot be compared?
Let the operator \leq be \subseteq, where $A \leq B$ iff $A \subseteq B$, and let $S=\mathscr{P}(\{a, b, c\})$
We have no way to compare $\{\mathbf{a}, \mathbf{b}\}$ and $\{\mathbf{b}, \mathbf{c}\}$

- $\{a, b\} \notin\{b, c\}$
- $\{b, c\} \notin\{a, b\}$
- Therefore, $\{\mathbf{a}, \mathrm{b}\}$ and $\{\mathbf{b}, \mathbf{c}\}$ are incomparable

Is (S, \leq) a partial ordering of \boldsymbol{S} ? Yes. \leq is reflexive, anti-symmetric, transitive Is (\boldsymbol{S}, \leq) a partial ordering of \boldsymbol{S} ? No. There exist incomparable elements of \boldsymbol{S}

Hasse Diagram

Given a poset, we can draw a Hasse Diagram to visualize the relation

- If $\boldsymbol{x} \leq \boldsymbol{y}$, then \boldsymbol{x} appears lower in the drawing than \boldsymbol{y}
- There is a line from x to y iff $x \leq y$ or $y \leq x$
- Omit line between \boldsymbol{x} and \boldsymbol{z} if $\boldsymbol{x} \leq \boldsymbol{z}$ but $\exists \boldsymbol{y}$ s.t. $\boldsymbol{x} \leq \boldsymbol{y} \leq \boldsymbol{z}$

Consider (\mathbf{S}, \subseteq) where $S=\mathscr{R}(\{\mathbf{a}, \mathbf{b}, \mathbf{c}\})$

Another Example

Consider the set \boldsymbol{H}
$\boldsymbol{H}=\{$ Halloween, It, Hereditary, Get Out, Descent, Chucky, Friday the 13th \}

Another Example

Consider the set \boldsymbol{H}
$\boldsymbol{H}=\{$ Halloween, It, Hereditary, Get Out, Descent, Chucky, Friday the 13th \}
I could organize these movies in a tier list based on my preferences:
A-tier: Halloween, Get Out, Friday the 13th
B-tier: It, Descent, Chucky
C-tier: Hereditary

Another Example

Consider the set \boldsymbol{H}
$\boldsymbol{H}=\{$ Halloween, It, Hereditary, Get Out, Descent, Chucky, Friday the 13th \}
I could organize these movies in a tier list based on my preferences:
A-tier: Halloween, Get Out, Friday the 13th

B-tier: It, Descent, Chucky
C-tier: Hereditary

Is this a partial or total ordering?
Is (Hereditary, Chucky) in the relation?
Is (Hereditary, Halloween)?
Is (Halloween, Get Out)?

Another Example

Consider the set \boldsymbol{H}
$\boldsymbol{H}=\{$ Halloween, It, Hereditary, Get Out, Descent, Chucky, Friday the 13th \}
I could organize these movies in a tier list based on my preferences:
A-tier: Halloween, Get Out, Friday the 13th

B-tier: It, Descent, Chucky
C-tier: Hereditary

Is this a partial or total ordering? partial Is (Hereditary, Chucky) in the relation? Yes Is (Hereditary, Halloween)? Yes (transitivity) Is (Halloween, Get Out)? No (incomparable)

Another Example

Consider the set \boldsymbol{H}
$\boldsymbol{H}=\{$ Halloween, It, Hereditary, Get Out, Descent, Chucky, Friday the 13th \}

Another Example

Consider the set \boldsymbol{H}
$\boldsymbol{H}=\{$ Halloween, It, Hereditary, Get Out, Descent, Chucky, Friday the 13th \}
I could also rank these movies based on my preferences:

1. Halloween
2. Get Out
3. Friday the 13th
4. Descent
5. It
6. Chucky

Is this a partial or total ordering?
Is (Hereditary, Chucky) in the relation?
Is (Hereditary, Halloween)?
Is (Halloween, Get Out)?
7. Hereditary

Another Example

Consider the set \boldsymbol{H}
$\boldsymbol{H}=\{$ Halloween, It, Hereditary, Get Out, Descent, Chucky, Friday the 13th \}
I could also rank these movies based on my preferences:

1. Halloween
2. Get Out
3. Friday the 13th
4. Descent
5. It
6. Chucky

Is this a partial or total ordering? total Is (Hereditary, Chucky) in the relation? Yes Is (Hereditary, Halloween)? Yes (transitivity)
Is (Halloween, Get Out)? No

Outline

- Binary Relations
- Intro
- Partial Ordering
- Equivalence Relations
- Functions

Equivalence Relations

A relation R on a set \boldsymbol{A} is called an equivalence relation if it is reflexive, transitive, and symmetric.
$\boldsymbol{a} \boldsymbol{R} \boldsymbol{b}$ is denoted $\boldsymbol{a} \sim \boldsymbol{b}$ for an equivalence relation \boldsymbol{R}

- We read $\boldsymbol{a} \sim \boldsymbol{b}$ as " \boldsymbol{a} is equivalent to \boldsymbol{b} "

Example

Consider the relation \boldsymbol{R} on $\boldsymbol{P}=\{$ all people $\}$, where $\boldsymbol{a} \boldsymbol{R} \boldsymbol{b}$ iff \boldsymbol{a} and \boldsymbol{b} have the same birthday.

Is \boldsymbol{R} an equivalence relation?

Example

Consider the relation \boldsymbol{R} on $\boldsymbol{P}=\{$ all people $\}$, where $\boldsymbol{a} \boldsymbol{R} \boldsymbol{b}$ iff \boldsymbol{a} and \boldsymbol{b} have the same birthday.

Is R an equivalence relation? Yes.
Reflexive: Any person, a, has the same birthday as themselves
Transitive: If person \boldsymbol{a} and \boldsymbol{b} have the same birthday, and \boldsymbol{b} and \boldsymbol{c} have the same birthday, then \mathbf{a} and \mathbf{c} also have the same birthday

Symmetric: If $\boldsymbol{a} \boldsymbol{R} \boldsymbol{b}$, then $\boldsymbol{b} \boldsymbol{R} \mathbf{a}$.

Equivalence Classes

We can partition the domain of an equivalence relation into equivalent elements. These partitions are called equivalence classes.

If $\boldsymbol{e} \in \boldsymbol{D}$ then the equivalence class containing \mathbf{e} is denoted [e]
$[e]=\{x \mid x \in D, x \sim e\}$

Examples

Consider the birthday equivalence relation from the previous example, \boldsymbol{R}
Suppose Alice's birthday is March 12

- If Alice \boldsymbol{R} Bob, then Bob's birthday is also March 12
- Under the relation \boldsymbol{R} Alice and Bob are equivalent (Alice \sim Bob)
- [Alice] = \{ Alice, Bob, ... $\}=\{$ all people born on March 12$\}$
- [Alice] = [Bob] since both represent people born on March 12

Examples

Consider the birthday equivalence relation from the previous example, \boldsymbol{R}
Suppose Alice's birthday is March 12

- If Alice \boldsymbol{R} Bob, then Bob's birthday is also March 12
- Under the relation \boldsymbol{R} Alice and Bob are equivalent (Alice \sim Bob)
- [Alice] $=\{$ Alice, Bob, ... $\}=\{$ all people born on March 12 \}
- [Alice] = [Bob] since both represent people born on March 12

Do the equivalence classes form a partition of the domain?

