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Mid-Semester Review

Topics Covered so Far…

1. Propositional and Predicate Logic
2. Logical and Mathematical Proofs
3. Sets
4. Functions and Relations



Outline

- Sequences
- Definition and Terminology
- Finite Sequences
- Infinite Sequences
- Explicit Formulas

- Summations
- Recurrence Relations
- Mathematical Induction
- Strong Induction



Sequences

Example: Let's say you want to represent your GPA over four semester…

Consider the function 𝑔: {1,2,3,4} → { gpa | gpa ∈ ℝ, 0 ≤ gpa ≤ 4 } defined 
by:

𝑔(1) = 3.6 𝑔(2) = 2.8 𝑔(3) = 3.2 𝑔(4) = 3.8

For shorthand, we write a(n) as an

So 𝑔1, 𝑔2, 𝑔3, 𝑔4 represents our GPA sequence, 3.6, 2.8, 3.2, 3.8



Sequences: Terminology

A sequence is created by a special type of function with a domain of 
consecutive integers…ie no gaps in the domain

OK: ℕ, ℤ+, ℤ+ ⋃ {0}, ℤ, {1,2,34,5}

Not OK: {1,3,5,7}, { x ∈ ℕ | x is even }



Sequences: Terminology

Given a sequence, a over domain D ⊆ ℤ

● A single term (or term) a(k) is written as ak for any k ∈ D

● Given term ak, k denotes the index of ak

● A shorthand for the entire sequence is { ak } or { an }



Sequences: Ground Rules

● Most sequences start at index 0 or 1
○ The domain is typically ℕ or ℕ ⋃ {0}
○ In this case we write a1, a2, a3, … or bo, b1, b2, …

● Sequences can start from any integer
○ A sequence starting at -2: a-2, a-1, a0, a1, …
○ A sequence starting at 5: b5, b6, b7, b8, …

● The term b8 might not necessarily be the 8th term
○ In b5, b6, b7, b8, … the term b8 is the 4th term
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Sequences: Finite

A sequence with a finite domain is called a finite sequence.

Consider am, am+1, am+2, …, an

There is an initial index m and am denotes the initial term

There is a final index n and an denotes the final term

Examples:
GPA over 4 semesters
1,2,3,4
5,4,5,4,5,4,5
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Sequences: Infinite

A sequence with an infinite domain is called an infinite sequence.

Consider …, am, am+1, am+2, …

There may or may not be an  initial index m (and initial term am)

There may or may not be an  final index n (and final term an)

Examples:
1,3,5,7, … (positive odd numbers)
2,4,6,8, … (positive even numbers)
{1}, {1,2}, {1,2,3}, {1,2,3,4}, … (the sets Ai we had previously defined)
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Sequences: Explicit

An explicit formula lets us compute the value of term ak as a function of k

Examples:
ck = 5 for 1 ≤ k ≤ 5 → { ck } = 5,5,5,5,5

dk = k for 1 ≤ k ≤ 10 → { dk } = 1,2,3,4,5,6,7,8,9,10

ek = 2k for k ≥ 1 → { ek } = 2,4,6,8, …

fk = 2k for k ≥ 0 → { fk } = 1,2,4,8,16, …
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A sequence {ak} is increasing if, ∀i, ai < ai + 1

A sequence {ak} is non-decreasing if, ∀i, ai ≤ ai + 1
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dk = k for 1 ≤ k ≤ 10 is increasing
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fk = 2k for k ≥ 0 is increasing
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A sequence {ak} is increasing if, ∀i, ai < ai + 1

A sequence {ak} is non-decreasing if, ∀i, ai ≤ ai + 1

dk = k for 1 ≤ k ≤ 10 is increasing

ek = 2k for k ≥ 1 is increasing

fk = 2k for k ≥ 0 is increasing

What about the sequence { hk } = 1, 2, 2, 2, 3?



Increasing Sequences

A sequence {ak} is increasing if, ∀i, ai < ai + 1

A sequence {ak} is non-decreasing if, ∀i, ai ≤ ai + 1

dk = k for 1 ≤ k ≤ 10 is increasing

ek = 2k for k ≥ 1 is increasing

fk = 2k for k ≥ 0 is increasing

What about the sequence { hk } = 1, 2, 2, 2, 3? Non-Decreasing



Increasing Sequences

A sequence {ak} is increasing if, ∀i, ai < ai + 1

A sequence {ak} is non-decreasing if, ∀i, ai ≤ ai + 1

dk = k for 1 ≤ k ≤ 10 is increasing

ek = 2k for k ≥ 1 is increasing

fk = 2k for k ≥ 0 is increasing

What about the sequence { hk } = 1, 2, 2, 2, 3? Non-Decreasing

Every increasing sequence is non-decreasing

Not every non-decreasing sequence is increasing



Decreasing Sequences

A sequence {ak} is decreasing if, ∀i, ai > ai + 1

A sequence {ak} is non-increasing if, ∀i, ai ≥ ai + 1



Decreasing Sequences

A sequence {ak} is decreasing if, ∀i, ai > ai + 1

A sequence {ak} is non-increasing if, ∀i, ai ≥ ai + 1

sk = 10 - k for 1 ≤ k ≤ 10 is decreasing (and non-increasing)

tk = -2k for k ≥ 1 is decreasing (and non-increasing)

uk = 2-k for k ≥ 0 is decreasing (and non-increasing)

What about the sequence {vhk } = 3, 2, 2, 2, 1? Non-Increasing
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{bk} is 1, ½, ¼, ⅛, …
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A geometric sequence is a sequence formed by successively multiplying 
the initial term by a fixed number called the common ratio.

