CSE 191 Introduction to Discrete Structures

Dr. Eric Mikida epmikida@buffalo.edu 208 Capen Hall

Introduction to Set Theory

Outline

- Set Basics
 - Definition
 - Universal Set
 - Cardinality
- Set Equality and Subsets
- Set Operations

A set is a collection of objects that do NOT have an order

Each object is called an **<u>element</u>** or <u>member</u> of the set

Notation:

- e ∈ S means that e is an element of S
- **e §** means that **e** is not an element of **S**

How do we describe a set?

- 1. List all elements
 - ie: {1, 2, 3}
 - This is called **roster notation**
- 2. Provide a description of what the elements look like
 - ie: { a | a > 2, a ∈ Z }
 - This is called **set builder notation**

Common Sets

• N = {1, 2, 3, ...}: the set of **natural numbers**

- Sometimes 0 is considered a member, which some disagree with
- Z = {0, -1, 1, -2, 2, ...}: the set of **integers**
- $\mathbb{Z}^+ = \{1, 2, 3, ...\}$: the set of **positive integers**
- $\mathbb{Q} = \{ p/q \mid p \in \mathbb{Z}, q \in \mathbb{Z}, q \neq 0 \}$: the set of **rational numbers**
 - Numbers that can be written as a fraction of integers
- $\mathbb{Q}^+ = \{ x \mid x \in \mathbb{Q}, x > 0 \}$: the set of **positive rational numbers**
- R: the set of **real numbers**
- $\mathbb{R}^+ = \{x \mid x \in \mathbb{R}, x > 0\}$: the set of **positive real numbers**
- G: the set of complex numbers

More Examples

- A = {Red, Purple, Green, Brown} is a set containing 5 colors
- B = {Monopoly, Scrabble, Catan} is a set containing 3 board games
- C = {x | x takes CSE 191 in Spring 2023} is a set of ~300 students
- $D = \{\mathbb{N}, \mathbb{Q}, \mathbb{R}, \mathbb{Z}\}$ is a **set containing 4 sets**. It has 4 elements.
- $E = \{x \mid x \in \mathbb{Z}^+, x < 5\}$ is a set containing 4 integers, 1, 2, 3, and 4.

Outline

- Set Basics
 - Definition
 - Universal Set
 - Cardinality
- Set Equality and Subsets
- Set Operations

Universal Set

When discussing sets, there is always a **<u>universal set</u> U** involved, which contains all objects under consideration

- ie: for A = {Red, Purple, Green, Brown}, the universal set might be all colors
- ie: for B = {Monopoly, Scrabble, Catan} the universal set might be all board games

In most cases, the universal set is **implicit and omitted from discussion**

Universal Universal Set

Is there a universal set covering all universes? (Russell's Paradox) Consider a book named **Book Titles** that contains a list of the titles of every book that does not contain its own title.

Does Book Titles contain a line for Book Titles?

Universal Universal Set

Is there a universal set covering all universes? (Russell's Paradox)

Consider a book named **Book Titles** that contains a list of the titles of every book that does not contain its own title.

Does **Book Titles** contain a line for **Book Titles?**

Yes? Now Book Titles is a book containing its own title, so it shouldn't be listed

No? Now **Book Titles** is a book not containing its own title, so it should be listed

Outline

- Set Basics

- Definition
- Universal Set
- Cardinality
- Set Equality and Subsets
- Set Operations

Cardinality (for Finite Sets)

If a set **A** contains exactly **n** elements, where **n** is a non-negative integer, then **A** is a **finite set**.

n is called the <u>cardinality</u> of *A*, denoted by |*A*|.

The **<u>empty set</u>** or **<u>null set</u>** is the set that contains no elements, denoted by \emptyset or {}. It has size 0.

Cardinality (for Finite Sets)

Do we count duplicate items?

NO. We only count unique items for cardinality.

Consider the following sets:

- F = {Apple, Banana, Apple, Orange, Orange, Apple}
- F' = {Apple, Banana, Orange}

F = F' and |F| = |F'| = 3.

Cardinality Examples

- 1. $|\{x | -2 < x < 5, x \in \mathbb{Z}\}| = 6$, the elements are -1, 0, 1, 2, 3, 4
- 2. $|\emptyset| = 0$, no elements in the empty set
- 3. $|\{x \mid x \in \emptyset, x < 3\}| = 0$, because no x satisfies $x \in \emptyset$
- 4. $|\{x \mid x \in \{\mathbb{N}, \mathbb{Q}, \mathbb{R}, \mathbb{Z}\}\}| = 4$, the elements are $\mathbb{N}, \mathbb{Q}, \mathbb{R}, \mathbb{Z}$
- 5. |{0,0,0,1,1,1,2,2,2,3,3,,4}| = 5, the elements are 0,1,2,3,4

Cardinality: Ø vs {Ø}

Consider the contents of this shopping cart \rightarrow

|shopping cart| = 0, $shopping cart = \emptyset$ or $\{\}$

Cardinality: Ø vs {Ø}

Consider the contents of this shopping basket \rightarrow

|shopping basket| = 0, shopping basket = \emptyset or {}

Cardinality: Ø vs {Ø}

Now, consider the contents of this shopping cart \rightarrow

|shopping card| = 1 (it contains the basket)

The set representation of the shopping cart is $\{\emptyset\}$

It is a set containing one item, the empty set.