Examples

Consider the birthday equivalence relation from the previous example, \boldsymbol{R}
Suppose Alice's birthday is March 12

- If Alice \boldsymbol{R} Bob, then Bob's birthday is also March 12
- Under the relation \boldsymbol{R} Alice and Bob are equivalent (Alice \sim Bob)
- [Alice] $=\{$ Alice, Bob, ... $\}=\{$ all people born on March 12 \}
- [Alice] = [Bob] since both represent people born on March 12

Do the equivalence classes form a partition of the domain? Yes

Outline

- Binary Relations
- Functions
- Introduction to Functions
- Function Equality
- Function Properties
- Floor/Ceiling Functions
- Division of Modular Arithmetic
- Composition of Functions

Function Definition

Consider a relation of students to letter grades:

We may want to be able to input a student's name a get their grade (A function is a different take on binary relations)

Function Definition

Let \boldsymbol{A} and \boldsymbol{B} be nonempty sets. A function, f, from \boldsymbol{A} to \boldsymbol{B} is an assignment of exactly one element of \boldsymbol{B} to each element of \boldsymbol{A}.

Denoted by $f: \boldsymbol{A} \rightarrow \boldsymbol{B}$
We write $f(\boldsymbol{a})=\boldsymbol{b}$ if \boldsymbol{b} is the unique element of \boldsymbol{B} assigned by f to the element \boldsymbol{a} of \boldsymbol{A}

The set A is the domain of f
The set \boldsymbol{B} is the codomain of f

Function Examples

Consider the sets $X_{1}=\{1,2,3\}, Y_{1}=\{1,2,3\}$, and the mapping $f_{1}: X_{1} \rightarrow Y_{1}$:

$$
f_{1}(x)=x
$$

1. Is f_{1} a function?
2. What is the domain of f_{1} ?
3. What is the codomain of f_{1} ?

Function Examples

Consider the sets $X_{1}=\{1,2,3\}, Y_{1}=\{1,2,3\}$, and the mapping $f_{1}: X_{1} \rightarrow Y_{1}$:

$$
f_{1}(x)=x
$$

1. Is f_{1} a function? Yes. Every element in X_{1} maps to a unique elem of Y_{1}
2. What is the domain of f_{1} ?
3. What is the codomain of f_{1} ?

Function Examples

Consider the sets $X_{1}=\{1,2,3\}, Y_{1}=\{1,2,3\}$, and the mapping $f_{1}: X_{1} \rightarrow Y_{1}$:

$$
f_{1}(x)=x
$$

1. Is f_{1} a function? Yes. Every element in X_{1} maps to a unique elem of Y_{1}
2. What is the domain of f_{1} ? \boldsymbol{X}_{1}
3. What is the codomain of f_{1} ?

Function Examples

Consider the sets $X_{1}=\{1,2,3\}, Y_{1}=\{1,2,3\}$, and the mapping $f_{1}: X_{1} \rightarrow Y_{1}$:

$$
f_{1}(x)=x
$$

1. Is f_{1} a function? Yes. Every element in X_{1} maps to a unique elem of Y_{1}
2. What is the domain of f_{1} ? \boldsymbol{X}_{1}
3. What is the codomain of f_{1} ? Y_{1}

Function Examples

Consider the sets $X_{1}=\{1,2,3\}, Y_{1}=\{1,2,3\}$, and the mapping $f_{1}: X_{1} \rightarrow Y_{1}$:

$$
f_{1}(x)=x
$$

1. Is f_{1} a function? Yes. Every element in X_{1} maps to a unique elem of Y_{1}
2. What is the domain of f_{1} ? \boldsymbol{X}_{1}
3. What is the codomain of f_{1} ? Y_{1}

We can also write $f_{1}=\{(1,1),(2,2),(3,3)\}$

Function Examples

Consider the sets $X_{2}=Z, Y_{2}=\{1,2,3\}$, and the mapping $f_{2}: X_{2} \rightarrow \boldsymbol{Y}_{2}$:

$$
f_{2}(x)=x
$$

1. Is f_{2} a function?

Function Examples

Consider the sets $X_{2}=Z, Y_{2}=\{1,2,3\}$, and the mapping $f_{2}: X_{2} \rightarrow \boldsymbol{Y}_{2}$:

$$
f_{2}(x)=x
$$

1. Is f_{2} a function? No. Problem: $f_{2}(4)=$???

Function Examples

Consider the sets $X_{2}=Z, Y_{2}=\{1,2,3\}$, and the mapping $f_{2}: X_{2} \rightarrow \boldsymbol{Y}_{2}$:

$$
f_{2}(x)=x
$$

1. Is f_{2} a function? No. Problem: $f_{2}(4)=$???

We could fix this by defining a new mapping:

$$
f_{2}^{\prime}(x)= \begin{cases}x & \text { if } 1 \leq x \leq 3 \\ 1 & \text { if } x<1 \text { or } x>3\end{cases}
$$

Function Examples

Consider the sets $X_{2}=Z, Y_{2}=\{1,2,3\}$, and the mapping $f_{2}: X_{2} \rightarrow \boldsymbol{Y}_{2}$:

$$
f_{2}(x)=x
$$

1. Is f_{2} a function? No. Problem: $f_{2}(4)=$???

We could fix this by defining a new mapping:

$$
f_{2}^{\prime}(x)= \begin{cases}x & \text { if } 1 \leq x \leq 3 \\ 1 & \text { if } x<1 \text { or } x>3\end{cases}
$$

$f_{2}^{\prime}=\{(1,1),(2,2),(3,3\} \cup\{(x, 1) \mid x \in 飞, x<1$ or $x>3\}$

Function Examples

Consider the sets $X_{3}=\mathbb{Z}, Y_{3}=\mathbb{Z}$, and the mapping $f_{3}: X_{3} \rightarrow Y_{3}$:

$$
f_{3}(x)= \begin{cases}x & \text { if } x \text { is odd } \\ x^{2} & \text { if } x \geq 0 \\ |x| & \text { if } x<0\end{cases}
$$

Is f_{3} a function?

Function Examples

Consider the sets $X_{3}=\mathbb{Z}, Y_{3}=\mathbb{Z}$, and the mapping $f_{3}: X_{3} \rightarrow Y_{3}$:

$$
f_{3}(x)= \begin{cases}x & \text { if } x \text { is odd } \\ x^{2} & \text { if } x \geq 0 \\ |x| & \text { if } x<0\end{cases}
$$

Is f_{3} a function? No. Problem: $f_{3}(-1)=-1$ and $f_{3}(-1)=1$

Function Definition in Symbols

Symbolically, for a mapping $f: X \rightarrow Y$:
f is a (well-defined) function if and only if

$$
\forall x \in X, \exists y \in Y,(f(x)=y \wedge(\forall z \in Y,(y \neq z \rightarrow f(x) \neq z)))
$$

Function Definition in Symbols

Symbolically, for a mapping $f: X \rightarrow Y$:
f is a (well-defined) function if and only if

$$
\forall x \in X, \exists y \in Y,(f(x)=\text { y } \wedge(\forall z \in Y,(y \neq z \rightarrow f(x) \neq z)))
$$

For every \boldsymbol{x} in the domain, there exists a y in the codomain such that $f(x)=y$

Function Definition in Symbols

Symbolically, for a mapping $f: X \rightarrow Y$:
f is a (well-defined) function if and only if

$$
\forall x \in X, \exists y \in Y,(f(x)=y \wedge(\forall z \in Y,(y \neq z \rightarrow f(x) \neq z)))
$$

For every \boldsymbol{x} in the domain, there exists a y in the codomain such that $f(x)=y$

For every other element of the codomain, $\mathbf{z}, f(x) \neq \mathbf{z}$.