Examples:
{ak} is 1, -1, 1, -1, 1, -1, 1, -1, …
{bk} is 1, ½, ¼, ⅛, …

What are the explicit formulas for the above sequences?
For any geometric sequence {sk} with initial term s0 and common ratio r:

sk = s0・rk, for k ≥ 0



Geometric Sequences

A geometric sequence is a sequence formed by successively multiplying 
the initial term by a fixed number called the common ratio.

Examples:
{ak} is 1, -1, 1, -1, 1, -1, 1, -1, … → ak = a0・rk = 1・(-1)k for all k ≥ 0
{bk} is 1, ½, ¼, ⅛, …

What are the explicit formulas for the above sequences?
For any geometric sequence {sk} with initial term s0 and common ratio r:

sk = s0・rk, for k ≥ 0



Geometric Sequences

A geometric sequence is a sequence formed by successively multiplying 
the initial term by a fixed number called the common ratio.

Examples:
{ak} is 1, -1, 1, -1, 1, -1, 1, -1, … → ak = a0・rk = 1・(-1)k for all k ≥ 0
{bk} is 1, ½, ¼, ⅛, … → bk = b0・rk = 1・(½)k for all k ≥ 0

What are the explicit formulas for the above sequences?
For any geometric sequence {sk} with initial term s0 and common ratio r:

sk = s0・rk, for k ≥ 0
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An arithmetic sequence is a sequence formed by successively adding a 
fixed number, called the common difference, to the initial term.
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Arithmetic Sequences

An arithmetic sequence is a sequence formed by successively adding a 
fixed number, called the common difference, to the initial term.

Examples:
{ak} is 5, 15, 25, 35, 45, …
{bk} is 49, 42, 35, 28, 21, …

What are the explicit formulas for the above sequences?
For any arithmetic sequence {sk} with initial term s0 and common diff d:

sk = s0 + kd, for k ≥ 0



Arithmetic Sequences

An arithmetic sequence is a sequence formed by successively adding a 
fixed number, called the common difference, to the initial term.

Examples:
{ak} is 5, 15, 25, 35, 45, … → ak = a0・kd = 5 + 10・k for all k ≥ 0
{bk} is 49, 42, 35, 28, 21, …

What are the explicit formulas for the above sequences?
For any arithmetic sequence {sk} with initial term s0 and common diff d:

sk = s0 + kd, for k ≥ 0



Arithmetic Sequences

An arithmetic sequence is a sequence formed by successively adding a 
fixed number, called the common difference, to the initial term.

Examples:
{ak} is 5, 15, 25, 35, 45, … → ak = a0・kd = 5 + 10・k for all k ≥ 0
{bk} is 49, 42, 35, 28, 21, … → bk = b0・kd = 49 + (-7)k for all k ≥ 0

What are the explicit formulas for the above sequences?
For any arithmetic sequence {sk} with initial term s0 and common diff d:

sk = s0 + kd, for k ≥ 0
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Summations

Summation notation is used to express the sum of terms in a numerical 
sequence

Consider the sequence: a0, a1, a2, a3, …, ak

We can express the sum of all elements in the sequence as:
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Summations

Summation notation is used to express the sum of terms in a numerical 
sequence

Consider the sequence: a0, a1, a2, a3, …, ak

We can express the sum of all elements in the sequence as:

What this represents is:



Summations

Given:

● i is the index of the summation
● i = 0 and i = k are the limits of the summation

○ 0 is the lower limit
○ k is the upper limit

● The capital sigma (Σ) denotes that elements will be added together



Summation Examples

Given ai = i what does the following sum evaluate to:
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Given ai = i what does the following sum evaluate to:



Summation Examples

Given bi = 2-i what does the following sum evaluate to:
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Given bi = 2-i what does the following sum evaluate to:



Summation Examples

Given bi = 2-i what does the following sum evaluate to:
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Given ci = i, what does the following sum evaluate to: 



An Interesting (and useful) Example

Given ci = i, what does the following sum evaluate to: 



An Interesting (and useful) Example

Given ci = i, what does the following sum evaluate to: 



An Interesting (and useful) Example

Given ci = i, what does the following sum evaluate to: 

Idea: What if we rearrange the order (since addition is commutative), and 
consider pairs of numbers?



An Interesting (and useful) Example

Given ci = i, what does the following sum evaluate to: 

Idea: What if we rearrange the order (since addition is commutative), and 
consider pairs of numbers?