Cardinality (for Infinite Sets)

If **A** is not finite, then it is an **<u>infinite set</u>**

What is the cardinality (the size) of an infinite set?

Do all infinite sets have the same size?

- Are there more rational numbers than integers?
- Are there more real numbers than rational numbers?

Cardinality (for Infinite Sets)

If **A** is not finite, then it is an **infinite set**

What is the cardinality (the size) of an infinite set?

Do all infinite sets have the same size? **No**

- Are there more rational numbers than integers?
- Are there more real numbers than rational numbers?
- Only one of the above is "yes"

Outline

- Set Basics
- Set Equality and Subsets
 - Subsets
 - Set Equality
- Set Operations

Subsets

A set **A** is a **subset** of **B** if and only if every element of **A** is also in **B**. Denoted by $A \subseteq B$ If $A \subseteq B$, then $\forall x \in A, x \in B$ Note: for any set $A, \varnothing \subseteq A$ and $A \subseteq A$ If $A \subseteq B$ but $A \neq B$, then A is a **proper subset** of **B**. Denoted by $A \subseteq B$ or $A \subseteq B$ Venn Diagram showing $A \subseteq A$

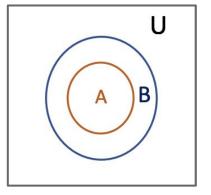
Subsets

To show that A is a subset of B:

• Prove that if $x \in A$ then $x \in B$

To show that A is not a subset of B:

• Find a counterexample; an x s.t. $x \in A$ but $x \notin B$



Venn Diagram showing $A \subseteq B$

Subset Examples

- 1. $\{1, 2\} \subseteq \{2, 1, 3\}$ \circ Also, $\{1, 2\} \subset \{2, 1, 3\}$
- 2. $\{x \in \mathbb{Z} \mid x \text{ is even}\} \subseteq \{x \mid x \in \mathbb{Z}\}$
 - Every even integer is an integer
- 3. $\{x \in \mathbb{Z} \mid x \text{ is even}\} \notin \{x \mid x \in \mathbb{Z} \text{ and } 1 < x < 5\}$
 - Both sets share 2 and 4, but 3 is not in the second set
- 4. $\{2, 4, 6, 8, ...\} \subseteq \{n \in \mathbb{N} \mid n \text{ is even}\}$
 - $\circ \subseteq$ is still true even when the sets are the same

More Examples

Let **A** = {a, b, c} **B** = {a, b, e} **C** = {a, e}

Which of the following are true?

- 1. $A \subseteq B$ 4. $C \subseteq C$
- 2. $A \subset B$ 5. $\{b\} \subseteq \{a, \{b\}, c\}$
- 3. $\mathbf{C} \subset \mathbf{B}$ 6. $\varnothing \subseteq \{a, \{b\}, c\}$

More Examples

Let **A** = {a, b, c} **B** = {a, b, e} **C** = {a, e}

Which of the following are true?

- 1. $A \subseteq B$ FALSE 4. $C \subseteq C$ TRUE
- 2. $A \subset B$ FALSE 5. {b} \subseteq {a, {b}, c} FALSE
- 3. *C* ⊂ *B* TRUE

6. $\emptyset \subseteq \{a, \{b\}, c\}$ TRUE

Distinction between \in and \subseteq

Remember: $x \in S$ means x is an element of S. $S_1 \subseteq S_2$ means S_1 is a subset of S_2

Which of the following are true?

- 1. $b \in \{a, \{b\}, c\}$
- 2. $\{b\} \in \{a, \{b\}, c\}$
- 3. $\{b\} \subseteq \{a, \{b\}, c\}$
- 4. $\{b\} \subseteq \{a, \{b\}, b, c\}$

Distinction between \in and \subseteq

Remember: $x \in S$ means x is an element of S. $S_1 \subseteq S_2$ means S_1 is a subset of S_2 Which of the following are true?

1. $b \in \{a, \{b\}, c\}$ FALSE (b is not in the set)

3. $\{b\} \subseteq \{a, \{b\}, c\}$

4. $\{b\} \subseteq \{a, \{b\}, b, c\}$

- 2. $\{b\} \in \{a, \{b\}, c\}$ TRUE ({b} is in the set)
 - FALSE (b is an element in the left set but not the right)
 - TRUE (b is now an element in the left and right set)

Outline

- Set Basics
- Set Equality and Subsets
 - Subsets
 - Set Equality
- Set Operations

Fact: Suppose **A** and **B** are sets. Then **A** = **B** if and only if $A \subseteq B$ and $B \subseteq A$

To Prove Set Equality

Fact: Suppose **A** and **B** are sets. Then **A** = **B** if and only if $A \subseteq B$ and $B \subseteq A$

To Prove Set Equality

Prove $A \subseteq B$:

Assume **x** in **A**

•••

. x in **B** as well

Conclude that $A \subseteq B$

Fact: Suppose **A** and **B** are sets. Then **A** = **B** if and only if $A \subseteq B$ and $B \subseteq A$