Function Range

If f is a function from \boldsymbol{A} to B, the set range $(f)=\{\boldsymbol{y} \mid \exists \boldsymbol{x} \in \boldsymbol{A}, f(\mathrm{x})=\mathrm{y}\}$ is called the range of f

It is the set of all values in the codomain that have an element from the domain mapped to it

- For any function $f: A \rightarrow B$, range $(f) \subseteq B$
- It does not have to be the whole codomain

More Examples

$$
\begin{aligned}
& X_{4}=\boxtimes, Y_{4}=飞 \\
& f_{4}(\mathrm{x}): X_{4} \rightarrow Y_{4} \\
& f_{4}(\mathrm{x})=1
\end{aligned}
$$

$$
\text { Is } f_{4} \text { a function? }
$$

Domain?
Codomain?
Range?

More Examples

$$
\begin{array}{lc}
X_{4}=飞, Y_{4}=飞 & \text { Is } f_{4} \text { a function? Yes } \\
f_{4}(\mathrm{x}): \boldsymbol{X}_{4} \rightarrow \boldsymbol{Y}_{4} & \text { Domain? } \\
f_{4}(\mathrm{x})=1 & \text { Codomain? } \\
& \text { Range? }
\end{array}
$$

More Examples

$$
\begin{array}{lc}
X_{4}=飞, Y_{4}=飞 & \text { Is } f_{4} \text { a function? Yes } \\
f_{4}(\mathrm{x}): \boldsymbol{X}_{4} \rightarrow \boldsymbol{Y}_{4} & \text { Domain? } \\
f_{4}(\mathrm{x})=1 & \text { Codomain? } \\
& \text { Range? }
\end{array}
$$

More Examples

$$
\begin{array}{lc}
X_{4}=飞, Y_{4}=飞 & \text { Is } f_{4} \text { a functior } \\
f_{4}(\mathrm{x}): X_{4} \rightarrow Y_{4} & \text { Domain? } \\
f_{4}(\mathrm{x})=1 & \text { Codomain? } \\
& \text { Range? }
\end{array}
$$

More Examples

$$
\begin{aligned}
& X_{4}=\boxtimes, Y_{4}=飞 \\
& f_{4}(\mathrm{x}): X_{4} \rightarrow Y_{4} \\
& f_{4}(\mathrm{x})=1
\end{aligned}
$$

Is f_{4} a function? Yes
Domain?
Z
Codomain?
z
Range?
\{1\}

More Examples

$$
\begin{array}{ll}
X_{5}=\boxtimes, Y_{5}=\imath & \text { Is } f_{5} \text { a functi } \\
f_{5}(\mathrm{x}): X_{5} \rightarrow Y_{5} & \text { Domain? } \\
f_{5}(x)=\sqrt{X} & \text { Codomain? } \\
& \text { Range? }
\end{array}
$$

More Examples

$$
\begin{array}{lll}
X_{5}=\imath, Y_{5}=飞 & \text { Is } f_{5} \text { a function? } & \text { No } \\
f_{5}(\mathrm{x}): X_{5} \rightarrow Y_{5} & \text { Domain? } & \text { N/A } \\
f_{5}(\mathrm{x})=\sqrt{ } \bar{X} & \text { Codomain? } & \text { N/A } \\
& \text { Range? } & \text { N/A }
\end{array}
$$

More Examples

$$
\begin{aligned}
& X_{6}=\left\{x^{2} \mid x \in \mathbb{Z}\right\} \\
& Y_{6}=\mathbb{Z} \\
& f_{6}(x): X_{6} \rightarrow Y_{6} \\
& f_{6}(x)=\sqrt{x}
\end{aligned}
$$

Is f_{6} a function?
Domain?
Codomain?
Range?

More Examples

$$
\begin{aligned}
& X_{6}=\left\{x^{2} \mid x \in \mathbb{Z}\right\} \\
& Y_{6}=\mathbb{Z} \\
& f_{6}(x): X_{6} \rightarrow Y_{6} \\
& f_{6}(x)=\sqrt{x}
\end{aligned}
$$

Is f_{6} a function? Yes
Domain?
Codomain?
Range?

More Examples

$$
\begin{aligned}
& X_{6}=\left\{x^{2} \mid x \in \mathbb{Z}\right\} \\
& Y_{6}=\mathbb{Z} \\
& f_{6}(x): X_{6} \rightarrow Y_{6} \\
& f_{6}(x)=\sqrt{x}
\end{aligned}
$$

Is f_{6} a function? Yes
Domain?
$\left\{x^{2} \mid x \in \mathbb{Z}\right\}$
Codomain?
Range?

More Examples

$$
\begin{aligned}
& X_{6}=\left\{x^{2} \mid x \in \mathbb{Z}\right\} \\
& Y_{6}=飞 \\
& f_{6}(x): X_{6} \rightarrow Y_{6} \\
& f_{6}(x)=\sqrt{x}
\end{aligned}
$$

Is f_{6} a function? Yes
Domain?
$\left\{x^{2} \mid x \in \mathbb{Z}\right\}$
Codomain?
Z
Range?

More Examples

$$
\begin{aligned}
& X_{6}=\left\{x^{2} \mid x \in \mathbb{Z}\right\} \\
& Y_{6}=\mathbb{Z} \\
& f_{6}(x): X_{6} \rightarrow Y_{6} \\
& f_{6}(x)=\sqrt{x}
\end{aligned}
$$

Domain?
$\left\{x^{2} \mid x \in \mathbb{Z}\right\}$
Codomain?
Z
Range? $\quad \mathbb{Z}^{+} \cup\{0\}$

Outline

- Binary Relations
- Functions
- Introduction to Functions
- Function Equality
- Function Properties
- Floor/Ceiling Functions
- Division of Modular Arithmetic
- Composition of Functions

Function Equality

Two functions, $f: \boldsymbol{A} \rightarrow \boldsymbol{B}$ and $g: \boldsymbol{X} \rightarrow \boldsymbol{Y}$ are equal iff the following hold:

1. $A=X$
2. $B=Y$
3. $\forall a \in A, f(\mathbf{a})=g(\mathbf{a})$

In English, two functions are equal if they have the same domain, same codomain, and map each element in the domain to the same element of the codomain

Function Equality

Consider the functions: $f: \mathbb{z} \rightarrow \mathbb{Z}$, and $g: \mathbb{z} \rightarrow \mathbb{z}$ defined as:

$$
f=\{(\mathrm{x}, 1) \mid \mathrm{x} \in \mathbb{Z}\} \quad \text { and } \quad g(\mathrm{y})=1
$$

Are the two functions equal?

Function Equality

Consider the functions: $f: \mathbb{z} \rightarrow \mathbb{Z}$, and $g: \mathbb{z} \rightarrow \mathbb{z}$ defined as:

$$
f=\{(\mathrm{x}, 1) \mid \mathrm{x} \in \mathbb{Z}\} \quad \text { and } \quad g(\mathrm{y})=1
$$

Are the two functions equal?

1. Same domain \checkmark

Function Equality

Consider the functions: $f: \mathbb{z} \rightarrow \mathbb{Z}$, and $g: \mathbb{z} \rightarrow \mathbb{z}$ defined as:

$$
f=\{(\mathrm{x}, 1) \mid \mathrm{x} \in \mathbb{Z}\} \quad \text { and } \quad g(\mathrm{y})=1
$$

Are the two functions equal?

1. Same domain \checkmark
2. Same codomain \checkmark
3. $\forall x \in \mathbb{Z}, f(x)=g(x)$?

Function Equality

Consider the functions: $f: \mathbb{Z} \rightarrow \mathbb{Z}$, and $g: \mathbb{Z} \rightarrow \mathbb{Z}$ defined as:

$$
f=\{(\mathrm{x}, 1) \mid \mathrm{x} \in \mathbb{Z}\} \quad \text { and } \quad g(\mathrm{y})=1
$$

Are the two functions equal?