An Interesting (and useful) Example

Given ci = i, what does the following sum evaluate to: 

Idea: What if we rearrange the order (since addition is commutative), and 
consider pairs of numbers?

Each pair sums to n + 1…how many pairs are there?



An Interesting (and useful) Example

Given ci = i, what does the following sum evaluate to: 

Idea: What if we rearrange the order (since addition is commutative), and 
consider pairs of numbers?

Each pair sums to n + 1…how many pairs are there? n/2 pairs 



An Interesting (and useful) Example

Given ci = i, what does the following sum evaluate to: 
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Idea: Some sequences can naturally be defined as a function of earlier 
terms in the sequence (defined recursively).
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(also denoted n!)
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Notice that fact(n) = n * fact(n-1)



Sequences: Recurrence Relations

Idea: Some sequences can naturally be defined as a function of earlier 
terms in the sequence (defined recursively).

Example: Consider the factorial function, fact(n) = n * n-1 * n-2 * ... * 1,   
(also denoted n!)

Notice that fact(n) = n * fact(n-1)

…and fact(n-1) = n-1 * fact(n-2)



Sequences: Recurrence Relations

Idea: Some sequences can naturally be defined as a function of earlier 
terms in the sequence (defined recursively).

Example: Consider the factorial function, fact(n) = n * n-1 * n-2 * ... * 1,   
(also denoted n!)

Notice that fact(n) = n * fact(n-1)

…and fact(n-1) = n-1 * fact(n-2)

…etc



Sequences: Recurrence Relations

A recurrence relation for the sequence {an} is an equation that expresses 
an in terms of one or more of the previous terms (ao, a1, a2, … an-1), for all 
integers n with n ≥ n0, where n0 is a nonnegative integer.

● A recurrence relation is said to recursively define a sequence
● It may have one or more initial terms
● A sequence is called a solution of a recurrence relation if its terms 

satisfy the recurrence relation



Recurrence Relation Examples

We've already seen some sequences that can be easily defined recursively

Recall: The geometric sequence 1, ½, ¼, ⅛, … 

Explicit Formula: ak = (½)k for all k ≥ 0

Recurrence Relation:



Recurrence Relation Examples

We've already seen some sequences that can be easily defined recursively

Recall: The geometric sequence 1, ½, ¼, ⅛, … 

Explicit Formula: ak = (½)k for all k ≥ 0

Recurrence Relation:
a0 = 1



Recurrence Relation Examples

We've already seen some sequences that can be easily defined recursively

Recall: The geometric sequence 1, ½, ¼, ⅛, … 

Explicit Formula: ak = (½)k for all k ≥ 0

Recurrence Relation:
a0 = 1

ak = ½ ak-1 for k ≥ 1



Recurrence Relation Examples

We've already seen some sequences that can be easily defined recursively

Recall: The arithmetic sequence 5, 15, 25, 35, … 

Explicit Formula: ak = 5 + 10k for all k ≥ 0

Recurrence Relation:



Recurrence Relation Examples

We've already seen some sequences that can be easily defined recursively

Recall: The arithmetic sequence 5, 15, 25, 35, … 

Explicit Formula: ak = 5 + 10k for all k ≥ 0

Recurrence Relation:
a0 = 5



Recurrence Relation Examples

We've already seen some sequences that can be easily defined recursively

Recall: The arithmetic sequence 5, 15, 25, 35, … 

Explicit Formula: ak = 5 + 10k for all k ≥ 0

Recurrence Relation:
a0 = 5

ak = 10 + ak-1 for k ≥ 1



Fibonacci

The Fibonacci sequence is a very famous recurrence relation
● Begins with two initial terms
● Each following term is the sum of the previous 2

First few terms are 0, 1, 1, 2, 3, 5, 8, 13, …

Recurrence Relation:
fo = 0

f1 = 1

fn = fn-1 + fn-2 for n ≥ 2  http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibBio.html 

http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibBio.html
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Recurrence Relation Examples

Let {an} be a sequence that satisfies the recurrence relation an = an-1 - an-2 
for n ≥ 2, and suppose that a0 = 3 and a1 = 5. What are a2 and a3?

a2 = a2-1 - a2 - 2 = a1 - a0 = 5 - 3 = 2



Recurrence Relation Examples

Let {an} be a sequence that satisfies the recurrence relation an = an-1 - an-2 
for n ≥ 2, and suppose that a0 = 3 and a1 = 5. What are a2 and a3?

a2 = a2-1 - a2 - 2 = a1 - a0 = 5 - 3 = 2

a3 = a3 - 1 - a3 - 2 = a2 - a1 = 2 - 5 = -3



Recurrence Relation Examples

Let {an} be a sequence that satisfies the recurrence relation an = an-1 + 3 for 
n ≥ 1, and suppose that a0 = 2. What are a1, a2, and a3?