To Prove Set Equality

 $\frac{\text{Prove } A \subseteq B}{\text{Assume } x \text{ in } A}$

•••

. x in **B** as well

Conclude that $A \subseteq B$

 $\frac{\text{Prove } B \subseteq A:}{\text{Assume } y \text{ in } B}$

... ... y in A as well

Conclude that $B \subseteq A$

Fact: Suppose **A** and **B** are sets. Then **A** = **B** if and only if $A \subseteq B$ and $B \subseteq A$

To Prove Set Equality

 $\frac{\text{Prove } A \subseteq B}{\text{Assume } x \text{ in } A}$

•••

∴ *x* in *B* as well

Conclude that $A \subseteq B$

 $\frac{Prove B \subseteq A:}{Assume y in B}$

... ... y in A as well

Conclude that $B \subseteq A$

Conclude that since $A \subseteq B$ and $B \subseteq A$ then A = B

Let $A = \{1, 2, 3, 4\}$ and $B = \{x \mid x \in \mathbb{Z} \text{ and } 1 \le x < 5\}$. Prove A = B.

Let **A** = {1, 2, 3, 4} and **B** = {x | $x \in \mathbb{Z}$ and $1 \le x < 5$ }. Prove **A** = **B**.

Proof of $A \subseteq B$ **:** Assume $\mathbf{x} \in \mathbf{A}$ Case x = 1: $1 \in \mathbb{Z}$ and $1 \le 1 < 5$ $\therefore 1 \in \mathbf{B}$ Case x = 2: 2 $\in \mathbb{Z}$ and 1 \leq 2 < 5 ∴ 2 ∈ **B** Case x = 3: $3 \in \mathbb{Z}$ and $1 \le 3 \le 5$ ∴ 3 ∈ **B** Case x = 4: $4 \in \mathbb{Z}$ and $1 \le 4 < 5$ $\therefore 4 \in \mathbf{B}$ $\therefore x \in B$, so $A \subseteq B$

Let **A** = {1, 2, 3, 4} and **B** = {x | $x \in \mathbb{Z}$ and $1 \le x < 5$ }. Prove **A** = **B**.

Proof of $A \subseteq B$: Assume $x \in A$

- Case x = 1: $1 \in \mathbb{Z}$ and $1 \le 1 < 5$ $\therefore 1 \in \mathbf{B}$
- Case x = 2: 2 ∈ ℤ and 1 ≤ 2 < 5 ∴ 2 ∈ **B**
- Case x = 3: 3 ∈ Z and 1 ≤ 3 < 5 ∴ 3 ∈ **B**

```
Case x = 4: 4 \in \mathbb{Z} and 1 \le 4 < 5
\therefore 4 \in \mathbf{B}
```

 $\therefore x \in B$, so $A \subseteq B$

Proof of $B \subseteq A$: Assume $x \in B$ $x \in \mathbb{Z}$ and $1 \le x < 5$ So x must be 1, 2, 3, or 4 If x is 1, 2, 3, or 4, then $x \in A$ $\therefore x \in A$, so $B \subseteq A$

Let **A** = {1, 2, 3, 4} and **B** = {x | $x \in \mathbb{Z}$ and $1 \le x < 5$ }. Prove **A** = **B**.

Proof of $A \subseteq B$: Assume $x \in A$

- Case x = 1: $1 \in \mathbb{Z}$ and $1 \le 1 < 5$ $\therefore 1 \in \mathbf{B}$
- Case x = 2: 2 ∈ ℤ and 1 ≤ 2 < 5 ∴ 2 ∈ **B**
- Case x = 3: 3 ∈ Z and 1 ≤ 3 < 5 ∴ 3 ∈ **B**

```
Case x = 4: 4 \in \mathbb{Z} and 1 \le 4 < 5
\therefore 4 \in \mathbf{B}
```

 $\therefore x \in B$, so $A \subseteq B$

Proof of $B \subseteq A$: Assume $\mathbf{x} \in \mathbf{B}$ $\mathbf{x} \in \mathbb{Z}$ and $1 < \mathbf{x} < 5$ So **x** must be 1, 2, 3, or 4 If **x** is 1, 2, 3, or 4, then $\mathbf{x} \in \mathbf{A}$ $\therefore x \in A$, so $B \subseteq A$

Since $A \subseteq B$ and $B \subseteq A$ we get that A = B

Let
$$E_1 = \{\{\}\}$$
 and $E_2 = \{\emptyset, \{\}\}$. Prove $E_1 = E_2$.

Let
$$E_1 = \{\{\}\}$$
 and $E_2 = \{\emptyset, \{\}\}$. Prove $E_1 = E_2$.

Proof of $E_1 \subseteq E_2$: Assume $x \in E_1$

Case $x = \{\}: \{\} \in E_2$

This is the only element in **E**₁

 $\therefore E_1 \subseteq E_2$

Let $E_1 = \{\{\}\}$ and $E_2 = \{\emptyset, \{\}\}$. Prove $E_1 = E_2$.