1. Same domain \checkmark
2. Same codomain \checkmark
3. $\forall x \in \mathbb{Z}, f(x)=g(x)$?

- Pick an arbitrary $x \in \mathbb{Z}$
- Then $(\boldsymbol{x}, 1) \in f$, or $f(x)=1$
- Similarly $g(x)=1$

Function Equality

Consider the functions: $f: \mathbb{Z} \rightarrow \mathbb{Z}$, and $g: \mathbb{Z} \rightarrow \mathbb{Z}$ defined as:

$$
f=\{(\mathrm{x}, 1) \mid \mathrm{x} \in \mathbb{Z}\} \quad \text { and } \quad g(\mathrm{y})=1
$$

Are the two functions equal? Yes

1. Same domain \checkmark
2. Same codomain \checkmark
3. $\forall x \in \llbracket, f(x)=g(x) \checkmark$

- Pick an arbitrary $x \in \mathbb{Z}$
- Then $(\boldsymbol{x}, 1) \in f$, or $f(x)=1$
- Similarly $g(x)=1$

Outline

- Binary Relations
- Functions
- Introduction to Functions
- Function Equality
- Function Properties
- Floor/Ceiling Functions
- Division of Modular Arithmetic
- Composition of Functions

Injective Functions

A function $f: A \rightarrow B$ is injective if $\forall x_{1}, x_{2} \in A,\left(f\left(x_{1}\right)=f\left(x_{2}\right) \rightarrow x_{1}=x_{2}\right)$
Also known as one-to-one or 1-1

- Each element in the domain is mapped to a unique element from the codomain (no element in the codomain is hit twice)
- To prove a function is 1-1
- Take an arbitrary \boldsymbol{x} and \boldsymbol{y} such that $f(\boldsymbol{x})=f(\boldsymbol{y})$
- Conclude that $\boldsymbol{x}=\boldsymbol{y}$
- To prove a function is not 1-1
- Find a counterexample where $\boldsymbol{x} \neq \boldsymbol{y}$ but $f(\boldsymbol{x})=f(\boldsymbol{y})$

Surjective Functions

A function $f: A \rightarrow B$ is surjective if $\forall y \in B, \exists x \in A, f(x)=y$
Also known as onto

- Every element in the codomain has an element that maps to it
- To prove a function is onto:
- Take arbitrary \boldsymbol{y} in the codomain
- Find the value of \boldsymbol{x} in the domain such that $f(\boldsymbol{x})=\boldsymbol{y}$
- To prove a function is not onto:
- Find a counterexample, element \boldsymbol{y} in codomain s.t. no element maps to it

Bijective Functions

Idea: What if a function is both 1-1 and onto?

Bijective Functions

A functionf: $\boldsymbol{A} \rightarrow \boldsymbol{B}$ is bijective if it is injective and surjective
A bijective function is called a bijection, or a one-to-one correspondence

Examples

Let $f_{1}: ъ \rightarrow 飞$, defined by $f_{1}(\mathrm{a})=1$
Is f_{1} injective, surjective, bijective?

Injective (1-1)?

Examples

Let $f_{1}: ъ \rightarrow 飞$, defined by $f_{1}(\mathrm{a})=1$
Is f_{1} injective, surjective, bijective?

Injective (1-1)?

1. Let $x=1$ and $y=5$ (clearly x and y are both in $z)$
2. $f_{1}(\mathrm{x})=1, f_{1}(\mathrm{y})=1$
3. Therefore $f_{1}(\mathrm{x})=f_{1}(\mathrm{y})$, but $\mathrm{x} \neq \mathrm{y}$

Examples

Let $f_{1}: ъ \rightarrow 飞$, defined by $f_{1}(\mathrm{a})=1$
Is f_{1} injective, surjective, bijective?

Injective (1-1)?

1. Let $x=1$ and $y=5$ (clearly x and y are both in $z)$
2. $f_{1}(\mathrm{x})=1, f_{1}(\mathrm{y})=1$
3. Therefore $f_{1}(\mathrm{x})=f_{1}(\mathrm{y})$, but $\mathrm{x} \neq \mathrm{y}$

We've found a counterexample, so f_{1} is not 1-1

Examples

Let $f_{1}: ъ \rightarrow 飞$, defined by $f_{1}(\mathrm{a})=1$
Is f_{1} injective, surjective, bijective?
Surjective (onto)?

Examples

Let $f_{1}: ъ \rightarrow \widetilde{Z}$, defined by $f_{1}(\mathrm{a})=1$
Is f_{1} injective, surjective, bijective?

Surjective (onto)?

1. Consider $\mathrm{y}=2$ (clearly 2 is in the codomain z)
2. There is no $x \in \mathbb{Z}$ s.t. $f_{1}(x)=y$

Examples

Let $f_{1}: ъ \rightarrow 飞$, defined by $f_{1}(\mathrm{a})=1$
Is f_{1} injective, surjective, bijective?

Surjective (onto)?

1. Consider $\mathrm{y}=2$ (clearly 2 is in the codomain z)
2. There is no $x \in \mathbb{Z}$ s.t. $f_{1}(x)=y$

We've found a counterexample, so \boldsymbol{f}_{1} is not onto

Examples

Let $f_{1}: ъ \rightarrow 飞$, defined by $f_{1}(\mathrm{a})=1$
Is f_{1} injective, surjective, bijective?

Bijective (one-to-one correspondence)?

Examples

Let $f_{1}: ъ \rightarrow \mathbb{Z}$, defined by $f_{1}(\mathrm{a})=1$
Is f_{1} injective, surjective, bijective?
Bijective (one-to-one correspondence)?

No. To be bijective f_{1} must be injective AND surjective

Examples

Let $f_{2}: \boxtimes \rightarrow \measuredangle^{+}$, defined by $f_{2}(\mathrm{a})=|\mathrm{a}|$ (absolute value of a)
Is f_{2} injective, surjective, bijective?
Injective (1-1)?

Examples

Let $f_{2}: ъ \rightarrow 飞^{+}$, defined by $f_{2}(\mathrm{a})=|\mathrm{a}|$ (absolute value of a)
Is f_{2} injective, surjective, bijective?

Injective (1-1)?

1. Let $x=2$ and $y=-2$ (clearly x and y are both in z)
2. $f_{1}(\mathrm{x})=2, f_{1}(\mathrm{y})=2$
3. Therefore $f_{1}(\mathrm{x})=f_{1}(\mathrm{y})$, but $\mathrm{x} \neq \mathrm{y}$

Examples

Let $f_{2}: ъ \rightarrow 飞^{+}$, defined by $f_{2}(\mathrm{a})=|\mathrm{a}|$ (absolute value of a)
Is f_{2} injective, surjective, bijective?

Injective (1-1)?

1. Let $x=2$ and $y=-2$ (clearly x and y are both in z)
2. $f_{1}(\mathrm{x})=2, f_{1}(\mathrm{y})=2$
3. Therefore $f_{1}(\mathrm{x})=f_{1}(\mathrm{y})$, but $\mathrm{x} \neq \mathrm{y}$

We've found a counterexample, so f_{2} is not 1-1

Examples

Let $f_{2}: ъ \rightarrow 飞^{+}$, defined by $f_{2}(\mathrm{a})=|\mathrm{a}|$ (absolute value of a)
Is f_{2} injective, surjective, bijective?
Surjective (onto)?

Examples

Let $f_{2}: \boxtimes \rightarrow \measuredangle^{+}$, defined by $f_{2}(\mathrm{a})=|\mathrm{a}|$ (absolute value of a)
Is f_{2} injective, surjective, bijective?

Surjective (onto)?

1. Let y be an arbitrary element of Z^{+}
2. $f_{2}(\mathrm{y})=\mathrm{y}$

Examples

Let $f_{2}: ъ \rightarrow 飞^{+}$, defined by $f_{2}(\mathrm{a})=|\mathrm{a}|$ (absolute value of a)
Is f_{2} injective, surjective, bijective?
Surjective (onto)?