Recurrence Relation Examples

Let {an} be a sequence that satisfies the recurrence relation an = an-1 + 3 for 
n ≥ 1, and suppose that a0 = 2. What are a1, a2, and a3?

a1 = a1-1 + 3 = a0 + 3 = 2 + 3 = 5



Recurrence Relation Examples

Let {an} be a sequence that satisfies the recurrence relation an = an-1 + 3 for 
n ≥ 1, and suppose that a0 = 2. What are a1, a2, and a3?

a1 = a1-1 + 3 = a0 + 3 = 2 + 3 = 5

a2 = a2-1 + 3 = a1 + 3 = 5 + 3 = 8



Recurrence Relation Examples

Let {an} be a sequence that satisfies the recurrence relation an = an-1 + 3 for 
n ≥ 1, and suppose that a0 = 2. What are a1, a2, and a3?

a1 = a1-1 + 3 = a0 + 3 = 2 + 3 = 5

a2 = a2-1 + 3 = a1 + 3 = 5 + 3 = 8

a3 = a3-1 + 3 = a2 + 3 = 8 + 3 = 11



Solving Recurrence Relations

How do we solve a recurrence relation to find an explicit formula for an?

Two approaches:

1. Start at the initial condition and successively apply the recurrence 
relation upwards until you reach an to deduce a formula.

2. Start with the term an and work downward until you reach the initial 
condition and deduce a formula.
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n ≥ 2, and suppose that a1 = 2. Find the formula for an.



Solving Recurrence Relations

Let {an} be a sequence that satisfies the recurrence relation an = an-1 + 3 for 
n ≥ 2, and suppose that a1 = 2. Find the formula for an.

a1 = 2

a2 = a2-1+ 3 = a1 +  3 = 2 + 3 = 5

a3 = a3-1+ 3  = (2+3)+3 = 2 + 2*3

a4 = a4-1+ 3 = (2+2*3)+3 = 2 + 3*3

…

an = 2 + (n-1) * 3



Solving Recurrence Relations

Let {an} be a sequence that satisfies the recurrence relation an = an-1 + 3 for 
n ≥ 2, and suppose that a1 = 2. Find the formula for an.

a1 = 2

a2 = a2-1+ 3 = a1 +  3 = 2 + 3 = 5

a3 = a3-1+ 3  = (2+3)+3 = 2 + 2*3

a4 = a4-1+ 3 = (2+2*3)+3 = 2 + 3*3

…

an = 2 + (n-1) * 3

an = an-1 + 3

= (an-2 + 3) + 3

= an-2 + 2*3

= (an-3 + 3) + 2*3

= an-3 + 3*3

…

= a1 + (n - 1)*3 = 2 + (n-1)*3
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What is Induction?

Suppose we want to prove a property, P(n), is TRUE for all n ∈ ℕ (or ℕ ⋃ {0}):



What is Induction?

Suppose we want to prove a property, P(n), is TRUE for all n ∈ ℕ (or ℕ ⋃ {0}):

For example, given an arithmetic sequence with a0 = 4 and common 
difference d = 16, prove that an is divisible by 4 for all n ≥ 0…
● Here the property is the predicate P(n): "an is divisible by 4"
● We want to prove ∀n ∈ ℕ ⋃ {0}, P(n)



What is Induction?

Suppose we want to prove a property, P(n), is TRUE for all n ∈ ℕ (or ℕ ⋃ {0}):

Another example, prove that 

● Here the property is the predicate P(n): 
● We want to prove ∀n ∈ ℕ, P(n)



Mathematical Induction

In both of the previous examples, notice that there is some dependency 
between truth values P(k) and P(k + 1)...
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between truth values P(k) and P(k + 1)...

For the first example: we know that a1 = a0 + d. a2 = a1 + d, etc…
● Notice how the formula for a1 relies on a0. Therefore P(1) relies on P(0)
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In both of the previous examples, notice that there is some dependency 
between truth values P(k) and P(k + 1)...

For the first example: we know that a1 = a0 + d. a2 = a1 + d, etc…
● Notice how the formula for a1 relies on a0. Therefore P(1) relies on P(0)

Similarly, consider the values of our summation for upper limit = k + 1



Mathematical Induction

In both of the previous examples, notice that there is some dependency 
between truth values P(k) and P(k + 1)...

For the first example: we know that a1 = a0 + d. a2 = a1 + d, etc…
● Notice how the formula for a1 relies on a0. Therefore P(1) relies on P(0)

Similarly, consider the values of our summation for upper limit = k + 1

Mathematical Induction takes advantage of these dependencies



Mathematical Induction

Idea: Mathematical Induction consists of two proofs

1. Prove that P(k0) is a true statement (where k0 is our initial index in D)
2. Prove that ∀k, (P(k) → P(k + 1)) is a true statement

Conclusion:

Since P(k0) is a true statement, and P(k) → P(k + 1) it holds that P(n) is 
true for all n in D



Mathematical Induction

Principle of Mathematical Induction:

Let P(n) be a statement defined for any n ∈ ℕ. If the following hold:
● P(1) is true
● For all k ∈ ℕ, P(k) → P(k + 1)

Then P(n) is true for all n ∈ ℕ

Note: We can relax this to apply to any domain D of consecutive integers

To prove the inductive step, assume P(k), then derive P(k + 1)



Example: Towers of Hanoi

Brief Live Demo…
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For the Towers of Hanoi problem, let P(n): We can move n disks.
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To prove that this works for all n ∈ ℕ, we first show the base case P(1).

