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Consider the following 6 functions.

[2 points per function, total = 12 points]

For each of the six functions above, compute the closed form for the summation (a formula that
has no summations or variables other than ).

To compute the closed form of each summation, you must show all work as a step-by-step
derivation using the rules in the reference material below. You may only use the rules listed
there (i.e, R1 to R10). See the example below for specifics on how to perform the derivation.

Problem 1 - Summations

[21/30 points]
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[1 point per function, total = 6 points]

For each of the six functions above, provide a tight (i.e., Big- ) bound for the formula. No
justification is required.

[3 points]

Arrange the functions in order of growth, from slowest growth on the left to fastest growth on the
right. In the event of a tie, put the function with the smaller constant terms to the left. No
justification is required.

Suppose  and . Using the formal definition of Big-
, prove that  by providing valid constants ,  and proving that they are valid

(that the inequality holds). Verify your result by using the limit test described in lecture.

Part B
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Part C

Problem 2 - Asymptotic Bounds

[9/30 points]

f (n) = 9 − 16n + 42(log(n)n2 )2 g(n) = 4n2

O f (n) = O(g(n)) c n0



The following works for any functions ,  (even constants).  is any constant relative to 
. Any sum  is always 0 if .

R1. 

R2. 

R3. 

R4.  (for any )

R5. 

R6.  (for any )

R7.  (for any )

R8. 

R9. 

R10.  is a tight upper bound (Sterling: Some constant  exists)

R11. 

R12. 

R13. 

R14. 

R15. 

Reference Material

Closed form summation equivalences

f g c
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Closed form logarithm equivalences

log( ) = a log(n)na

log(an) = log(a) + log(n)

log( ) = log(n) − log(a)n
a

(n) =logb
(n)logc

(b)logc

log( ) = = n2n 2log(n)



The derivation to find the closed form for  is as follows:

apply R1 with 

apply R6 with 

apply R2 with 

apply R3 with 

apply R8 with 

apply R1 with 

Example
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c = 20, f (i) = (i + 1), j = 1, k = n − 2
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f (i) = i, g(i) = 1, j = 1, k = n − 2
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c = 1, j = 1, k = n − 2

= 20 + 20 ( + (n − 2 − 1 + 1) ⋅ 1)(n − 2)(n − 1)
2

= 20 + 20 ( + (n − 2))− 3n + 2n2

2

= 20 + (10 − 30n + 20) + (20n − 40)n2

= 10 − 10nn2