1. Let y be an arbitrary element of \boxtimes^{+}
2. $f_{2}(\mathrm{y})=\mathrm{y}$

Therefore, since we chose y arbitrarily, every element of Z^{+}gets mapped to by something, therefore f_{2} is onto

Examples

Let $f_{2}: ъ \rightarrow 飞^{+}$, defined by $f_{2}(\mathrm{a})=|\mathrm{a}|$ (absolute value of a)
Is f_{2} injective, surjective, bijective?

Bijective (one-to-one correspondence)?

Examples

Let $f_{2}: \boxtimes \rightarrow \measuredangle^{+}$, defined by $f_{2}(\mathrm{a})=|\mathrm{a}|$ (absolute value of a)
Is f_{2} injective, surjective, bijective?
Bijective (one-to-one correspondence)?

No. To be bijective f_{2} must be injective AND surjective

Examples

Let $f_{3}: \boxtimes \rightarrow \mathbb{Z}$, defined by $f_{3}(\mathrm{a})=\mathrm{a}+16$
Is f_{3} injective, surjective, bijective?

Injective (1-1)?

Examples

Let $f_{3}: ъ \rightarrow \pi$, defined by $f_{3}(\mathrm{a})=\mathrm{a}+16$
Is f_{3} injective, surjective, bijective?

Injective (1-1)?

1. Let x and y be arbitrary elements of z
2. Assume $f_{3}(x)=f_{3}(\mathrm{y})$
3. $x+16=y+16 \rightarrow x=y$

Examples

Let $f_{3}: \boxtimes \rightarrow \mathbb{Z}$, defined by $f_{3}(\mathrm{a})=\mathrm{a}+16$
Is f_{3} injective, surjective, bijective?

Injective (1-1)?

1. Let x and y be arbitrary elements of z
2. Assume $f_{3}(x)=f_{3}(y)$
3. $x+16=y+16 \rightarrow x=y$

Therefore, since we chose x and y arbitrarily, and $f_{3}(x)=f_{3}(y) \rightarrow x=y$, then f_{3} is $1-1$

Examples

Let $f_{3}: ъ \rightarrow 飞$, defined by $f_{3}(\mathrm{a})=\mathrm{a}+16$
Is f_{3} injective, surjective, bijective?
Surjective (onto)?

Examples

Let $f_{3}: \boxtimes \rightarrow \mathbb{Z}$, defined by $f_{3}(\mathrm{a})=\mathrm{a}+16$
Is f_{3} injective, surjective, bijective?

Surjective (onto)?

1. Let y be an arbitrary element of \mathbb{Z}
2. $x=y-16$ is also therefore in z
3. $f_{3}(\mathrm{x})=\mathrm{x}+16=(\mathrm{y}-16)+16=\mathrm{y}$

Examples

Let $f_{3}: \boxtimes \rightarrow \mathbb{Z}$, defined by $f_{3}(\mathrm{a})=\mathrm{a}+16$
Is f_{3} injective, surjective, bijective?

Surjective (onto)?

1. Let y be an arbitrary element of Z
2. $x=y-16$ is also therefore in \mathbb{z}
3. $f_{3}(\mathrm{x})=\mathrm{x}+16=(\mathrm{y}-16)+16=\mathrm{y}$

Therefore, since we chose y arbitrarily, every element of \mathbb{Z} gets mapped to by something, therefore f_{3} is onto

Examples

Let $f_{3}: \boxtimes \rightarrow \mathbb{Z}$, defined by $f_{3}(\mathrm{a})=\mathrm{a}+16$
Is f_{3} injective, surjective, bijective?

Bijective (one-to-one correspondence)?

Examples

Let $f_{3}: \boxtimes \rightarrow \mathbb{Z}$, defined by $f_{3}(\mathrm{a})=\mathrm{a}+16$
Is f_{3} injective, surjective, bijective?
Bijective (one-to-one correspondence)?

Yes. To be bijective f_{3} must be injective AND surjective, and it is!

Inverse of Functions

For any function $f: \boldsymbol{A} \rightarrow \boldsymbol{B}$, the inverse mapping of f, denoted by f^{1}, is defined by the mapping $f^{1}: \boldsymbol{B} \rightarrow \boldsymbol{A}$ where: $\boldsymbol{f}^{-1}=\{(\boldsymbol{y}, \boldsymbol{x}) \mid(\boldsymbol{x}, \boldsymbol{y}) \in f\}$

If f is a bijection then f^{1} is a function (otherwise it is just a mapping)

- f^{1} maps codomain elements of f to domain elements of f
- If $f(x)=y$ then $f^{1}(y)=x$

Inverse of Functions

For f^{1} to be a function, f must be a bijection:

- 1-1: guarantees at most one arrow out of each codomain element
- Onto: guarantees at least one arrow out of each codomain element
- Bijection: exactly one arrow out of each codomain element

Inverse of Functions

For f^{1} to be a function, f must be a bijection:

- 1-1: guarantees at most one arrow out of each codomain element
- Onto: guarantees at least one arrow out of each codomain element
- Bijection: exactly one arrow out of each codomain element

Inverse of Functions

For f^{1} to be a function, f must be a bijection:

- 1-1: guarantees at most one arrow out of each codomain element
- Onto: guarantees at least one arrow out of each codomain element
- Bijection: exactly one arrow out of each codomain element

Inverse of Functions

For f^{1} to be a function, f must be a bijection:

- 1-1: guarantees at most one arrow out of each codomain element
- Onto: guarantees at least one arrow out of each codomain element
- Bijection: exactly one arrow out of each codomain element

(z) Not a function because z does not map to anything

Inverse of Functions

For f^{1} to be a function, f must be a bijection:

- 1-1: guarantees at most one arrow out of each codomain element
- Onto: guarantees at least one arrow out of each codomain element
- Bijection: exactly one arrow out of each codomain element

Inverse of Functions

For f^{1} to be a function, f must be a bijection:

- 1-1: guarantees at most one arrow out of each codomain element
- Onto: guarantees at least one arrow out of each codomain element
- Bijection: exactly one arrow out of each codomain element

Inverse of Functions

For f^{1} to be a function, f must be a bijection:

- 1-1: guarantees at most one arrow out of each codomain element
- Onto: guarantees at least one arrow out of each codomain element
- Bijection: exactly one arrow out of each codomain element

Inverse of Functions

For f^{1} to be a function, f must be a bijection:

- 1-1: guarantees at most one arrow out of each codomain element
- Onto: guarantees at least one arrow out of each codomain element
- Bijection: exactly one arrow out of each codomain element

Inverse of Functions

For f^{1} to be a function, f must be a bijection:

- 1-1: guarantees at most one arrow out of each codomain element
- Onto: guarantees at least one arrow out of each codomain element
- Bijection: exactly one arrow out of each codomain element

Inverse of Functions

For f^{1} to be a function, f must be a bijection:

- 1-1: guarantees at most one arrow out of each codomain element
- Onto: guarantees at least one arrow out of each codomain element
- Bijection: exactly one arrow out of each codomain element

Exactly one arrow out of every element of codomain, therefore \boldsymbol{f}^{1} is a function

Cardinality of Domain vs Codomain

If $f: \boldsymbol{A} \rightarrow \boldsymbol{B}$ is onto:

- Then for every codomain element, there is at least one domain element
- $|A| \geq|B|$

If $f: A \rightarrow B$ is 1-1:

- For every domain element, there is a unique codomain element
- $|A| \leq|B|$

If $f: \boldsymbol{A} \rightarrow \boldsymbol{B}$ is a bijection, then f is $\mathbf{1 - 1}$ and onto

- $|\boldsymbol{A}| \leq|\boldsymbol{B}|$ and $|\boldsymbol{A}| \geq|\boldsymbol{B}|$, therefore $|\boldsymbol{A}|=|\boldsymbol{B}|$

Cardinality of Domain vs Codomain

If $f: A \rightarrow B$ is onto:

- Then for every codomain element, there is at least one domain element
- $|A| \geq|B|$

If $f: A \rightarrow B$ is $\mathbf{1 - 1}$:

- For every domain element, there is a unique codomain element
- $|A| \leq|B|$

If $f: A \rightarrow B$ is a bijection, then f is 1-1 and onto

- $|\boldsymbol{A}| \leq|\boldsymbol{B}|$ and $|\boldsymbol{A}| \geq|\boldsymbol{B}|$, therefore $|\boldsymbol{A}|=|\boldsymbol{B}|$

This will be useful for comparing the cardinality of sets!