Proof of $E_1 \subseteq E_2$: Assume $x \in E_1$

Case $x = \{\}: \{\} \in E_2$

This is the only element in E_1

 $\therefore E_1 \subseteq E_2$

Proof of $E_2 \subseteq E_1$: Assume $x \in E_2$ Case x = {}: {} $\in E_1$

Case x =
$$\emptyset$$
: $\emptyset \in E_1$

 $\therefore E_2 \subseteq E_1$

Let $E_1 = \{\{\}\}$ and $E_2 = \{\emptyset, \{\}\}$. Prove $E_1 = E_2$. Proof of $E_1 \subseteq E_2$: Assume $x \in E_1$ Case $x = \{\}: \{\} \in E_2$ $Proof of E_2 \subseteq E_1$: Assume $x \in E_2$ $Case x = \{\}: \{\} \in E_2$ $Case x = \emptyset: \emptyset \in E_1$

This is the only element in E_1

 $\therefore E_1 \subseteq E_2 \qquad \qquad \therefore E_2 \subseteq E_1$

Since $E_1 \subseteq E_2$ and $E_2 \subseteq E_1$ we get that $E_1 = E_2$, notice duplicates don't

Outline

- Set Basics
- Set Equality and Subsets
- Set Operations
 - Basic Operators
 - Power Set
 - Cartesian Product
 - Partitions

Set Operations

We have: +, -, \times , \div , ... operators for numbers

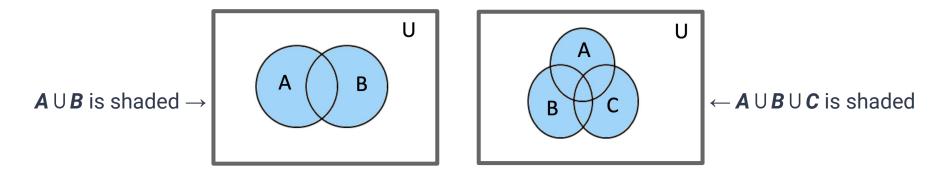
We have: \lor , \land , \neg , \rightarrow , ... operators for propositions

Set Operation	Symbol	Idea	Logic
Union of A and B	A ∪ B	in A or B	V
Intersection of A and B	A ∩ B	in A and B	٨
Complement of A	Ā	not in A	-
Difference of A and B	A \ B	in A and not in B	$A \land \neg B$
Symmetric difference of A and B	A \bigcirc B	in A or B , not both	Ð
A is subset of B	A ⊆ B	if in A then in B	\rightarrow

Set Union

The <u>union</u> of two sets, **A** and **B**, is the set that contains exactly all elements that are in **A** or **B** (or in both)

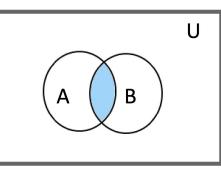
- Denoted by **A** U **B**
- Formally, $\mathbf{A} \cup \mathbf{B} = \{ x \mid x \in \mathbf{A} \text{ or } x \in \mathbf{B} \}$

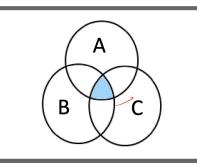


Set Intersection

The <u>intersection</u> of two sets, **A** and **B**, is the set that contains exactly all elements that are in **A** and **B**

- Denoted by **A** ∩ **B**
- Formally, $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$





 $\leftarrow \mathbf{A} \cap \mathbf{B} \cap \mathbf{C}$ is shaded

Set Intersection

The <u>intersection</u> of two sets, **A** and **B**, is the set that contains exactly all elements that are in **A** and **B**

- Denoted by **A** ∩ **B**
- Formally, $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$

Two sets are **<u>disjoint</u>** if their intersection is the empty set

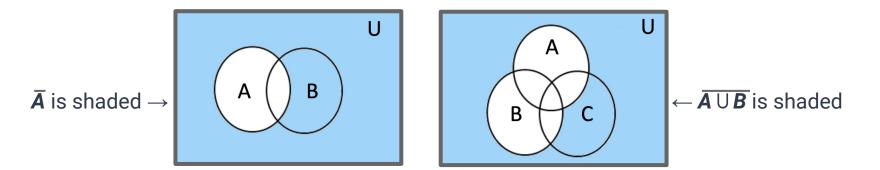
Principle of Inclusion-Exclusion

 $|\mathbf{A} \cup \mathbf{B}| = |\mathbf{A}| + |\mathbf{B}| - |\mathbf{A} \cap \mathbf{B}|$

Set Complement

The <u>complement</u> of set **A** is the set that contains exactly all the elements that are not in **A**.