Clearly we can move 1 disk, so P(1) is TRUE
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For the Towers of Hanoi problem, let P(n): We can move n disks.

To prove that this works for all n ∈ ℕ, we first show the base case P(1).

Clearly we can move 1 disk, so P(1) is TRUE

Then we assume we can move k disks for arbitrary k ≥ 1, and show that 
this implies we can also move k + 1 disks



Example: Towers of Hanoi

For the Towers of Hanoi problem, let P(n): We can move n disks.

To prove that this works for all n ∈ ℕ, we first show the base case P(1).

Clearly we can move 1 disk, so P(1) is TRUE

Then we assume we can move k disks for arbitrary k ≥ 1, and show that 
this implies we can also move k + 1 disks

If we can move k, then we can move them to the middle platform, move 
the one remaining disk to the right platform (because P(1) is true), then 

move the k disks from the middle to the right. So P(k) → P(k + 1)



Proof Template

To formally prove something via induction, you must do all of the following:

1. Express the statement being proved in the form "∀n ≥ b, P(n) for a fixed integer b
2. Prove the Base Case: show that P(b) is true.
3. Prove the Inductive Case

a. State the inductive hypothesis in the form "assume that P(k) is true for an arbitrary k ≥ b
b. State what must be proved under this assumption; write out P(k + 1)
c. Prove the statement P(k + 1) is true by using the assumption P(k) is true. Be 

sure this proof is valid for all integers k ≥ b
d. Clearly identify the conclusion

4. Now that you have proven the Base Case and Inductive Case, conclude that P(n) is 
true for all n ≥ b



Proof Example

Prove that if n is a positive integer, 
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Prove that if n is a positive integer,

Predicate: P(n):

Goal: Show that P(n) is true for all n ≥ 1

Base Case:

Show P(1) is true



Proof Example

Prove that if n is a positive integer,

Predicate: P(n):

Goal: Show that P(n) is true for all n ≥ 1

Base Case:

Show P(1) is true

P(1): 1 = 1 * (1+1) / 2… TRUE



Proof Example

Prove that if n is a positive integer,

Predicate: P(n):

Goal: Show that P(n) is true for all n ≥ 1

Inductive Case:



Proof Example

Prove that if n is a positive integer,

Predicate: P(n):

Goal: Show that P(n) is true for all n ≥ 1

Inductive Case:

Assume that P(k) is true for an arbitrary integer k ≥ 1



Proof Example

Prove that if n is a positive integer,

Predicate: P(n):

Goal: Show that P(n) is true for all n ≥ 1

Inductive Case:

Assume that P(k) is true for an arbitrary integer k ≥ 1

Now we must derive that P(k + 1) is true…
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Proof Example

This is just the sum from 
i=1 to k



Proof Example

This is just the sum from 
i=1 to k

We have assumed that 
P(k) is true



Proof Example

Therefore if we assume P(k) is true, then P(k + 1) must also be true



Proof Example

Prove that if n is a positive integer,

Predicate: P(n):

Goal: Show that P(n) is true for all n ≥ 1

Base Case: True!

Inductive Case: True!

Therefore since the Base Case and Inductive Case are both true,            
P(n) is true for all n ≥ 1



Quick Summary

Prove that for all n ≥ b, "..." is true.

P(n): "..."

Base Case: Show that P(b) is true

Inductive Case: We must show that if P(k) is true, then P(k + 1) is true
Inductive Hypothesis: Assume that P(k) is true for an arbitrary positive integer k ≥ b.
We must now show that P(k + 1): "..." is true
Given P(k + 1) = "..."

More derivation…
Given our Inductive Hypothesis …….. show that P(k + 1) must be true
Therefore P(k) → P(k + 1)

Therefore both the Base Case and Inductive case are true, so P(n): "..." is true for all n ≥ b



Outline

- Sequences
- Summations
- Recurrence Relations
- Mathematical Induction
- Strong Induction



Strong Induction

Problem: What happens when our next term (at k + 1) depends on multiple 
previous terms (more than just term k)?



Strong Induction

Problem: What happens when our next term (at k + 1) depends on multiple 
previous terms (more than just term k)?