Cardinality of \mathbb{N} and \mathbb{Z}

Theorem: The cardinalities of \mathbb{N} and \mathbb{Z} are the same
Proof: Show a bijection from \mathbb{N} to \mathbb{z}

Cardinality of \mathbb{N} and \mathbb{Z}

Theorem: The cardinalities of \mathbb{N} and \mathbb{Z} are the same
Proof: Show a bijection from \mathbb{N} to \mathbb{Z}
Let $f: \mathbb{N} \rightarrow \mathbb{Z}$ be defined by

$$
f(x)= \begin{cases}-i & \text { if } x=2 i(\mathrm{x} \text { is even }) \\ i & \text { if } x=2 i+1(\mathrm{x} \text { is odd })\end{cases}
$$

Is f a bijection?

Cardinality of \mathbb{N} and \mathbb{Z}

$$
f(x)= \begin{cases}-i & \text { if } x=2 i(\mathrm{x} \text { is even }) \\ i & \text { if } x=2 i+1(\mathrm{x} \text { is odd })\end{cases}
$$

Let \boldsymbol{x} and \boldsymbol{y} be arbitrary elements of \mathbb{N}
Assume $f(\boldsymbol{x})=f(\boldsymbol{y})$. Then \boldsymbol{x} and \boldsymbol{y} must both be even, or both be odd.
If even: $\boldsymbol{x}=2 \boldsymbol{i}$ and $\boldsymbol{y}=\mathbf{2 i}$.
If odd: $\boldsymbol{x}=2 \boldsymbol{i}+1$ and $\boldsymbol{y}=2 \boldsymbol{i}+1$.
Therefore, if $f(\boldsymbol{x})=f(\boldsymbol{y}), \boldsymbol{x}=\boldsymbol{y}$, which means f is 1-1

Cardinality of \mathbb{N} and \mathbb{Z}

$$
f(x)= \begin{cases}-i & \text { if } x=2 i(\mathrm{x} \text { is even }) \\ i & \text { if } x=2 i+1(\mathrm{x} \text { is odd })\end{cases}
$$

Let \boldsymbol{z} be an arbitrary element of \mathbb{Z}
Case 1: $\boldsymbol{z}<0$

$$
\boldsymbol{x}=2^{*}-\boldsymbol{z} \text { is an integer }>0 \text {, therefore } \boldsymbol{x} \text { is in } \mathbb{N} \text { and } f(\boldsymbol{x})=\boldsymbol{z}
$$

Case 2: $\mathbf{z} \geq 0$
$\boldsymbol{x}=2 * \boldsymbol{z}+1$ is an integer >0, therefore \boldsymbol{x} is in \mathbb{N} and $f(\boldsymbol{x})=\boldsymbol{z}$
Therefore for any arbitrary \mathbf{z} in \mathbb{z}, exists an \mathbf{x} in \mathbb{N} s.t. $f(\mathbf{x})=\mathbf{z}$. So f is onto.

Cardinality of \mathbb{N} and \mathbb{Z}

Theorem: The cardinalities of \mathbb{N} and \mathbb{Z} are the same
Proof: Show a bijection from \mathbb{N} to \mathbb{Z}
Let $f: \mathbb{N} \rightarrow \mathbb{Z}$ be defined by

$$
f(x)= \begin{cases}-i & \text { if } x=2 i(\mathrm{x} \text { is even }) \\ i & \text { if } x=2 i+1(\mathrm{x} \text { is odd })\end{cases}
$$

Therefore f is both 1-1 and onto. So f is a bijection. Therefore \mathbb{N} and \mathbb{Z} have the same size.

Outline

- Binary Relations
- Functions
- Introduction to Functions
- Function Equality
- Function Properties
- Floor/Ceiling Functions
- Division of Modular Arithmetic
- Composition of Functions

Floor Functions

The floor function is the function floor: 闾 $\rightarrow \gtrless$ defined by

$$
\text { floor }(\boldsymbol{x})=\max \{\boldsymbol{y} \mid \boldsymbol{y} \in \mathbb{Z}, \boldsymbol{y} \leq \boldsymbol{x}\}
$$

Evaluates to the maximum integer below the given number.
Denoted by: floor $(\boldsymbol{x})=\lfloor\boldsymbol{x}\rfloor$

Examples

$$
\begin{aligned}
& \lfloor 4.5\rfloor=4 \\
& \lfloor-8.7\rfloor=-9
\end{aligned}
$$

$\lfloor 17\rfloor=17$
$\lfloor\pi\rfloor=\lfloor 3.14159\rfloor=3$

Ceiling Function

The ceiling function is the function floor: 屌 $\rightarrow \gtrless$ defined by

$$
\operatorname{ceiling}(\boldsymbol{x})=\min \{\boldsymbol{y} \mid \boldsymbol{y} \in \mathbb{Z}, \boldsymbol{y} \geq \boldsymbol{x}\}
$$

Evaluates to the minimum integer above the given number.
Denoted by: $\operatorname{ceiling}(\boldsymbol{x})=\lceil\boldsymbol{x}\rceil$

Examples

$$
\begin{array}{ll}
\lceil 4.5\rceil=5 & \lceil 17\rceil=17 \\
\Gamma-8.7\rceil=-8 & \lceil\pi\rceil=\lceil 3.14159\rceil=4
\end{array}
$$

Outline

- Binary Relations
- Functions
- Introduction to Functions
- Function Equality
- Function Properties
- Floor/Ceiling Functions
- Division and Modular Arithmetic
- Composition of Functions

Divides

Let \boldsymbol{x} and \boldsymbol{y} be integers. Then \boldsymbol{x} divides \boldsymbol{y} if there is an integer \boldsymbol{k} s.t. $\boldsymbol{y}=\boldsymbol{k} \boldsymbol{x}$.
Denoted by $\boldsymbol{x} \mid \boldsymbol{y}$

- \boldsymbol{x} does not divide \boldsymbol{y} is denoted by $\boldsymbol{x} \nmid \boldsymbol{y}$

If $\boldsymbol{x} \mid \boldsymbol{y}$, then we say:

- \boldsymbol{y} is a multiple of \boldsymbol{x}
- \boldsymbol{x} is a factor or divisor of \boldsymbol{y}

Divides Examples

The question "x|y?" asks "Does \boldsymbol{x} divide \boldsymbol{y} ?"

Examples

- $4 \mid 8$? Yes! $8=2 \cdot 4$
- $5 \mid 15$? Yes! $15=3 \cdot 5$
- 6|15? No! $15=2 \cdot 6+3$

Division Algorithm

Theorem

Let $\boldsymbol{n} \in \mathbb{Z}$ and let $\boldsymbol{d} \in \mathbb{Z}^{+}$
Then there are unique integers \boldsymbol{q} and \boldsymbol{r}, with $0 \leq \boldsymbol{r} \leq \boldsymbol{d}-1$, s.t. $\boldsymbol{n}=\boldsymbol{q} \cdot \boldsymbol{d}+\boldsymbol{r}$.