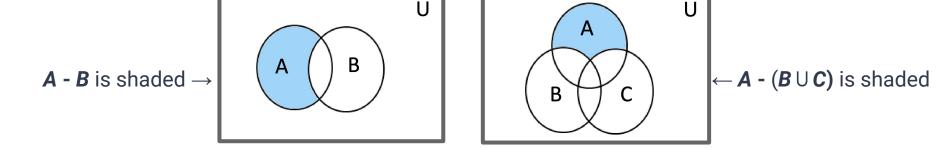
- Denoted by **Ā**
- Formally, $\overline{A} = \{ x \mid x \in A \}$



Set Difference

The <u>difference</u> of set **A** and set **B** is the set that contains exactly all elements that are in **A** but not in **B**

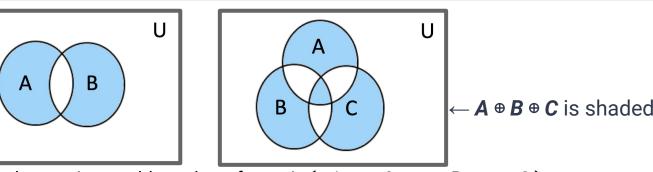
- Denoted by A B (or A \ B)
- Formally, $\mathbf{A} \mathbf{B} = \{ x \mid x \in \mathbf{A} \text{ and } x \notin \mathbf{B} \} = \mathbf{A} \cap \overline{\mathbf{B}}$



Symmetric Difference

The **<u>symmetric difference</u>** of set **A** and set **B** is the set that contains all elements that are in exactly one of **A** or **B**

- Denoted by **A** ⊕ **B** (or **A** ⊂ **B**)
- Formally, **A** ⊕ **B** = (**A B**) ∪ (**B A**)



It includes values that are in an odd number of sets, ie { $x | x \in A \oplus x \in B \oplus x \in C$ }

Let the universe be \mathbb{Z}^+ . Write the contents of **A** in roster form, where: **A** = ({ x | x is even} - { x | x is a multiple of 3}) \cap { y | y ≤ 10 }

Let the universe be \mathbb{Z}^+ . Write the contents of **A** in roster form, where: **A** = ({ x | x is even} - { x | x is a multiple of 3}) \cap { y | y ≤ 10 } { 2, 4, 8, 10 }

Let the universe be the 7 colors in a rainbow (Red, Orange, Yellow, Green, Blue, Indigo, Violet). Write the contents of *C* and *D* in roster form, where:

 $C = (\{ c | c is 6 letters \} \cup \{ c | c has odd length \}) \oplus \{Red, Blue, Yellow\}$

$$D = \overline{C}$$

Let the universe be the 7 colors in a rainbow (Red, Orange, Yellow, Green, Blue, Indigo, Violet). Write the contents of *C* and *D* in roster form, where:

 $C = (\{ c | c is 6 letters \} \cup \{ c | c has odd length \}) \oplus \{Red, Blue, Yellow\}$

$D = \overline{C}$

C = { Orange, Green, Indigo, Violet, Blue }

D = { Red, Yellow }

More Practice

Consider the universe { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Let **A** = { 1, 2, 3, 4, 5} and **B** = { 1, 2, 3, 4, 5, 6, 7, 8 }

- 1. **A**∩**B**
- 2. **A** U **B**
- 3. **Ā**
- 4. **B**
- 5. **A B**
- 6. *B**A*
- 7. **A** ⊕ **B**

More Practice

Consider the universe { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Let **A** = { 1, 2, 3, 4, 5} and **B** = { 1, 2, 3, 4, 5, 6, 7, 8 }

}

A ∩ B	= { 1, 2, 3, 4, 5 }
A ∪ B	= { 1, 2, 3, 4, 5, 6, 7, 8 }
Ā	= { 6, 7, 8, 9, 10 }
B	= { 9, 10 }
A - B	= Ø
B - A	= { 6, 7, 8 }
A ⊕ B	= (A - B) ∪ (B - A) = { 6, 7, 8
	A∩B A∪B Ā B A-B B-A A⊕B

Generalized Set Operators

We can simplify the notation for operating on *n* sets

For unions:
$$A_1 \cup A_2 \cup A_3 \cup ... \cup A_n = \bigcup_{i=1}^n A_i$$

Formally: $\bigcup_{i=1}^n A_i = \{s \mid s \in A_1 \text{ or } s \in A_2 \text{ or } ... \text{ or } A_n\}$

For Intersection: $A_1 \cap A_2 \cap A_3 \cap \ldots \cap A_n = \bigcap_{i=1}^n A_i$ Formally: $\bigcap_{i=1}^n A_i = \{s \mid s \in A_1 \text{ and } s \in A_2 \text{ and } \ldots \text{ and } A_n\}$

Let A_i = { 1, 2, 3, ..., i } for all positive integers i. Then compute:

Let **A**_{*i*} = { **1**, **2**, **3**, ..., *i* } for all positive integers *i*. Then compute:

Let $B_i = \{i + 1, i + 2, ..., 2i\}$ and $C_i = \{i\}$. Compute the following:

Let $B_i = \{i + 1, i + 2, ..., 2i\}$ and $C_i = \{i\}$. Compute the following:

$$\bigcup_{i=1}^{n} B_i = A_{2n} - \{1\} \qquad \qquad \bigcap_{i=1}^{n} B_i = \emptyset$$

$$\bigcup_{i=1}^{n} C_i = \mathbf{A}_n \qquad \qquad \bigcap_{i=1}^{n} C_i = \emptyset$$

Prove that: $\bigcup_{i=1}^{n} C_i = \bigcup_{i=1}^{n} A_i$

Outline

- Set Basics
- Set Equality and Subsets
- Set Operations
 - Basic Operators
 - Power Set
 - Cartesian Product
 - Partitions