Example: The terms in the fibonacci sequence rely on two previous terms



Strong Induction

Principle of Strong Mathematical Induction

Let a, b be integers with a ≤ b

Let P(n) be a statement defined for any integer n ≥ a

Then P(n) is true for all n ≥ a if the following two conditions hold:

1. P(a), P(a + 1), …, P(b) are all individually true (the base cases)
2. For all k ≥ b, P(a) ∧ P(a + 1) ∧ … ∧ P(k) → P(k + 1) (the inductive 

case) 



Proof Template

To formally prove something via strong induction, you must do all of the following:

1. Express the statement being proved in the form "∀n ≥ a, P(n) for a fixed 
integer a

2. Prove the Base Cases: show that P(a), P(a + 1), …, P(b) are all true.
3. Prove the Inductive Case

a. Inductive Hypothesis: Assume  P(i) is true for all i, where a ≤ i ≤ k for an arbitrary 
k ≥ b

b. State what must be proved under this assumption; write out P(k + 1)
c. Prove the statement P(k + 1) is true by using the inductive assumption
d. Clearly identify the conclusion

4. Now that you have proven the Base Case and Inductive Case, conclude that 
P(n) is true for all n ≥ a by the principle of strong mathematical induction



Strong Mathematical Induction Example

Prove that a class of n ≥ 12 students can be divided into groups of 4 or 5



Strong Mathematical Induction Example

Prove that a class of n ≥ 12 students can be divided into groups of 4 or 5

P(n): For all n ≥ 12, a class of size n can be divided into groups of 4 or 5

Base Cases:

Prove P(n) is true for n = 12, 13, 14, and 15



Strong Mathematical Induction Example

Prove that a class of n ≥ 12 students can be divided into groups of 4 or 5

P(n): For all n ≥ 12, a class of size n can be divided into groups of 4 or 5

Base Cases:

Prove P(n) is true for n = 12, 13, 14, and 15

12 = 4 + 4 + 4
13 = 4 + 4 + 5
14 = 4 + 5 + 5
15 = 5 + 5 + 5



Strong Mathematical Induction Example

Prove that a class of n ≥ 12 students can be divided into groups of 4 or 5

P(n): For all n ≥ 12, a class of size n can be divided into groups of 4 or 5

Base Cases:

Prove P(n) is true for n = 12, 13, 14, and 15

12 = 4 + 4 + 4
13 = 4 + 4 + 5
14 = 4 + 5 + 5
14 = 5 + 5 + 5 Therefore P(12), P(13), P(14), and P(15) are all TRUE



Strong Mathematical Induction Example

Prove that a class of n ≥ 12 students can be divided into groups of 4 or 5

P(n): For all n ≥ 12, a class of size n can be divided into groups of 4 or 5

Base Cases:

Prove P(n) is true for n = 12, 13, 14, and 15

12 = 4 + 4 + 4
13 = 4 + 4 + 5
14 = 4 + 5 + 5
14 = 5 + 5 + 5 Therefore P(12), P(13), P(14), and P(15) are all TRUE

a b



Strong Mathematical Induction Example

Prove that a class of n ≥ 12 students can be divided into groups of 4 or 5

P(n): For all n ≥ 12, a class of size n can be divided into groups of 4 or 5

Inductive Case:

We must show that if P(i) is true for 12 ≤ i ≤ k, where k ≥ 15, then P(k + 1) 
must be true.



Strong Mathematical Induction Example

Prove that a class of n ≥ 12 students can be divided into groups of 4 or 5

P(n): For all n ≥ 12, a class of size n can be divided into groups of 4 or 5

Inductive Case:

We must show that if P(i) is true for 12 ≤ i ≤ k, where k ≥ 15, then P(k + 1) 
must be true.

Inductive Hypothesis: Let k ≥ 15

Assume P(i) is true for all i, where 12 ≤ i ≤ k. Notably, P(k - 3) is true…



Strong Mathematical Induction Example

Proof of the Inductive Case:

We must show that P(k + 1) is true.

From the k + 1 students, form a group of 4 students. Now (k + 1) - 4 = k - 3 
students remain to be grouped.

By our inductive hypothesis P(k - 3) is true, so we can divide the remaining 
k - 3 students into groups of 4 or 5.

Therefore if P(i) is true for all i, where 12 ≤ i ≤ k, then P(k + 1) must be true



Strong Mathematical Induction Example

Prove that a class of n ≥ 12 students can be divided into groups of 4 or 5

P(n): For all n ≥ 12, a class of size n can be divided into groups of 4 or 5

Base Cases: TRUE

Inductive Case: TRUE

Therefore by the principle of strong mathematical induction, we can 
conclude that P(n) is true for all n ≥ 12



One Last Induction Example

Let {an} be the sequence defined by a1= 1, a2= 8,  an = an−1+ 2an−2 for n ≥ 3.

Prove that an = 3 · 2n−1+ 2(−1)n for all n ∈ ℕ



One Last Induction Example

Let {an} be the sequence defined by a1= 1, a2= 8,  an = an−1+ 2an−2 for n ≥ 3.

Prove that an = 3 · 2n−1+ 2(−1)n for all n ∈ ℕ

Do we need strong mathematical induction here?



One Last Induction Example

Let {an} be the sequence defined by a1= 1, a2= 8,  an = an−1+ 2an−2 for n ≥ 3.