- If $\boldsymbol{x} \mid \boldsymbol{y}$ then $\boldsymbol{r}=0$, i.e., $\boldsymbol{y}=\boldsymbol{q} \boldsymbol{x}+0$ for some $\boldsymbol{q} \in \mathbb{Z}$
- If $\boldsymbol{x} \nmid \boldsymbol{y}$ then $\boldsymbol{r} \neq 0$, i.e., $\boldsymbol{y}=\boldsymbol{q} \boldsymbol{x}+\boldsymbol{r}$ for some $\boldsymbol{q} \in \mathbb{Z}$ and $1 \leq \boldsymbol{r} \leq \boldsymbol{x}-1$.

Even vs odd: $2 \mid \boldsymbol{x}$?

$$
x= \begin{cases}2 q+0 & \text { if } x \text { is even } \\ 2 q+1 & \text { if } x \text { is odd }\end{cases}
$$

Integer Division Definition

The Division Algorithm for $\boldsymbol{n} \in \mathbb{Z}$ and $\boldsymbol{d} \in \mathbb{Z}^{+}$gives unique values

$$
q \in \mathbb{Z} \text { and } r \in\{0, \ldots, \boldsymbol{d}-1\} .
$$

- The number \boldsymbol{q} is called the quotient.
- The number \boldsymbol{r} is called the remainder.

Integer Division Definition

The Division Algorithm for $\boldsymbol{n} \in \mathbb{Z}$ and $\boldsymbol{d} \in \mathbb{Z}^{+}$gives unique values

$$
q \in \mathbb{Z} \text { and } r \in\{0, \ldots, \boldsymbol{d}-1\} .
$$

- The number \boldsymbol{q} is called the quotient.
- The number $r \boldsymbol{r}$ is called the remainder.

The operations div and mod produce the quotient and the remainder, respectively, as a function of \boldsymbol{n} and \boldsymbol{d}.

- $n \operatorname{div} d=q$
- $n \bmod d=r$

In programming, $\boldsymbol{n} \% \boldsymbol{d}=\boldsymbol{r}$ denotes $\boldsymbol{n} \boldsymbol{\operatorname { m o d }} \boldsymbol{d}=\boldsymbol{r}$

Addition $\bmod n$

For any integer $\boldsymbol{n}>0, \boldsymbol{x} \bmod \boldsymbol{n}$ can be seen as a function $\bmod _{\boldsymbol{n}}(\boldsymbol{x})$:

- $\bmod _{\boldsymbol{n}}: \mathbb{Z} \rightarrow\{0,1,2, \ldots, \boldsymbol{n}-1\}$, where $\bmod _{\boldsymbol{n}}(\boldsymbol{x})=x \bmod n$.

Addition $\bmod \boldsymbol{n}$ is defined by adding two numbers and then applying $\bmod _{n}$

- All results in the range $\{0,1, \ldots, \boldsymbol{n}-1\}$

Addition mod n

For any integer $\boldsymbol{n}>0, \boldsymbol{x} \bmod \boldsymbol{n}$ can be seen as a function $\bmod _{\boldsymbol{n}}(\boldsymbol{x})$:

- $\bmod _{\boldsymbol{n}}: \mathbb{Z} \rightarrow\{0,1,2, \ldots, \boldsymbol{n}-1\}$, where $\bmod _{\boldsymbol{n}}(\boldsymbol{x})=x \bmod n$.

Addition $\bmod \boldsymbol{n}$ is defined by adding two numbers and then applying $\bmod _{n}$

- All results in the range $\{0,1, \ldots, \boldsymbol{n}-1\}$

Suppose $\boldsymbol{n}=7$

$$
\begin{aligned}
& +\bmod _{7}(4,6)= \\
& +\bmod _{7}(15,17)= \\
& +\bmod _{7}(8,20)=
\end{aligned}
$$

Addition mod n

For any integer $\boldsymbol{n}>0, \boldsymbol{x} \bmod \boldsymbol{n}$ can be seen as a function $\bmod _{\boldsymbol{n}}(\boldsymbol{x})$:

- $\bmod _{\boldsymbol{n}}: \mathbb{Z} \rightarrow\{0,1,2, \ldots, \boldsymbol{n}-1\}$, where $\bmod _{\boldsymbol{n}}(\boldsymbol{x})=x \bmod n$.

Addition $\bmod \boldsymbol{n}$ is defined by adding two numbers and then applying $\bmod _{n}$

- All results in the range $\{0,1, \ldots, \boldsymbol{n}-1\}$

Suppose $\boldsymbol{n}=7$

$$
\begin{aligned}
& +\bmod _{7}(4,6)=(4+6) \bmod 7=10 \bmod 7=3 \\
& +\bmod _{7}(15,17)= \\
& +\bmod _{7}(8,20)=
\end{aligned}
$$

Addition $\bmod n$

For any integer $\boldsymbol{n}>0, \boldsymbol{x} \bmod \boldsymbol{n}$ can be seen as a function $\bmod _{\boldsymbol{n}}(\boldsymbol{x})$:

- $\bmod _{\boldsymbol{n}}: \mathbb{Z} \rightarrow\{0,1,2, \ldots, \boldsymbol{n}-1\}$, where $\bmod _{\boldsymbol{n}}(\boldsymbol{x})=x \bmod \boldsymbol{n}$.

Addition $\bmod \boldsymbol{n}$ is defined by adding two numbers and then applying $\bmod _{n}$

- All results in the range $\{0,1, \ldots, \boldsymbol{n}-1\}$

Suppose $\boldsymbol{n}=7$

$$
\begin{aligned}
& +\bmod _{7}(4,6)=(4+6) \bmod 7=10 \bmod 7=3 \\
& +\bmod _{7}(15,17)=(15+17) \bmod 7=32 \bmod 7=4 \\
& +\bmod _{7}(8,20)=
\end{aligned}
$$

Addition $\bmod n$

For any integer $\boldsymbol{n}>0, \boldsymbol{x} \bmod \boldsymbol{n}$ can be seen as a function $\bmod _{\boldsymbol{n}}(\boldsymbol{x})$:

- $\bmod _{\boldsymbol{n}}: \mathbb{Z} \rightarrow\{0,1,2, \ldots, \boldsymbol{n}-1\}$, where $\bmod _{\boldsymbol{n}}(\boldsymbol{x})=x \bmod n$.

Addition $\bmod \boldsymbol{n}$ is defined by adding two numbers and then applying $\bmod _{\boldsymbol{n}}$

- All results in the range $\{0,1, \ldots, \boldsymbol{n}-1\}$

Suppose $\boldsymbol{n}=7$

$$
\begin{aligned}
& +\bmod _{7}(4,6)=(4+6) \bmod 7=10 \bmod 7=3 \\
& +\bmod _{7}(15,17)=(15+17) \bmod 7=32 \bmod 7=4 \\
& +\bmod _{7}(8,20)=(8+20) \bmod 7=28 \bmod 7=0
\end{aligned}
$$

Multiplication mod n

Multiplication $\bmod \boldsymbol{n}$ is defined by multiplying two numbers and then applying $\bmod _{n}$.

- All results in the range $\{0,1, \ldots, \boldsymbol{n}-1\}$

Suppose $\boldsymbol{n}=11$.

$$
\begin{aligned}
& * \bmod _{11}(4,6)= \\
& * \bmod _{11}(5,7)= \\
& * \bmod _{11}(8,23)=
\end{aligned}
$$

Multiplication mod n

Multiplication $\bmod \boldsymbol{n}$ is defined by multiplying two numbers and then applying $\bmod _{n}$.