Power Set

The **power set** of set **A** is the set of all possible subsets of **A**

Denoted by *F***(A)**

In general, $|\mathscr{G}(\mathbf{A})| = 2^{|\mathbf{A}|}$

For any set **A**, it is always the case that:

- $\emptyset \in \mathscr{G}(A)$ (the empty set is a subset of A ...and every other set)
- $A \in \mathcal{F}(A)$ (A is a subset of itself...every elements of A is in A)

Power Set Example

$\mathscr{P}(\{0, 1, 2\}) = \{ \varnothing, \{0\}, \{1\}, \{2\}, \{0,1\}, \{0,2\}, \{1,2\}, \{0,1,2\} \}$

Note: For each subset, each element of our original set is either in it, or not in it. That's two options for each element, which is why there are 2ⁿ possible subsets.

Power Set Exercises

Let $\mathbf{A} = \{a, \{a\}, \{a,b\}, b, \{c\}, d\}$

- 1. a ∈ **A**
- 2. {b} ⊆ **A**
- 3. c ∈ **A**
- 4. {a, d} ∈ **A**
- 5. {a, b} ∈ **A**
- 6. {a, d} ⊆ **A**
- 7. $\{a, d\} \in \mathscr{P}(A)$

𝔐(∅)
 𝔐(⟨∅⟩)
 𝔐(⟨∅⟩)
 𝔐(⟨𝑔⟩)

Power Set Exercises

Let $\mathbf{A} = \{a, \{a\}, \{a,b\}, b, \{c\}, d\}$

- 1. a ∈ **A** TRUE 2. {b} ⊆ **A** TRUE 3. $c \in \mathbf{A}$ FALSE
- 4. $\{a, d\} \in \mathbf{A}$ FALSE
- 5. $\{a, b\} \in \mathbf{A}$ TRUE
- 6. $\{a, d\} \subseteq A$ **TRUE**
- 7. $\{a, d\} \in \mathscr{G}(A)$ TRUE

- 8. $\mathscr{G}(\varnothing) = \{ \varnothing \}$
- 9. $\mathscr{G}(\{\varnothing\}) = \{ \varnothing, \{\varnothing\} \}$
- 10. $\mathscr{F}(\{a\}) = \{ \varnothing, \{a\} \}$

Outline

- Set Basics
- Set Equality and Subsets
- Set Operations
 - Basic Operators
 - Power Set
 - Cartesian Product
 - Partitions

Imposing Order on Elements

Sometimes order **is** important...

How can we impose order on elements?

Imposing Order on Elements

Sometimes order is important...

How can we impose order on elements?

An <u>ordered *n* tuple</u> $(a_1, a_2, ..., a_n)$ has a_1 as its first element, a_2 as its second, ..., and a_n as its *n*th element.

Imposing Order on Elements

Sometimes order is important...

How can we impose order on elements?

An <u>ordered *n* tuple</u> $(a_1, a_2, ..., a_n)$ has a_1 as its first element, a_2 as its second, ..., and a_n as its n^{th} element.

Order is important for tuples. Assume $a_1 \neq a_2$

- $(a_1, a_2) \neq (a_2, a_1) \leftarrow \text{tuple comparison}$
- $\{a_1, a_2\} = \{a_2, a_1\} \leftarrow \text{set comparison}$

Imposing Order: Cartesian Product

The <u>Cartesian product</u> of two sets A_1 and A_2 is defined as the set of ordered tuples (a_1, a_2) where $a_1 \in A_1$ and $a_2 \in A_2$

- Denoted by $A_1 \times A_2$
- Formally, $\mathbf{A}_1 \times \mathbf{A}_2 = \{(\mathbf{a}_1, \mathbf{a}_2) \mid \mathbf{a}_1 \in \mathbf{A}_1 \text{ and } \mathbf{a}_2 \in \mathbf{A}_2\}$
- We say "A₁ cross A₂"

René Descartes

Computing the Cartesian Product

Example: {1, 2} × {a, b, c} = {(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)}

	а	b	С
1	(1,a)	(1,b)	(1,c)
2	(2,a)	(2,b)	(2,c)

 $\{1, 2\} \times \{a, b, c\}$ is the set of all elements in our table

Computing the Cartesian Product

What if **A** = {1, 2} and **B** = \mathbb{Z}^+ ...how do we compute **A** × **B**

	1	2	3	•••
1	(1,1)	(1,2)	(1,3)	•••
2	(2,1)	(2,2)	(2,3)	•••

A × **B** = { (**x**, **y**) | **x** ∈ {1, 2}, **y** ∈ Z⁺ }

Notice how (1, 2) and (2, 1) are unique elements of $\mathbf{A} \times \mathbf{B}$

Generalized Cartesian Product

For $n \ge 2$, the cartesian product of A_1 to A_n is defined as follows: $A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2, ..., a_n) \mid a_1 \in A_1, a_2 \in A_2, ..., a_n \in A_n\}$

Cartesian Power: \emptyset n = 0For any integer $n \ge 0$, $A^n = \begin{cases} \emptyset & n = 1 \\ A \times A \times \dots \times A & n > 1 \end{cases}$