Prove that an = 3 · 2n−1+ 2(−1)n for all n ∈ ℕ

Do we need strong mathematical induction here? Yes. The later terms in 
our sequence rely on more than just the previous term. 



One Last Induction Example

Let {an} be the sequence defined by a1= 1, a2= 8,  an = an−1+ 2an−2 for n ≥ 3.

Prove that an = 3 · 2n−1+ 2(−1)n for all n ∈ ℕ

1. Express the statement being proved in the form "∀n ≥ a, P(n) for a fixed integer a
2. Prove the Base Cases: show that P(a), P(a + 1), …, P(b) are all true.
3. Prove the Inductive Case

a. Inductive Hypothesis: Assume  P(i) is true for all i, where a ≤ i ≤ k for an arbitrary   
k ≥ b

b. State what must be proved under this assumption; write out P(k + 1)
c. Prove the statement P(k + 1) is true by using the inductive assumption
d. Clearly identify the conclusion

4. Now that you have proven the Base Case and Inductive Case, conclude that P(n) is true 
for all n ≥ a by the principle of strong mathematical induction



One Last Induction Example

Let {an} be the sequence defined by a1= 1, a2= 8,  an = an−1+ 2an−2 for n ≥ 3.

Prove that an = 3 · 2n−1+ 2(−1)n for all n ∈ ℕ

1. Express the statement being proved in the form "∀n ≥ a, P(n) for a 
fixed integer a

P(n): an = 3 · 2n−1+ 2(−1)n, we will now show that for all n ∈ ℕ, P(n) is true



One Last Induction Example

Let {an} be the sequence defined by a1= 1, a2= 8,  an = an−1+ 2an−2 for n ≥ 3.

Prove that an = 3 · 2n−1+ 2(−1)n for all n ∈ ℕ

1. Express the statement being proved in the form "∀n ≥ a, P(n) for a fixed integer a
2. Prove the Base Cases: show that P(a), P(a + 1), …, P(b) are all true.
3. Prove the Inductive Case

a. Inductive Hypothesis: Assume  P(i) is true for all i, where a ≤ i ≤ k for an arbitrary   
k ≥ b

b. State what must be proved under this assumption; write out P(k + 1)
c. Prove the statement P(k + 1) is true by using the inductive assumption
d. Clearly identify the conclusion

4. Now that you have proven the Base Case and Inductive Case, conclude that P(n) is true 
for all n ≥ a by the principle of strong mathematical induction



One Last Induction Example

Let {an} be the sequence defined by a1= 1, a2= 8,  an = an−1+ 2an−2 for n ≥ 3.

Prove that an = 3 · 2n−1+ 2(−1)n for all n ∈ ℕ

2. Prove the Base Cases: show that P(a), P(a + 1), …, P(b) are all true.

P(1): a1 = 1, a1 = 3 · 2n−1+ 2(−1)n = 3 · 20 + 2(−1)1 = 3 - 2 = 1 ✓

P(2): a2 = 8, a2 = 3 · 2n−1+ 2(−1)n = 3 · 21 + 2(−1)2 = 6 + 2 = 8 ✓

Therefore our base cases, P(1) and P(2) are both true



One Last Induction Example

Let {an} be the sequence defined by a1= 1, a2= 8,  an = an−1+ 2an−2 for n ≥ 3.

Prove that an = 3 · 2n−1+ 2(−1)n for all n ∈ ℕ

1. Express the statement being proved in the form "∀n ≥ a, P(n) for a fixed integer a
2. Prove the Base Cases: show that P(a), P(a + 1), …, P(b) are all true.
3. Prove the Inductive Case

a. Inductive Hypothesis: Assume  P(i) is true for all i, where a ≤ i ≤ k for an arbitrary   
k ≥ b

b. State what must be proved under this assumption; write out P(k + 1)
c. Prove the statement P(k + 1) is true by using the inductive assumption
d. Clearly identify the conclusion

4. Now that you have proven the Base Case and Inductive Case, conclude that P(n) is true 
for all n ≥ a by the principle of strong mathematical induction



One Last Induction Example

Let {an} be the sequence defined by a1= 1, a2= 8,  an = an−1+ 2an−2 for n ≥ 3.

Prove that an = 3 · 2n−1+ 2(−1)n for all n ∈ ℕ

3. Prove the Inductive Case
a. Inductive Hypothesis: Assume  P(i) is true for all i, where a ≤ i ≤ k for an 

arbitrary   k ≥ b

Assume P(i): ai = 3 · 2i−1+ 2(−1)i for all 1 ≤ i ≤ k, where k ≥ 2



One Last Induction Example

Let {an} be the sequence defined by a1= 1, a2= 8,  an = an−1+ 2an−2 for n ≥ 3.