- All results in the range $\{0,1, \ldots, \boldsymbol{n}-1\}$

Suppose $\boldsymbol{n}=11$.

$$
\begin{aligned}
& * \bmod _{11}(4,6)=(4 * 6) \bmod 11=24 \bmod 11=2 \\
& * \bmod _{11}(5,7)= \\
& * \bmod _{11}(8,23)=
\end{aligned}
$$

Multiplication mod n

Multiplication $\bmod \boldsymbol{n}$ is defined by multiplying two numbers and then applying $\bmod _{n}$.

- All results in the range $\{0,1, \ldots, \boldsymbol{n}-1\}$

Suppose $\boldsymbol{n}=11$.

$$
\begin{aligned}
& * \bmod _{11}(4,6)=(4 * 6) \bmod 11=24 \bmod 11=2 \\
& * \bmod _{11}(5,7)=(5 * 7) \bmod 11=35 \bmod 11=2 \\
& * \bmod _{11}(8,23)=
\end{aligned}
$$

Multiplication mod n

Multiplication $\bmod \boldsymbol{n}$ is defined by multiplying two numbers and then applying $\bmod _{n}$.

- All results in the range $\{0,1, \ldots, \boldsymbol{n}-1\}$

Suppose $\boldsymbol{n}=11$.

$$
\begin{aligned}
& * \bmod _{11}(4,6)=(4 * 6) \bmod 11=24 \bmod 11=2 \\
& * \bmod _{11}(5,7)=(5 * 7) \bmod 11=35 \bmod 11=2 \\
& * \bmod _{11}(8,23)=(8 * 23) \bmod 11=184 \bmod 11=8
\end{aligned}
$$

Congruence Modulo

If \boldsymbol{a} and \boldsymbol{b} are integers and \boldsymbol{m} is a positive integer, then \boldsymbol{a} is congruent to \boldsymbol{b} modulo \boldsymbol{m} if \boldsymbol{m} divides $\boldsymbol{a}-\boldsymbol{b}$.

The notation $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{m})$ indicates that \boldsymbol{a} is congruent to \boldsymbol{b} modulo \boldsymbol{m}.

- $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{m})$ is a congruence.
- Indicates that a and b are in the same equivalence class.

Is 17 congruent to 5 modulo 6?

Congruence Modulo

If \boldsymbol{a} and \boldsymbol{b} are integers and \boldsymbol{m} is a positive integer, then \boldsymbol{a} is congruent to \boldsymbol{b} modulo \boldsymbol{m} if \boldsymbol{m} divides $\boldsymbol{a}-\boldsymbol{b}$.

The notation $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{m})$ indicates that \boldsymbol{a} is congruent to \boldsymbol{b} modulo \boldsymbol{m}.

- $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{m})$ is a congruence.
- Indicates that a and b are in the same equivalence class.

Is 17 congruent to 5 modulo 6? Yes, because 6 divides 17-5.

Congruence Modulo

If \boldsymbol{a} and \boldsymbol{b} are integers and \boldsymbol{m} is a positive integer, then \boldsymbol{a} is congruent to \boldsymbol{b} modulo \boldsymbol{m} if \boldsymbol{m} divides $\boldsymbol{a}-\boldsymbol{b}$.

The notation $\boldsymbol{a} \equiv \boldsymbol{b}(\bmod \boldsymbol{m})$ indicates that \boldsymbol{a} is congruent to \boldsymbol{b} modulo \boldsymbol{m}.

- $\boldsymbol{a} \equiv b(\bmod m)$ is a congruence.
- Indicates that a and b are in the same equivalence class.

Is 17 congruent to 5 modulo 6? Yes, because 6 divides 17-5.

- $17 \bmod 6=5$; it is in the equivalence class for 5 in $\bmod 6$.
- $5 \bmod 6=5$; it is in the equivalence class for 5 in $\bmod 6$.

Outline

- Binary Relations
- Functions
- Introduction to Functions
- Function Equality
- Function Properties
- Floor/Ceiling Functions
- Division of Modular Arithmetic
- Composition of Functions

Composition of Functions

If f and g are two functions, where $f: X \rightarrow \boldsymbol{Y}$ and $\boldsymbol{g}: \boldsymbol{Y} \rightarrow \boldsymbol{Z}$, the composition of g with f denoted by $g \circ f$, is the function:

$$
(g \circ f): X \rightarrow Z \text {, s.t. for all } x \in X,(g \circ f)(x)=g(f(x))
$$

Example

Consider the functions $f: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{-}$and $g: \mathbb{Z} \rightarrow\{0,1\}$ where:

$$
\begin{aligned}
& f(x)=-x \\
& g(x)= \begin{cases}0 & \text { if }\left\lfloor\frac{x}{2}\right\rfloor=\frac{x}{2} \\
1 & \text { otherwise }\end{cases}
\end{aligned}
$$

Example

Consider the functions $f: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{-}$and $g: \mathbb{Z} \rightarrow\{0,1\}$ where:

$$
\begin{aligned}
& f(x)=-x \\
& g(x)= \begin{cases}0 & \text { if }\left\lfloor\frac{x}{2}\right\rfloor=\frac{x}{2} \\
1 & \text { otherwise }\end{cases}
\end{aligned}
$$

Then we can work out that:

$$
(g \circ f)(x)=g(f(x))=g(-x)= \begin{cases}0 & \text { if }\left\lfloor\frac{-x}{2}\right\rfloor=\frac{-x}{2} \\ 1 & \text { otherwise }\end{cases}
$$

Interesting Function Composition

Idea: Compose the inverse function (if it exists) with the original function

Interesting Function Composition

Idea: Compose the inverse function (if it exists) with the original function
A function mapping an element to itself is called an identity function

- Identity function over \boldsymbol{A}, denoted by $\mathrm{I}_{\boldsymbol{A}}: \boldsymbol{A} \rightarrow \boldsymbol{A}$ is $\mathbf{I}_{\boldsymbol{A}}(\mathbf{a})=\mathbf{a}$

Interesting Function Composition

Idea: Compose the inverse function (if it exists) with the original function
A function mapping an element to itself is called an identity function

- Identity function over \boldsymbol{A}, denoted by $\mathrm{I}_{A}: \boldsymbol{A} \rightarrow \boldsymbol{A}$ is $\mathrm{I}_{\boldsymbol{A}}(\mathbf{a})=\boldsymbol{a}$

If $f: X \rightarrow Y$, we have $\left(f^{1} \circ f\right)=I_{X}$

Interesting Function Composition

Idea: Compose the inverse function (if it exists) with the original function
A function mapping an element to itself is called an identity function

- Identity function over \boldsymbol{A}, denoted by $\mathrm{I}_{\boldsymbol{A}}: \boldsymbol{A} \rightarrow \boldsymbol{A}$ is $\mathrm{I}_{\boldsymbol{A}}(\boldsymbol{a})=\boldsymbol{a}$

If $f: X \rightarrow Y$, we have $\left(f^{1} \circ f\right)=I_{X}$
Is $\left(f \circ f^{1}\right)$ also an identity function?

Interesting Function Composition

Idea: Compose the inverse function (if it exists) with the original function
A function mapping an element to itself is called an identity function

- Identity function over \boldsymbol{A}, denoted by $\mathrm{I}_{\boldsymbol{A}}: \boldsymbol{A} \rightarrow \boldsymbol{A}$ is $\mathrm{I}_{\boldsymbol{A}}(\boldsymbol{a})=\boldsymbol{a}$

If $f: X \rightarrow Y$, we have $\left(f^{1} \circ f\right)=I_{X}$
Is $\left(f \circ f^{1}\right)$ also an identity function? Yes. I_{Y}