Formally, $\mathbf{A}^n = \{(\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_n) \mid \mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_n \in \mathbf{A}\}$

Cartesian Product Examples

Let $\mathbf{A} = \{ x \mid x \text{ is an odd integer in } \mathbb{Z}^+ \text{ and } x < 6 \}$

B = { y | y is an even integer in \mathbb{Z}^+ and y < 8 }

C = { 1, 2 }, **D** = { 0, 1 }, **E** = { a }

 $A \times B$ D^{3} $C \times C$ $(C \times E) \times D$

Cartesian Product Examples

Let $\mathbf{A} = \{ x \mid x \text{ is an odd integer in } \mathbb{Z}^+ \text{ and } x < 6 \}$

 $B = \{ y \mid y \text{ is an even integer in } \mathbb{Z}^+ \text{ and } y < 8 \}$

C = { 1, 2 }, **D** = { 0, 1 }, **E** = { a }

- $\boldsymbol{A} \times \boldsymbol{B} = \{(1,2), (1,4), (1,6), (3,2), (3,4), (3,6), (5,2), (5,4), (5,6)\}$
- $D^{3} = \{(0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1)\}$
- $\mathbf{C} \times \mathbf{C}$ = {(1,1), (1,2), (2,1), (2,2)}
- $(\mathbf{C} \times \mathbf{E}) \times \mathbf{D}$ = {((1,a),0),((1,a),1),((2,a),0),((2,a),1)

How can we represent English words?

Let **A** = {a, b, c, d, e, ..., z} (the English alphabet)

- (c,a,t) and (d,o,g) are both members of **A**³
- (f,r,o,g) and (b,i,r,d) are both members of A^4

We can shorthand tuples as words:

- cat, dog $\in A^3$
- frog, bird $\in A^4$

An **<u>alphabet</u>** is a *non-empty finite* set of symbols

A **<u>string</u>** is a finite sequence of symbols from an alphabet

• Shorthand for a tuple from the Cartesian power of an alphabet

The number of characters in a string is called th **length** of the string

• The length of string *s* is denoted by |*s*|

Example

The alphabet {0, 1} is used to form **binary strings** $0001 \in \{0, 1\}^4$ |0001| = 4 $000 \in \{0, 1\}^3$ |000| = 3 $0101111 \in \{0, 1\}^6$ |010111| = 6 $111 \in \{0, 1\}^3$ |111| = 3

What is the shortest string over any alphabet?

The smallest cartesian power is 0

• {a,b}⁰ = {()}

How can we write the sequence of characters within ()?

- We let λ denote the **<u>empty string</u>**
- Then $\{a,b\}^0 = \{\lambda\}$
- |λ| = 0
- In programming, we usually denote the empty string with "" or ' '

The smallest cartesian power is 0

• {a,b}⁰ = {()}

How can we write the sequence of characters within ()?

- We let λ denote the **<u>empty string</u>**
- Then $\{a,b\}^0 = \{\lambda\}$
- $|\lambda| = 0$
- In programming, we usually denote the empty string with "" or ' '

Note: The empty string can be formed over any alphabet, $\boldsymbol{\Sigma}$

• Just take 0 characters from Σ to form λ

String Operations

We can define a number of interesting operations on strings:

- Concatenation
- Substring
- Prefix
- etc...

Strings: Concatenation

The <u>concatenation</u> of two strings *s* and *t* is formed by taking all symbols in *s* followed by all symbols in *t*.

Concatenation of **s** and **t** is denoted by **st**.

```
Formally, if s = s_1 s_2 s_3 ... s_m and t = t_1 t_2 t_3 ... t_n then:

st = s_1 s_2 s_3 ... s_m t_1 t_2 t_3 ... t_n

Note: |st| = |s| + |t|
```

Strings: Concatenation

Let **s** = cat, **t** = dog **st** = catdog |**st**| = 6

```
Let s = sponge, t = bob

st = spongebob

|st| = 9

s\lambda = \lambda s = sponge, |\lambda s| = |s| = 6
```

Strings: Substrings

A string *t* is a <u>substring</u> of *s* if all characters of *t* appear consecutively in *s* A <u>prefix</u> of *s* is a substring of *s* that begins at the first character of *s* A <u>proper substring</u> of *s* is a substring of *s* that is not equal to *s*

Strings: Substrings

Let \mathbf{s} = racecar, \mathbf{t} = car, \mathbf{u} = race, \mathbf{v} = rar, then:

- 1. **s** is a substring of **s** and **s** is a prefix of **s**
 - \circ **s** is not a proper substring of **s**
- 2. *t* is a proper substring of *s*
- 3. **u** is a proper substring of **s** and a prefix of **s**
- 4. **v** is not a substring of **s**

Outline

- Set Basics
- Set Equality and Subsets

- Set Operations

- Basic Operators
- Power Set
- Cartesian Product
- Partitions

Pairwise Disjoint Sets

Two sets **A** and **B** are <u>disjoint</u> iff $A \cap B = \emptyset$

A sequence of sets, $A_1, A_2, A_3, ..., A_n$ are <u>pairwise disjoint</u> if: for any $i, j \in \{1, 2, 3, ..., n\}$, where $i \neq j$, we have $A_i \cap A_j = \emptyset$

Symbolically we write $\forall i,j \in \{1,2,3,...,n\}$: $[(i \neq j) \rightarrow (A_i \cap A_j = \emptyset)]$

Examples

Consider the following sets:

Are these sets pairwise disjoint?