Prove that an = 3 · 2n−1+ 2(−1)n for all n ∈ ℕ

1. Express the statement being proved in the form "∀n ≥ a, P(n) for a fixed integer a
2. Prove the Base Cases: show that P(a), P(a + 1), …, P(b) are all true.
3. Prove the Inductive Case

a. Inductive Hypothesis: Assume  P(i) is true for all i, where a ≤ i ≤ k for an arbitrary   
k ≥ b

b. State what must be proved under this assumption; write out P(k + 1)
c. Prove the statement P(k + 1) is true by using the inductive assumption
d. Clearly identify the conclusion

4. Now that you have proven the Base Case and Inductive Case, conclude that P(n) is true 
for all n ≥ a by the principle of strong mathematical induction



One Last Induction Example

Let {an} be the sequence defined by a1= 1, a2= 8,  an = an−1+ 2an−2 for n ≥ 3.

Prove that an = 3 · 2n−1+ 2(−1)n for all n ∈ ℕ

b. State what must be proved under this assumption; write out P(k + 1)

Now we must prove that P(k + 1) is true. Specifically, we must show that 
ak+1 = 3 · 2k+1−1+ 2(−1)k+1



One Last Induction Example

Let {an} be the sequence defined by a1= 1, a2= 8,  an = an−1+ 2an−2 for n ≥ 3.

Prove that an = 3 · 2n−1+ 2(−1)n for all n ∈ ℕ

c. Prove the statement P(k + 1) is true by using the inductive assumption

We must show ak+1 = 3 · 2k+1−1+ 2(−1)k+1

ak+1 = ak + 2ak-1 (by definition of our recurrence relation)

ak+1 = 3 · 2k−1+ 2(−1)k + 2(3 · 2k−2+ 2(−1)k-2) (by subbing in our 
assumption)

= 3 (2k-1 + 2k-1) = 2 ((-1)k + 2(-1)k-1) = 3 · 2k + 2(-1)k+1



One Last Induction Example

Let {an} be the sequence defined by a1= 1, a2= 8,  an = an−1+ 2an−2 for n ≥ 3.

Prove that an = 3 · 2n−1+ 2(−1)n for all n ∈ ℕ

c. Prove the statement P(k + 1) is true by using the inductive assumption

We must show ak+1 = 3 · 2k+1−1+ 2(−1)k+1

ak+1 = ak + 2ak-1 (by definition of our recurrence relation)

ak+1 = 3 · 2k−1+ 2(−1)k + 2(3 · 2k−2+ 2(−1)k-2) (by subbing in our 
assumption)

= 3 (2k-1 + 2k-1) = 2 ((-1)k + 2(-1)k-1) = 3 · 2k + 2(-1)k+1



One Last Induction Example

Let {an} be the sequence defined by a1= 1, a2= 8,  an = an−1+ 2an−2 for n ≥ 3.

Prove that an = 3 · 2n−1+ 2(−1)n for all n ∈ ℕ

1. Express the statement being proved in the form "∀n ≥ a, P(n) for a fixed integer a
2. Prove the Base Cases: show that P(a), P(a + 1), …, P(b) are all true.
3. Prove the Inductive Case

a. Inductive Hypothesis: Assume  P(i) is true for all i, where a ≤ i ≤ k for an arbitrary   
k ≥ b

b. State what must be proved under this assumption; write out P(k + 1)
c. Prove the statement P(k + 1) is true by using the inductive assumption
d. Clearly identify the conclusion

4. Now that you have proven the Base Case and Inductive Case, conclude that P(n) is true 
for all n ≥ a by the principle of strong mathematical induction



One Last Induction Example

Let {an} be the sequence defined by a1= 1, a2= 8,  an = an−1+ 2an−2 for n ≥ 3.

Prove that an = 3 · 2n−1+ 2(−1)n for all n ∈ ℕ

d. Clearly identify the conclusion

Therefore P(k+1) is true when P(i) is true for all 1 ≤ i ≤ k, where k ≥ 2

So the proof of the induction step is complete



One Last Induction Example

Let {an} be the sequence defined by a1= 1, a2= 8,  an = an−1+ 2an−2 for n ≥ 3.

Prove that an = 3 · 2n−1+ 2(−1)n for all n ∈ ℕ

1. Express the statement being proved in the form "∀n ≥ a, P(n) for a fixed integer a
2. Prove the Base Cases: show that P(a), P(a + 1), …, P(b) are all true.
3. Prove the Inductive Case

a. Inductive Hypothesis: Assume  P(i) is true for all i, where a ≤ i ≤ k for an arbitrary   
k ≥ b

b. State what must be proved under this assumption; write out P(k + 1)
c. Prove the statement P(k + 1) is true by using the inductive assumption
d. Clearly identify the conclusion

4. Now that you have proven the Base Case and Inductive Case, conclude that P(n) is true 
for all n ≥ a by the principle of strong mathematical induction



One Last Induction Example

Let {an} be the sequence defined by a1= 1, a2= 8,  an = an−1+ 2an−2 for n ≥ 3.

Prove that an = 3 · 2n−1+ 2(−1)n for all n ∈ ℕ

4. Now that you have proven the Base Case and Inductive Case, conclude 
that P(n) is true for all n ≥ a by the principle of strong mathematical 
induction

By the principle of strong mathematical induction, P(n) is true for all n ∈ ℕ