 $A_1 \cap A_2 = \emptyset$ $A_2 \cap A_3 = \emptyset$ $A_1 \cap A_3 = \emptyset$

So, **yes**, all pairs are disjoint, therefore A_1, A_2, A_3 are pairwise disjoint

Examples

Consider the following sets: $B_1 = \{x \mid x \in \mathbb{Z}^+ \text{ and } x \text{ is even }\}$ $B_2 = \{x \mid x \text{ is prime }\}$ $B_3 = \mathbb{Z} - \mathbb{Z}^+$

Are these sets pairwise disjoint?

Examples

Consider the following sets:

$$B_1 = \{ x \mid x \in \mathbb{Z}^+ \text{ and } x \text{ is even } \}$$
$$B_2 = \{ x \mid x \text{ is prime } \}$$
$$B_3 = \mathbb{Z} - \mathbb{Z}^+$$

Are these sets pairwise disjoint?

 $\boldsymbol{B}_1 \cap \boldsymbol{B}_2 = \{\boldsymbol{2}\} \qquad \boldsymbol{B}_2 \cap \boldsymbol{B}_3 = \varnothing \qquad \boldsymbol{B}_1 \cap \boldsymbol{B}_3 = \varnothing$

So no, the sets are not pairwise disjoint

Partitions

A <u>partition</u> of a non-empty set **A** is a list of one or more non-empty subsets of **A** such that each element of **A** appears in exactly one of the subsets.

Formally, a partition of **A** is a list of sets, $A_1, A_2, ..., A_k$ such that:

- 1. $\forall i \in [1, k]: A_i \neq \emptyset$ (the sets are non-empty)
- 2. $\forall i \in [1, k]: A_i \subseteq A$ (the sets are subsets of A)
- 3. $\forall i,j \in [1, k]: i \neq j \rightarrow A_i \cap A_i = \emptyset$ (the sets are pairwise disjoint)
- 4. $\mathbf{A} = \mathbf{A}_1 \cup \mathbf{A}_2 \cup \mathbf{A}_3 \cup \dots \cup \mathbf{A}_k$

Consider a standard deck of cards.

- There are 52 cards.
- Each card is one of four suits: Clubs, Diamonds, Hearts, Spades
- Each suit consists of A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, K, Q
- Diamonds and Hearts are Red
- Clubs and Spades are Black

Let **D** be the set containing all cards in a standard deck of cards

Let **D** be the set containing all cards in a standard deck of cards

Let
$$S_{club} = \{ c \mid c \text{ is a club} \}$$

 $s_{diamond} = \{ c \mid c \text{ is a diamond} \}$
 $S_{heart} = \{ c \mid c \text{ is a heart} \}$
 $S_{spade} = \{ c \mid c \text{ is a spade} \}$

Does **S**_{club}, **S**_{diamond}, **S**_{heart}, **S**_{spade} partition **D**?

Let **D** be the set containing all cards in a standard deck of cards

Does **C**_{red}, **C**_{black} partition **D**?

Does C_{red} , S_{spade} , S_{club} partition D?

Does **C**_{red}, **S**_{heart}, **S**_{club} partition **D**?

Let **D** be the set containing all cards in a standard deck of cards

Does **C**_{red}, **C**_{black} partition **D**? **YES**

Does **C**_{red}, **S**_{spade}, **S**_{club} partition **D**? **YES**

Does C_{red}, S_{heart}, S_{club} partition D? NO. "3 of Hearts" is part of two of the sets for example. "5 of spades" is in D but not in any of the listed sets.

Consider the following sets:

- **0** = { **x** | **x** ∈ Z and **x** is odd }
- **E** = { **x** | **x** ∈ Z and **x** is even }
- Do **O** and **E** partition \mathbb{N} ?
- Do **O** and **E** partition ℤ?
- Do \boldsymbol{O} and \boldsymbol{E} partition \mathbb{R} ?

Consider the following sets:

- **0** = { **x** | **x** ∈ Z and **x** is odd }
- **E** = { **x** | **x** ∈ Z and **x** is even }
- Do **O** and **E** partition \mathbb{N} ? No, -1 \in (**O** \cup **E**) but -1 \notin \mathbb{N}
- Do **0** and **E** partition **Z**? **Yes**.
- Do **O** and **E** partition \mathbb{R} ? No, $\frac{1}{2} \notin (\mathbf{O} \cup \mathbf{E})$ but $\frac{1}{2} \in \mathbb{N}$

Partitioning Exercise

Consider the following sets:

 $A = \{1,2,6\}$ $B = \{2,3,4\}$ $C = \{5\}$ $D = \{x \in \mathbb{Z}: 1 \le x \le 6\}$

Do **A**, **B**, **C** form a partition of **D**? Why or why not?

Can you define a set **X** such that **A**, **C**, **X** partition **D**?